
Self-Protection Strategies

Tunneling, Armored, and Retro
Viruses

CS4400/7440

Anti-anti-virus Techniques

2

}  Virus writers have devised numerous methods of resisting
anti-virus software and making life difficult for anti-virus
researchers

}  We will examine four categories of virus self-protection
in coming weeks:
}  tunneling,
}  armor,
}  retroviruses, and
}  encrypted viruses of several types

}  Reading Assignment: Chapter 6 of Szor.

Tunneling Viruses

}  Recall the DOS IVT (interrupt vector table) and the
technique of interrupt hooking:

IVT entry for 13h BIOS
Handler

Uninfected System

IVT entry for 13h BIOS
Handler

Virus
Handler

Infected System

3

Background: Chaining Interrupt
Handlers

}  Interrupts contain address
pointing to interrupt
vector
}  Interrupt vector contains

addresses of interrupt
handlers.

}  If more devices than
elements in interrupt
vector, then chain:
}  List of handlers for given

address traversed to
determine the appropriate
one.

4

Pentium
Processor Event-
Vector Table

Hooking an Interrupt

1.  Get location/length of IDT using Intel sidt instr.
}  SIDT (Store Interrupt Descriptor Table) stores contents IDTR

(Interrupt Descriptor Table Register) register,
}  which is a selector that points into the Interrupt Descriptor Table.

2.  Each descriptor is 8 bytes: Index into the Table by 8n
bytes to change interrupt n

3.  This descriptor contains the address of the Ring0
code to run for interrupt n

}  This address is changed to point to hooking code
}  Additional work to chain

Interrupt Hooking

}  Interrupt hooking IS a legitimate technique,
}  e.g. a disk compression utility might need to intercept disk

accesses to compress and decompress on the fly:

System with Disk Compression Utility

IVT entry for 13h Compression
Handler

BIOS
Handler

6

Anti-virus Interrupt Monitors

}  When an anti-virus program executes at boot-up
time, it installs a monitor that lengthens the call chain
even more:

IVT entry for 13h Compression
HandlerAV Monitor BIOS

Handler

After Anti-virus Installation

7

§  The AV monitor checks to see if it is first on the call
chain.

§  If so, calls the saved address for the next item on
the chain (in this case, the compression handler).

Detecting the Interrupt Hooking Virus

}  However, if a virus has hooked the interrupt, then the
anti-virus monitor code detects that it is not being
called directly from the IVT:

IVT entry for
13h

BIOS
Handler

Compression
HandlerAV MonitorVirus

Handler

Infected System with Anti-Virus Monitor

8

§  The AV monitor now begins virus disinfection.

Tunneling Viruses

}  A tunneling virus defeats the anti-virus monitor by
following the interrupt call chain until it finds the
end, installing itself there instead of at the beginning:

IVT entry for
13h

BIOS
Handler

Compression
Handler

System Infected with Tunneling Virus

Virus
HandlerAV Monitor

9

§  The AV monitor now finds itself pointed to
directly from the IVT and finds nothing to
disinfect.

Tunneling Methods

}  The process of following the interrupt call chain is
called tunneling, because the virus is trying to locate
itself in the system in a place that is beneath the
vision of the anti-virus software

}  How can a virus follow the call chain?
}  Emulation (sophisticated and costly)
}  Stepping through instructions in debug mode
}  In DOS, scanning all of memory to find the code that calls the BIOS
handler, which must be the end of the chain

10

Defeating Tunneling Viruses

}  The AV monitor
}  can scan in both directions and record the call chain for

later checking
}  scan for virus code patterns throughout all the handlers

in the call chain,
}  in case the virus had already tunneled down the chain before

the AV software was installed

}  removes the virus handler when it is detected

11

Interrupt Wars

}  An interrupt hooking virus usually has a memory-resident file
infector component in addition to the interrupt handler; the
handler calls the infector

}  The memory-resident component can detect that the handler
has been removed, and can re-install it at the end of the call
chain

}  The AV monitor will detect the new virus handler and remove
it again; this interrupt war, carried on while interrupts are being
processed, can make a system unstable

}  Solution: find and remove the memory-resident code
immediately before removing the handler

