
Type	Systems	for	Programming	
Languages	

CS4430/7430	

Some	history…	

•  Go=lob	Frege	was	a	German	
mathemaBcian	and	philosopher	
working	on	the	foundaBons	of	
arithmeBc.	

•  1879:	Begriffsschri*.	
•  1884:	The	Founda4ons	of	Arithme4c.	
•  1893:	Basic	Laws	of	Arithme4c,	vol.	1.	
•  1903:	Basic	Laws	of	Arithme4c,	vol.	2.	

Go=lob	Frege	
1848-1925	

Some	history…	

•  Go=lob	Frege	was	a	german	
mathemaBcian	and	philosopher	
working	on	the	foundaBons	of	
arithmeBc.	

•  1879:	Begriffsschri*.	
•  1884:	The	Founda4ons	of	Arithme4c.	
•  1893:	Basic	Laws	of	Arithme4c,	vol.	1.	
•  1903:	Basic	Laws	of	Arithme4c,	vol.	2.	

Go=lob	Frege	
1848-1925	

But	just	as	Volume	2	was	going	to	print,	
he	received	a	le=er…	

Some	history…	

X = {x x ∉ X}

Bertrand	Russell	
1872-1970	

Russell’s	paradox:	
•  Let	X	be	the	set	of	everything	
not	in	X,	i.e.:	

•  Is	X	∈	X?	
– Yes:	But	if	X	∈	X,	then	X	∉	X.	
– No:	But	if	X	∉	X,	then	X	∈	X.	

Some	history…	

Bertrand	Russell	
1872-1970	

•  1908:	Russell’s	fix:	Types!	
•  1910-1927	(with	Whitehead):	
Principia	Mathema4ca.	
– Goal:	axioms	and	rules	from	
which	all	mathemaBcal	truths	
could	be	derived.	

“From	this	proposiBon	it	will	follow,	
when	arithmeBcal	addiBon	has	been	
defined,	that	1+1=2.”	

–Volume	I,	1st	ediBon,	page	379	

What	are	type	systems?	

“A	type	system	is	a	tractable	syntacBc	method	
for	proving	the	absence	of	certain	program	
behaviors	by	classifying	phrases	according	to	the	
kinds	of	values	they	compute.”	
	
“A	type	system	can	be	regarded	as	calculaBng	a	
kind	of	sta4c	approximaBon	to	the	run-Bme	
behaviors	of	the	terms	in	a	program.”

—Benjamin Pierce, Types and Programming Languages	

What	is	a	Type	System?	

•  A	type	system	is	a	syntacBc	discipline	for	
enforcing	levels	of	abstracBon.	
– Ensures	that	bad	things	do	not	happen.	

•  A	type	system	rules	out	nonsense	programs.	
– Adding	a	funcBon	to	a	string	
–  InterpreBng	an	integer	as	a	pointer	
– ViolaBng	interfaces	

Well-typed	
Programs	

“Sensible” programs

“Nonsense” programs

Type	checking	

What	is	a	Type	System?	

•  How	can	this	be	a	good	thing?	
– Expressiveness	arises	from	strictures:	restricBons	
entail	stronger	invariants	

– Flexibility	arises	from	controlled	relaxaBon	of	
strictures,	not	from	their	absence.	

•  A	type	system	is	fundamentally	a	verificaBon	
tool	that	suffices	to	ensure	invariants	on	
execuBon	behavior.	

Why	Types	are	Useful	
•  error	detecBon:	early	detecBon	of	common	
programming	errors	

•  safety:	well	typed	programs	do	not	go	wrong	
•  design:	types	provide	a	language	and	
discipline	for	design	of	data	structures	and	
program	interfaces	

•  abstracBon:	types	enforce	language	and	
programmer	abstracBons	

Why	Types	are	Useful	(cont)	

•  verificaBon:	properBes	and	invariants	
expressed	in	types	are	verified	by	the	compiler	
(“a	priori	guarantee	of	correctness”)	

•  sojware	evoluBon:	support	for	orderly	
evoluBon	of	sojware	
– consequences	of	changes	can	be	traced	

•  documentaBon:	types	express	programmer	
assumpBons	and	are	verified	by	compiler	

Types	Induce	Invariants	

•  Types	induce	invariants	on	programs.	
–  If	e	:	int,	then	its	value	must	be	an	integer.	
–  If	e	:	int	à	int,	then	it	must	be	a	funcBon	taking	
and	yielding	integers.	

