Type Systems for Programming
Languages



Some history...

Gottlob Frege was a German
mathematician and philosopher
working on the foundations of
arithmetic.

1879: Begriffsschrift. o
1884: The Foundations of Arithmetic. "% % '
1893: Basic Laws of Arithmetic, vol. 1. |
1903: Basic Laws of Arithmetic, vol. 2.

Gottlob Frege
1848-1925



Some history...

Gottlob Frege was a german
mathematician and philosopher
working on the foundations of
arithmetic.

1879: Begriffsschrift. o
1884: The Foundations of Arithmetic. ™ % /
1893: Basic Laws of Arithmetic, vol. 1. .
1903: Basic Laws of Arithmetic, vol. 2.

But Just.as Volume 2 was going to print, Gottlob Frege
he received a letter... 1848-1925



Some history...

Russell’s paradox:

* Let X be the set of everything
notin X, I.e.:

X={x‘x¢X}
e IsXEX?

— Yes: But if X € X, then X & X.
— No: But if X & X, then X E X.

Bertrand Russell
1872-1970



Some history...

e 1908: Russell’s fix: Types!
* 1910-1927 (with Whitehead):
Principia Mathematica.

— Goal: axioms and rules from
which all mathematical truths
could be derived.

“From this proposition it will follow,
when arithmetical addition has been
defined, that 1+1=2."

— st i Bertrand Russell
Volume |, 15t edition, page 379 L5197




What are type systems?

“A type system is a tractable syntactic method
for proving the absence of certain program

behaviors by classifying phrases according to the
kinds of values they compute.

“A type system can be regarded as calculating a
kind of static approximation to the run-time
behaviors of the terms in a program.

—Benjamin Pierce, Types and Programming Languages



What is a Type System?

* Atype system is a syntactic discipline for
enforcing levels of abstraction.

— Ensures that bad things do not happen.

e Atype system rules out nonsense programs.
— Adding a function to a string
— Interpreting an integer as a pointer
— Violating interfaces



Type checking

“Sensible” programs




What is a Type System?

* How can this be a good thing?

— Expressiveness arises from strictures: restrictions
entail stronger invariants

— Flexibility arises from controlled relaxation of
strictures, not from their absence.
* Atype system is fundamentally a verification
tool that suffices to ensure invariants on
execution behavior.



Why Types are Useful

error detection: early detection of common
programming errors

safety: well typed programs do not go wrong

design: types provide a language and
discipline for design of data structures and
program interfaces

abstraction: types enforce language and
programmer abstractions



Why Types are Useful (cont)

 verification: properties and invariants
expressed in types are verified by the compiler
(“a priori guarantee of correctness’ )

* software evolution: support for orderly
evolution of software
— consequences of changes can be traced

* documentation: types express programmer
assumptions and are verified by compiler



Types Induce Invariants

* Types induce invariants on programs.
— If e : int, then its value must be an integer.
— If e : int =2 int, then it must be a function taking
and yielding integers.

— If e : filedesc, then it must have been obtained by
a call to open.

—If e : int{H}, then no “low clearance” expression
can read its value.



Types Induce Invariants

* These invariants provide

— Safety properties: well-typed programs do not “go
wrong .

— Equational properties: when are two expressions
interchangeable in all contexts.

— Representation independence (parametricity).



Typing judgments

e:1int

e Asserts that evaluation of e will resultin a
value of type int.

* But e must be well-typed for this assertion to
actually hold.



Typing judgments

2:1nt

e Asserts that evaluation of e will resultin a
value of type int.

* But e must be well-typed for this assertion to
actually hold.



Typing judgments

1+2:1nt

e Asserts that evaluation of e will resultin a
value of type int.

* But e must be well-typed for this assertion to
actually hold.



Typing judgments

true: 1nt

e Asserts that evaluation of e will resultin a
value of type int.

* But e must be well-typed for this assertion to
actually hold.



Typing judgments

1+true:1int

e Asserts that evaluation of e will resultin a
value of type int.

* But e must be well-typed for this assertion to
actually hold.



Typing judgments

Solution: a set of rules (a logic) which will derive
only valid typing judgments. Now, if we can
derive a judgment of the form:

e:.t
It should be the case that the expression e is

well-typed and when it is evaluated, the result
will have type t.