12

Armored Viruses

}  An armored virus makes it difficult for anti-virus professionals
to detect and analyze its functions

}  Anti-virus professionals use a variety of detection and analysis
tools:

}  Disassemblers
}  Debuggers
}  Emulators

}  Heuristic analyzers
}  Goat files

}  Armored viruses try to make each of these tools ineffective
or more difficult to use

13

Armored Viruses

}  Armored virus techniques fall naturally into five
categories, corresponding to the five tools they are
designed to combat:
}  Anti-disassembly
}  Anti-debugging
}  Anti-emulation
}  Anti-heuristics
}  Anti-goat

14

Anti-Disassembly

}  The broadest category of techniques that make
disassembly difficult are the virus code encryption
techniques, which we will study separately for several
weeks starting next week. Other techniques:
}  Encrypted data
}  Code obfuscation
}  Using checksums
}  Compressed code

}  We will examine each of these briefly

15

Encrypted Data

}  The virus encrypts its data and decrypts it as it is
used

}  The encryption and decryption code is clearly visible,
so it is straightforward to figure out

}  BUT, when viewing the code in a disassembler, the
data is garbled

}  Labor-intensive: The anti-virus software engineer is
slowed down by the need to emulate code, write a
decryption utility program and paste data into it, etc.

16

Encrypted Data Example

}  The Fix2001 worm attacked Windows 95 systems in 2001
}  The worm sent stolen accounts and passwords by email back

to a free email address (e.g. hotmail.com) obtained with a false
identity

}  The worm author did not want the email address to be
readable to a disassembler

}  The address was in a constant data section that was
encrypted

}  Stepping through a debugger to watch the data be decrypted
slows down the analysis

17

Code Obfuscation

}  We saw a DOS example two weeks ago that used a
jump into the middle of a previous instruction

}  Some obfuscation merely injects no-ops, do-nothings
(e.g. add eax,0)
}  Regular expression matching can filter these out
}  Analysis is not slowed much by these instructions

}  It is slower to analyze code with roundabout
computations, computed jump addresses rather than
direct jumps, etc.

18

Obfuscated Computation
}  Example from Szor text, p. 223:
}  Straightforward code to write 256 bytes into a file:
 mov cx, 100h ; 100h = 256 bytes to write
 mov ah, 40h ; 40h = DOS function number
 int 21h ; Invoke DOS handler
}  Convoluted code to do the same thing:
 mov cx,003Fh ; cx = 003fh
 inc cx ; cx = 0040h
 xchg ch, cl ; swap ch, cl (cx = 4000h)
 xchg ax, cx ; swap ax, cx (ax = 4000h)
 mov cx, 0100h ; cx = 100h
 int 21h ; Invoke DOS handler

19

Anti-Disassembly Checksums
}  Straightforward code to match an imported function prototype, from the

exported functions list in DLL,
}  to decide which system functions to infect,
}  might loop through the DLL function names list and
}  compare each function name to a constant string, e.g. (in C pseudocode),

 for (each prototype in DLL export table)
 if (0 == strcmp(name,“GetFileHandle(int)”))
 infect(current export table address);
 endfor
}  Easy to read in the disassembled code;

}  good disassembler can even search and find the string “GetFileHandle” if the anti-
virus researcher already suspects that is the function being infected

20

Checksums cont’d.
}  Instead, the virus could compute a checksum over the ASCII bytes of the

two strings, store one as a constant, and compare the checksums for
equality:

 int ConstantName = 0x89f7e5b2; /* Computed by virus writer */
 for (each prototype in DLL export table)
 int foo = checksum(name);
 if (foo == ConstantName)
 infect(current export table address);
 endfor

}  This code no longer reveals the API name to a reader
}  Labor Intensive: Anti-virus researcher must now step through the

checksum computation to figure out what is going on
}  i.e., impedes the analysis

}  Similar idea to encrypting data

21

Anti-Disassembly Compression

}  A virus can be stored using a compression algorithm,
and decompressed during execution by a
decompression code at the beginning of the virus

}  As with encrypted data, the compression algorithm is
exposed, but examination of disassembled code is
greatly slowed down

}  Anti-virus researcher might need to emulate the
code, or step through it in a debugger

