
Encrypted and Oligomorphic Viruses

CS4440/7440
Spring 2015

Encrypted Viruses

2

}  Virus encryption is both
}  an anti-disassembly technique and
}  an obstacle to virus detection using code patterns

}  Encryption takes many forms
}  The most advanced, difficult-to-defeat viruses use encryption

techniques
}  We will devote several lectures to understanding, detecting,

and disinfecting various encrypted viruses
}  This is the first part of Chapter 7 of Szor.

Simple Encryption

3

}  The earliest viruses to use encryption used a very
simple decryption algorithm, such as XORing code with
its own address

}  The point was not to use advanced algorithms that
were hard to analyze;
}  just to slow down analysis and
}  defeat pattern-based virus detection

}  Decrypter code always present in unencrypted form,
}  not much point in choosing complex encryption/decryption

methods
}  The DOS virus Cascade was the first encrypted virus

Example: Cascade Virus

4

}  The simple decryptor of Cascade, circa 1990:
 lea si,Start ; start of encrypted code

 ; (computed by virus)

 mov sp,0682h ; length of encrypted code (1666 bytes)

Decrypt:

 xor [si],si ; xor code with its address

 xor [si],sp ; xor code with its inverse index

 inc si ; increment address pointer

 dec sp ; decrement byte counter

 jnz Decrypt ; loop if more bytes to decrypt

Start: ; virus code body

Cascade Virus Walkthrough

5

}  Setting up the indices:
 lea si,Start
 ; start of encrypted code (computed by virus)

}  The virus does not have a “Start” label whose address is
determined by a compiler
}  Instead, it computes the address at infection time, depending on

the location in the file being infected
}  Virus uses hex offsets; we show “Start” to make it more

readable

Cascade Virus Walkthrough

6

}  Stack pointer used as counter
 mov sp,0682h ; length of encrypted code (1666 bytes)

}  Virus knows its own length before it infects a new file
}  Using the stack pointer is an anti-debugger technique

}  Cascade is therefore an armored virus

}  However, this line of code is a distinctive pattern (signature)
for this virus

Cascade Virus Walkthrough

7

}  The XOR encryption lines:
 xor [si],si ; xor code with its address

 xor [si],sp ; xor code with its inverse index

}  The XOR operation is reversible:
 0f237h XOR 0682h = 0f4b5h

 0f4b5h XOR 0682h = 0f237h

}  Very fast to encrypt and decrypt, yet sufficient to prevent
detection by patterns
}  IMPORTANT: Even the hex patterns are file-dependent, because

they depend on addresses

Cascade Virus Walkthrough

8

}  Increment counters/indices and loop:
 inc si ; increment address pointer

 dec sp ; decrement byte counter

 jnz Decrypt ; loop if more bytes to decrypt

}  With pattern-based detection impeded by encryption, an
anti-virus researcher would like to step through the
decryptor in a debugger and see the decrypted code

}  However, use of stack pointer inhibits most debugger use

Analyzing Cascade

9

}  Prevention in the OS: don’t allow writing to the executable
code segment
}  Virus writer can work around this by decrypting into a buffer,

rather than decrypting code in its place

}  The best attack upon a simple encrypted virus is to detect
the code patterns of the decryptor, e.g.

 mov sp,0682h ; length of encrypted code (1666 bytes)

Difficult Decryptors

10

}  One decryptor loop might traverse the virus body,
applying a decryptor function (e.g. XOR or something
more complex),
}  then another decryptor loop can traverse the virus code in

reverse order applying a different decryption function, etc.
}  Unencrypted decryptor code could::

}  decrypt a piece of code that is a more complex decryptor,
}  …which then decrypts another decryptor,
}  …which decrypts the virus

}  Static analysis of the patterns of the first decryptor would be
irrelevant; that decryptor could be common to many viruses
and also to commercial software
}  i.e., first decryptor is legitimate, commonly used decryptor

Decryptor loop examples

11

decryptor

decryptor

decryptor 1

decryptor 2

decryptor 3

Decryptor strategies (cont’d)
}  Change decryption direction
}  Multiple layers of encryption
}  Mixed directions
}  One decryptor/Multiple keys
}  Obfuscate Decryptor start (EPO) with padding, etc.
}  Non-linear decryption

12

Detecting Decryptors

13

}  The main loop of the decryptor (a tight loop with XORs) looks
like it would be a good subject for pattern-based detection
}  But, many different viruses can use the same decryptor algorithm and

have totally different payloads and behaviors

}  A virus could pad itself out so that it has the same length as
other, unrelated viruses – “mimicry”

}  Doh! Even worse is the fact that some commercial software is
obfuscated by an anti-debug wrapper, which looks just like the
decryptor code for Cascade, in order to prevent reverse
engineering of their product
}  Can produce false positives

Detecting Decryptors cont.

14

}  Memory allocation within the decryptor can produce a
good code pattern to match

}  Decryptor has three locations in which it can decrypt the
virus code:

1.  In place; OS can disallow this
2.  In heap; allocation code is unencrypted and makes pattern-

based detection easier
3.  On the stack; stealthiest choice --- why?