–  If	e	:	filedesc,	then	it	must	have	been	obtained	by	
a	call	to	open.	

–  If	e	:	int{H},	then	no	“low	clearance”	expression	
can	read	its	value.	

Types	Induce	Invariants	

•  These	invariants	provide	
– Safety	properBes:	well-typed	programs	do	not	“go	
wrong”.	

– EquaBonal	properBes:	when	are	two	expressions	
interchangeable	in	all	contexts.	

– RepresentaBon	independence	(parametricity).	

Typing	judgments	

	
e	:	int

•  Asserts	that	evaluaBon	of	e	will	result	in	a	
value	of	type	int.	

•  But	e	must	be	well-typed	for	this	asserBon	to	
actually	hold.	

Typing	judgments	

	
2	:	int

•  Asserts	that	evaluaBon	of	e	will	result	in	a	
value	of	type	int.	

•  But	e	must	be	well-typed	for	this	asserBon	to	
actually	hold.	

Typing	judgments	

	
1	+	2	:	int

•  Asserts	that	evaluaBon	of	e	will	result	in	a	
value	of	type	int.	

•  But	e	must	be	well-typed	for	this	asserBon	to	
actually	hold.	

Typing	judgments	

	
true	:	int

•  Asserts	that	evaluaBon	of	e	will	result	in	a	
value	of	type	int.	

•  But	e	must	be	well-typed	for	this	asserBon	to	
actually	hold.	

Typing	judgments	

	
1	+	true	:	int

•  Asserts	that	evaluaBon	of	e	will	result	in	a	
value	of	type	int.	

•  But	e	must	be	well-typed	for	this	asserBon	to	
actually	hold.	

Typing	judgments	

SoluBon:	a	set	of	rules	(a	logic)	which	will	derive	
only	valid	typing	judgments.	Now,	if	we	can	
derive	a	judgment	of	the	form:	

e	:	t	
It	should	be	the	case	that	the	expression	e	is	
well-typed	and	when	it	is	evaluated,	the	result	
will	have	type	t.	

	

Type	judgments	

e1	:	int e2	:	int

e1	+	e2	:	int
(1)	

Type	judgments	

e1	:	int e2	:	int

e1	+	e2	:	int

n	:	int
(Where	n	is	an	integer	literal.)	(2)	

(1)	

Type	judgments	

	2	:	int 	1	:	int
(2)	 (2)	

Type	judgments	

1	+	2	:	int

	2	:	int 	1	:	int
(1)	

(2)	 (2)	

Type	judgments	

1	+	2	:	int 	3	:	int

	2	:	int 	1	:	int
(1)	 (2)	

(2)	 (2)	

Type	judgments	

1	+	2	:	int 	3	:	int

1	+	2	+	3	:	int
(1)	

	2	:	int 	1	:	int
(1)	 (2)	

(2)	 (2)	

Typing	judgments	

But	what	about	variables?	
x	:	t	

What	is	t,	where	x	is	a	variable?	
	
	

Typing	judgments	

But	what	about	variables?	
x	:	t	

What	is	t,	where	x	is	a	variable?	
	
SoluBon:	look	it	up	in	the	environment	(i.e.,	the	
symbol	table).	
	

Γ, x	:	t					

Typing	judgments	

	
x	:	t	

	
Γ, x	:	t					

Called	the	context—a	mapping	
from	name	to	types.	

Type	judgments	

Γ e1	:	int Γ e2	:	int

Γ e1	+	e2	:	int

 Γ n	:	int
(Where	n	is	an	integer	literal.)	(2)	

(1)	

Type	judgments	

Γ e1	:	int Γ e2	:	int

Γ e1	+	e2	:	int

Γ n	:	int
(Where	n	is	an	integer	literal.)	(2)	

(1)	

Where	Γ is	an	arbitrary	context.	