22

Armored Viruses

}  Armored virus techniques fall naturally into five
categories, corresponding to the five tools they are
designed to combat:
}  Anti-disassembly
}  Anti-debugging
}  Anti-emulation
}  Anti-heuristics
}  Anti-goat

23

Anti-Debugging

}  We have seen that anti-disassembly techniques might
drive an anti-virus researcher to step through virus
code in a debugger

}  The next step in the escalating war between the
virus and anti-virus communities is the
development of virus code that resists being
executed in a debugger

24

Anti-Debugging Techniques

}  Interrupts 1 and 3 are used often in x86 debugging
}  INT 1 places the CPU in single-step mode
}  INT 3 is inserted into the code by the debugger to set a

 breakpoint

}  First anti-debugging technique: Hook these two
interrupts
}  Anti-virus code must be used to unhook the interrupts

 before debugging can proceed

}  Next anti-debugging technique: use a checksum to
defeat INT 3 breakpoints

25

Anti-Debugging Techniques

}  If the virus code computes a checksum over a critical
range of its code, stores that checksum in a constant,
and then recomputes the checksum as it runs, it can
detect the change when the INT 3 instruction is
injected into that code range, and just abort
}  The virus now runs successfully without a debugger, but

 aborts when breakpoints are inserted

}  Note that a code emulator, as opposed to a
debugger, does not insert breakpoints and is not
defeated by this technique

26

Anti-Debugging Techniques

}  Next technique: Detecting changes in the state of the
stack during single-step mode

}  A single-step debugger places a state record on the
stack, and updates it after each step, to record the
current IP (instruction pointer) value and the
contents of the FLAGS register

}  The virus code can examine the stack and see
changing values where they would not change during
normal (non-debugger) execution, and abort

27

Detecting Stack Changes

}  In single-step debug mode, the
debugger, after each instruction,
saves state change information in a
record that is placed just beyond
the top of the stack.

}  This location will be trampled by
any user program instructions that
change the stack, but the old info is
not needed after an instruction is
executed.

User Run-time
Stack

Saved State

Higher Addresses

Lower Addresses

ESP

28

Detecting Stack Changes

}  Without single-step debug state changes, a location on the
stack will remain unchanged until an instruction changes it, but
will be changed by the debugger after every instruction during
single-step debug:

 mov bp,sp ; bp gets current stack pointer
 push ax
 pop ax ; old pushed value still at [bp-2]
 ; which is beyond current stack
 cmp word ptr [bp-2],ax ; equal if no debugger
 jne DEBUG ; debugger detected! Go abort!

29

Anti-Debugging Techniques

}  If the virus encrypts part of its code, it can use the
stack pointer in the decryption routine
}  When the debugger uses the stack to save state, it will change the stack
pointer and cause the decryption to fail
}  Virus now executes only without a debugger

}  Disabling the keyboard interrupt during virus
execution prevents the AV researcher from using a
debugger

}  Other techniques are listed in Szor, 6.2.7

30

Detecting Debuggers

}  On Win32 operating systems, an API is available:
IsDebuggerPresent()
}  Virus can just abort if TRUE

}  Many debuggers set registry keys when they are
active

}  Viruses can scan memory for debugger code

31

Armored Viruses

}  Armored virus techniques fall naturally into five
categories, corresponding to the five tools they are
designed to combat:
}  Anti-disassembly
}  Anti-debugging
}  Anti-emulation
}  Anti-heuristics
}  Anti-goat

32

Anti-Emulation Techniques
}  em·u·la·tor noun

}  1 : one that emulates; imitator
}  2: hardware or software that permits programs written for one

computer to be run on another computer

}  Emulators approximate the behavior of their target
}  Why is this?
}  Emulation runs much more slowly than actual machine

}  Anti-Emulation Armoring:
}  Floating point code
}  Take advantage of the approximation – be exceptional
}  Time/logic bombs
}  Dynamic code length

33

Anti-Emulation: Floating Point Code

}  If armored viruses have driven AV researchers away from
disassemblers and debuggers,
}  next step for virus writers is to impair use of code emulators

}  Early emulators only kept track of the integer CPU registers and
memory,
}  viruses were not floating-point code

}  Viruses then began to deliberately use the floating point
 coprocessor registers and instructions

}  More recently, MMX and SSE vector graphics instructions are appearing in viruses
}  Modern emulators responded by emulating all registers and instructions

}  Also, can use undocumented x86 instructions to similar effect!