(1)

Type judgments

e,.1nt e,.:1nt

e,;t+e,:1nt



Type judgments

(2) | (Where n is an integer literal.)
n:int

e,.1nt e,.:1nt

(1)
e,;t+e,:1nt



(2)

Type judgments

2) .
1:1nt 2:1nt



Type judgments

2) 2) .
1:1nt 2:1nt

(1) .
1+2:1int



Type judgments

2) 2) .
1:1nt 2:1nt

(1) (2)
1+2:1nt 3:1nt



Type judgments

2) 2) .
1:1nt 2:1nt

(1) (2)
1+2:1nt 3:1nt

(1)
1+2+3:1int



Typing judgments

But what about variables?
Xt
What is t, where x is a variable?



Typing judgments

But what about variables?
Ix:t =x:t
What is t, where x is a variable?

Solution: look it up in the environment (i.e., the
symbol table).



Typing judgments

N

Called the context—a mapping
from name to types.




(2)

Type judgments

(1)

(Where n is an integer literal.)

n:int

e,.1nt e,.1nt

e, t+e,.1nt



Type judgments

(2) (Where n is an integer literal.)

I'n:1int

e, :int Tk e,:int

(1)
['}- e, +e,:1int

Where I' is an arbitrary context.



Typing judgments

3)
x:thF x:t



Typing judgments

I, x:t, = stmts : t,

(@)
I'f=letx:t,;stmts:t,

3)
x:thF x:t



Typing judgments

I'letv:int;v+1:int



Typing judgments

Iv:int Fv+1:int

(4)
I'letv:int;v+1:int



Typing judgments

Iv:int Fv:int Iv:int +1:1int
(1) .
Iv:int Fv+1:int

(4)
I'letv:int;v+1:int



Typing judgments

3) (2)
Iv:int Fv:int Iv:int +1:1int

(1) .
Iv:int Fv+1:int

(4)
I'letv:int;v+1:int



Properties of type systems

* Unigueness of types: For any expression e, is
there at most one type t for which the judgment
e : t holds?

* Uniqueness of derivations: Assuming such a tis
unique, is the derivation also unique?

* Assuming the above, is finding that t (type
checking) decidable?



Type Checking

What type has every (sub-)expression?
Is it consistent?

How do you specify a language's typing
semantics?
— Sometimes called “static semantics”.

What else might you wish to check?
— In C: break only valid inside while & for loops.



Type systems and Languages

Many modern programming languages are strongly-typed
— Java, ML, Haskell, ...
— “strongly” meaning that each “subprogram” must be typed
Some aren't (or barely are):
— C, LISP, C++,PERL
Why types?
— allow static checking for common programming errors

— data objects of a particular type can be reasoned about without thinking
of their representations

— E.g., consider a situation where that is not true
 type-casting a pointerin C
How do we specify type checking for languages like Java, ML, and
Haskell?

— type derivation systems = type judgments + inference rules



Typing judgments
Typical typing judgement:

Can be read as: in symbol table A, expression € has type T

= “has type”
}_” = “impliesn



Type Inference Systems

IF e1 can be shown to have type Bool
e2 can be shown to have type T
e3 can be shown to have (the same) type T
THEN
“if e1 then e2 else e3” can be shown to have the type T.



Inference rules for small language

Small Grammar

Exp 2 Exp + Exp

Exp 2 Exp == Exp

Exp = IF Exp THEN Exp ELSE Exp
Exp 2 ID

Exp 2 INT

Exp 2 LET ID := Exp IN Exp

Grammar for Types
T - Bool
T - Int




Inference rules for small language

Observe the type
variables here: stand
for any type in the
language

S
T
I



Inference rules for small language

Exp 2 Exp == Exp

Exp 2 IF Exp THEN Exp ELSE Exp
Exp 2 ID

Exp 2 INT

Exp = LET ID := Exp IN Exp

o _
Exp 2 Exp + Exp




Uses of a type system

* Type checking problem:
— Given a claim that program “e” and a type “T~

— determine if “e” has type “T”
o i.e, if “{J}— e : T is derivable using the rules
« Tends to be straightforward

* Type inference problem:
— Given a program “e”
— determine which type(s) “e” has

— This is the problem a compiler confronts

* |.e., compile(e) isn't given the type of “e” and must
calculate it itself



Type Systems are typically conservative

“Sensible” programs

For practical reasons (e.g., decidability), type systems typically
sacrifice some sensible programs when eliminating nonsense.