Typing	judgments	

Γ, x	:	t	 					x	:	t					
(3)	

Typing	judgments	

Γ, x	:	t	 					x	:	t					
(3)	

(4)	

Γ 				let	x	:	t1	;	stmts	:	t2	

Γ, x	:	t1								stmts	:	t2			

Typing	judgments	

Γ 				let	v	:	int	;	v	+	1	:	int

Typing	judgments	

(4)	

Γ 				let	v	:	int	;	v	+	1	:	int

Γ, v	:	int								v	+	1	:	int		

Typing	judgments	

(4)	

Γ 				let	v	:	int	;	v	+	1	:	int

Γ, v	:	int								v	+	1	:	int		
Γ, v	:	int							1	:	int		Γ, v	:	int							v	:	int		

(1)	

Typing	judgments	

(4)	

Γ 				let	v	:	int	;	v	+	1	:	int

Γ, v	:	int								v	+	1	:	int		
Γ, v	:	int							1	:	int		Γ, v	:	int							v	:	int		

(1)	

(3)	 (2)	

ProperBes	of	type	systems	

•  Uniqueness	of	types:	For	any	expression	e,	is	
there	at	most	one	type	t	for	which	the	judgment	
e	:	t	holds?	

•  Uniqueness	of	derivaBons:	Assuming	such	a	t	is	
unique,	is	the	derivaBon	also	unique?	

•  Assuming	the	above,	is	finding	that	t	(type	
checking)	decidable?	

Type Checking

•  What type has every (sub-)expression?
•  Is it consistent?
•  How do you specify a language's typing

semantics?
– Sometimes called “static semantics”.

•  What else might you wish to check?
–  In C: break only valid inside while & for loops.

Type systems and Languages
•  Many modern programming languages are strongly-typed

–  Java, ML, Haskell,…
–  “strongly” meaning that each “subprogram” must be typed

•  Some aren't (or barely are):
–  C, LISP, C++,PERL

•  Why types?
–  allow static checking for common programming errors
–  data objects of a particular type can be reasoned about without thinking

of their representations
–  E.g., consider a situation where that is not true

•  type-casting a pointer in C
•  How do we specify type checking for languages like Java, ML, and

Haskell?
–  type derivation systems = type judgments + inference rules

Typing judgments

A e : T Typical typing judgement:

Can be read as: in symbol table A, expression e has type T

“:” = “has type”
“ ” = “implies”

Type Inference Systems

IF e1 can be shown to have type Bool
 e2 can be shown to have type T
 e3 can be shown to have (the same) type T
THEN
 “if e1 then e2 else e3” can be shown to have the type T.

A e1 : Bool A 					 e2 :T A 				 e3 : T

A 					 IF e1 THEN e2 ELSE e3 :T

Inference rules for small language

Small Grammar

Exp à Exp + Exp
Exp à Exp = = Exp
Exp à IF Exp THEN Exp ELSE Exp
Exp à ID
Exp à INT
Exp à LET ID := Exp IN Exp

Grammar for Types
T à Bool
T à Int

A 				 e1 :Int A 				 e2 : Int

A 					e1 + e2 :Int

A 				 e1 :T A 					 e2 : T

A 	e1 == e2 :Bool

A 				 e1 : Bool A 					 e2 :T A 					e3 : T

A 					 IF e1 THEN e2 ELSE e3 :T

A 				 e1 :Int A 				 e2 : Int

A 					e1 + e2 :Int

A 				 e1 :T A 					 e2 : T

A 	e1 == e2 :Bool

A 				 e1 : Bool A 					 e2 :T A 					e3 : T

A 					 IF e1 THEN e2 ELSE e3 :T

Inference rules for small language

Observe the type
variables here: stand
for any type in the
language

Inference rules for small language

Small Grammar

Exp à Exp + Exp
Exp à Exp = = Exp
Exp à IF Exp THEN Exp ELSE Exp
Exp à ID
Exp à INT
Exp à LET ID := Exp IN Exp

A 					 e1 : T1 A + { v à T1 } 						 e2 : T2

A 					 LET v := e1 IN e2 :T2

A + { ID à T} 					ID : T

A 						INT : Int

Uses of a type system

•  Type checking problem:
– Given a claim that program “e” and a type “T”
– determine if “e” has type “T”

•  i.e., if “{} e : T” is derivable using the rules
•  Tends to be straightforward

•  Type inference problem:
– Given a program “e”
– determine which type(s) “e” has
– This is the problem a compiler confronts

•  I.e., compile(e) isn't given the type of “e” and must
calculate it itself

Type Systems are typically conservative

Well-typed	
Programs	

“Sensible” programs

“Nonsense” programs

For practical reasons (e.g., decidability), type systems typically
sacrifice some sensible programs when eliminating nonsense.