34

Anti-Emulation: Exceptions

}  The emulation environment is not always able to
predict whether the next instruction will cause an
exception (why?)
}  Viruses have been written to exploit this problem by putting part of
their code in exception handlers, and then causing very subtle
exceptions to occur
}  If part of the virus decompressor or decryptor code is in an exception
handler, the emulator will fail to decrypt or decompress and emulation
will try to execute garbage bytes

35

Anti-Emulation: Time and Logic Bombs

}  Arrange for virus to execute only…
}  at certain times of day (time bomb),
}  or only under random conditions (logic bomb) that might

be controlled by random number generation
}  If the time/condition not met, the virus just transfers

control to the infected host program and does no
damage

}  When executed in an emulator, the virus will
probably be dormant and cannot be analyzed by the
emulator
}  AV analysis forced to use a debugger

36

Anti-Emulation: Dynamic Code Length

}  Code emulation is very slow (interpretation of an
entire simulated machine environment)
}  Not a problem for most viruses, as most they start up

pretty quickly and are written in tight code
}  Anti-emulation Armoring: However, use huge loops

of do-nothing instructions with a few real virus
instructions thrown in & a high loop count
}  Emulation becomes too lengthy
}  Can also be done by encoding brute-force decryptors into the virus,
which run billions of instructions before successfully decrypting it

37

Armored Viruses

}  Armored virus techniques fall naturally into five
categories, corresponding to the five tools they are
designed to combat:
}  Anti-disassembly
}  Anti-debugging
}  Anti-emulation
}  Anti-heuristics
}  Anti-goat

38

Anti-heuristic Viruses

}  Scanning a PE file for virus code patterns is not always as
simple as using regular expressions,
}  especially when detecting new viruses or new variants
}  E.g., metamorphic viruses

}  Search heuristics have been developed that can find suspicious
code without having exact patterns from a pattern database

}  Static heuristics are used in scanners to analyze executable files
}  Dynamic heuristics analyze code running under emulation

}  In addition to anti-emulation techniques directed against the
dynamic heuristics, virus writers learned to write viruses in
such a way as to evade the static scanners

39

Anti-heuristic Techniques

}  It is common for virus code to be appended, or placed in the
last section in the PE file

}  Scanners are programmed to flag PE files in which the entry point is directed
to the last section of the file
}  This can cause a false positive for self-extracting archives, in which the
extractor code is often at the end, so other heuristics must be used in
combination with this one

}  Virus writers responded by adding some of their own data
sections after their code section, so the entry point was not
the last section any more,
} e.g., the Resure virus
} Peter Szor, “Attacks on Win 32 – Part 2” for more details

40

Anti-heuristic Techniques

}  Another way to append virus code without having
the entry point be in the last section of the PE file
}  place the beginning of the virus in the slack area at the

end of the host program code section,
}  …with a jump to the appended virus code at the end

}  Emulators have been designed to detect jumping
from one PE file section to another

41

Anti-heuristic Techniques

}  The EPO (entry-point obscuring) techniques that we
studied previously are also anti-heuristic techniques,
as they make it hard for a scanner to detect that
control passes to a virus
}  Import Address Table (IAT) replacement
}  Call hijacking
}  Replacing an arbitrary call with a jump into the virus

}  Modern scanners cannot just look at entry points
and the top and bottom of PE files
}  Scanning is getting more expensive as a result

42

Armored Viruses

}  Armored virus techniques fall naturally into five
categories, corresponding to the five tools they are
designed to combat:
}  Anti-disassembly
}  Anti-debugging
}  Anti-emulation
}  Anti-heuristics
}  Anti-goat

43

Anti-goat Viruses

}  Anti-virus software often uses goat files, a.k.a
sacrificial goats, which are dummy files whose
infection will signal the presence of a virus
}  Short, simple files, of known content
}  Easy to find a virus within them
}  Scattered around the disk in various file types that are prone to
infection, e.g. *.exe, *.vbs, *.com
}  Also in various sizes, as viruses often infect only files with a certain
minimum size

}  Detecting which goat files are infected, and which are
not, helps identify the virus

44

Anti-goat Techniques

}  An anti-goat virus will try to detect goat files and
avoid infecting them

}  Files are examined for goat file characteristics:
}  Lots of no-ops and do-nothing instructions
}  Clusters of files with sequential numbers in their names, e.g.
abcd0001.vbs, abcd0002.vbs, etc.