Detecting Decryptors cont.

15

}  How can an encrypted virus be detected if it uses stack
allocation, makes itself look like a commercial anti-debug
wrapper, makes itself the same length as unrelated viruses,
etc.?

}  Emulation and dynamic analysis are common approaches
}  Expensive
}  Proprietary

Virus Code Evolution

16

}  Simile is one example of a virus that evolves in order
to frustrate pattern-based detection

}  Each time it replicates, it generates a different
memory allocation code sequence in the decryptor

}  Can be done with simple obfuscations, code re-orderings, etc.

}  No single pattern matches the allocator

}  More common is mutating the decryptor code itself
and using stack allocation

}  We’ll have more to say about Simile when we discuss
Metamorphism.

Decryptor Mutation

17

}  Viruses that can evolve by mutating as they replicate can be
classified in three categories, based on the degree of variety
they produce:

1.  Oligomorphic viruses can produce a few dozen decryptors;
they select one at random when replicating

2.  Polymorphic viruses dynamically generate code
rearrangements and randomly insert junk instructions to
produce millions of variants

3.  Metamorphic viruses apply
1.  polymorphic techniques to the entire virus body rather than just to a

decryptor, so that
2.  one generation differs greatly from the previous generation;
3.  no encryption is even necessary to be classified as metamorphic

Oligomorphic Viruses

18

}  Detecting encrypted viruses that have distinctive
decryptors was too easy (in the opinion of virus
writers!)

}  Whale was the first oligomorphic virus
}  It carried several dozen decryptors in its body as

data; when replicating, it
}  selected one at random,
}  encrypted the virus body with it, and
}  deposited the body and the decryptor in the target file

Oligomorphic Viruses cont.

19

}  Carrying the decryptors as data is a burden to the
virus, making it larger

}  Memorial was a Windows 95 oligomorphic virus that
generated 96 different decryptors, choosing one at
replication time

}  Detecting 96 different patterns is an impractical solution for virus
scanners that must deal with thousands of viruses; pattern database size
explosion would result

}  Memorial inserted junk instructions at various points
in the decryptor code

Junk Instructions

20

}  A junk instruction can be a no-op or do-nothing instruction,
but it can also be an instruction that uses registers or memory
locations that are unused in the decryptor

}  Given the following decryptor loop for the Memorial
oligomorphic virus:

Decrypt:
 xor [esi],al ; decrypt a byte with key in AL
 inc esi ; go to next byte
 inc al ; slide the key up
 dec ecx ; decrement the byte counter
 jnz Decrypt ; loop back if more to decrypt

Junk Instructions cont.

21

}  Code patterns can be obfuscated with junk instructions:
Decrypt:
 add ebx,edx ; junk
 xor [esi],al ; decrypt a byte with key in AL
 dec edx ; junk
 inc esi ; go to next byte
 mov [whocares],edx ; junk
 inc al ; slide the key up
 dec ecx ; decrement the byte counter
 jnz Decrypt ; loop back if more to decrypt

Junk Instructions cont.

22

}  A different variant puts different junk instructions at different
offsets:

Decrypt:
 add bh,4 ; junk
 xor edx,edx ; junk
 xor [esi],al ; decrypt a byte with key in AL
 inc esi ; go to next byte
 xchg ebx,edx ; junk
 inc al ; slide the key up
 cmp ebx,edx ; junk
 dec ecx ; decrement the byte counter
 jnz Decrypt ; loop back if more to decrypt

Junk Instructions cont.

23

}  The index increment instructions are order-independent,
creating more variants:

Decrypt:
 add bh,4 ; junk
 xor edx,edx ; junk
 xor [esi],al ; decrypt a byte with key in AL
 inc al ; slide the key up
 xchg ebx,edx ; junk
 inc esi ; go to next byte
 cmp ebx,edx ; junk
 dec ecx ; decrement the byte counter
 jnz Decrypt ; loop back if more to decrypt

Junk Instructions cont.

24

}  There is more than one way to increment or decrement
counters:

Decrypt:
 add bh,4 ; junk
 xor edx,edx ; junk
 xor [esi],al ; decrypt a byte with key in AL
 add al,1 ; slide the key up
 xchg ebx,edx ; junk
 add esi,1 ; go to next byte
 cmp ebx,edx ; junk
 sub ecx,1 ; decrement the byte counter
 jnz Decrypt ; loop back if more to decrypt

Junk Instructions cont.

25

}  There is more than one way to decrement a counter and loop
back if it is not zero:

Decrypt:
 add bh,4 ; junk
 xor edx,edx ; junk
 xor [esi],al ; decrypt a byte with key in AL
 add al,1 ; slide the key up
 xchg ebx,edx ; junk
 add esi,1 ; go to next byte
 cmp ebx,edx ; junk
 loop Decrypt ; decrement the byte counter and
 ; loop back if more to decrypt

Detecting Oligomorphic Viruses

26

}  Clearly, it is easy to produce numerous variants of a
decryptor

}  Filtering out no-ops and do-nothings does not
remove the obfuscation

}  Emulation, debugging, or proprietary dynamic analyses
are needed to produce the decrypted virus for
analysis