}  As with all armored virus techniques, the point is not
to be the mythical “undetectable virus”, but just to
slow down detection and analysis

45

Retroviruses

}  In nature, a retrovirus replicates in a different manner than
normal viruses and is thus partly immune to many antiviral
drugs

}  The HIV retrovirus attacks the immune system

}  Computer retroviruses directly attack anti-virus software in
an effort to make themselves immune

}  Szor, section 6.3: “A retrovirus is a computer virus that
specifically tries to bypass or hinder the operation of an
antivirus, personal firewall, or other security programs.”

46

Vulnerability to Retroviruses

}  Most of us log on to our personal computers with
administrative capabilities
}  More convenient than having to change your login every time you
perform an administrative task
}  Everyone was an administrator under DOS

}  This gives a retrovirus the same administrative
capabilities, meaning that it can kill anti-virus
processes, remove anti-virus files, etc., just as you
could

}  Paves the way for other viruses to work freely
}  Might be the only function of a given retrovirus

47

Retroviruses: Direct Attack on Security
Software

}  With admin capabilities, a retrovirus can kill the processes
that it recognizes as being AV or firewall software, behavior
blockers, etc.
}  A behavior blocker is a background process, from the OS or from an AV
package, that prevents certain suspicious behaviors, such as changing the
interrupt chain or doing a disk write to an existing executable file

}  Sometimes, settings in firewalls and AV monitors can be
changed to bypass them without killing them (stealthier than
killing)

}  Can also delete AV or firewall files from disk

48

Retroviruses: Attack on Security Software
Files

}  Many AV programs maintain an integrity checking
database full of checksums and file sizes for various
system files

}  Retroviruses can attack this database:
}  Delete the files (not too stealthy)
}  Modify the files so that checksums and sizes must be recomputed for
infected files; this hides the infection by storing the new sizes and
checksums
}  Replace the database with a modified database that prevents virus
detection, causes virus misidentification, and even launches viruses (i.e.
database is now a Trojan horse)

49

Example: Altering Integrity Database
Entries

}  The IDEA.6155 virus was designed to infect *.COM
and *.EXE files while escaping detection in the
integrity database:
}  The integrity database checksum record “thisfile.exe 23f7e65b” would
be altered to “lhisfile.exe 23f7e65b” after infection of thisfile.exe

}  notice the change to the first character from “t” to “l”
}  AV integrity checker concludes, on its next scan, that thisfile.exe must
be a new file, so it computes a checksum of the infected file and adds
a new record to the integrity database: “thisfile.exe 269b7fc2”
}  Infected file now seems to have integrity
}  Full scan will be required, searching for virus patterns, etc., to find the
problem; full scans are not done often because of time constraints

50

Retroviruses: Indirect Attacks on AV
Programs

}  Older versions of AV programs sometimes placed an integrity
check record at the end of a validated file, with encrypted
checksums

}  Files with a mark did not need to be scanned again
}  Cut down on scanning time by only scanning modified or newly created files

}  The Tequila virus removed this record from files it infected, so
that infection would not cause an integrity check failure

}  Simpler non-cryptographic checksums, such as CRC, can be
defeated by appending a few bytes to an infected file that
cause its new CRC checksum to match the old one;
Hybris worm used this technique on PE files, which had to be
restored (could not be repaired)

51

Retroviruses: Deterring AV Use

}  A retrovirus can attack analysis tools used by anti-virus
researchers

}  A retrovirus can remain dormant until it detects AV software,
then start damaging the system

}  What would you do if the following message appeared on
your screen:

 WARNING! Infected System!
 Virus will do no harm unless you install
 anti-virus software. Then it will destroy
 your files!

52

Assignment

}  Read Szor, Chapter 7 through section 7.5 (virus
encryption techniques) before the next lecture

53

