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}  Virus writers have devised numerous methods of resisting 
anti-virus software and making life difficult for anti-virus 
researchers 

}  We will examine four categories of virus self-protection 
in coming weeks:  
}  tunneling,  
}  armor,  
}  retroviruses, and  
}  encrypted viruses of several types 

}  Reading Assignment: Chapter 6 of Szor. 



Tunneling Viruses 

}  Recall the DOS IVT (interrupt vector table) and the 
technique of interrupt hooking: 

IVT entry for 13h BIOS 
Handler

Uninfected System

IVT entry for 13h BIOS 
Handler

Virus 
Handler

Infected System
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Background: Chaining Interrupt 
Handlers 

}  Interrupts contain address 
pointing to interrupt 
vector 
}  Interrupt vector contains 

addresses of interrupt 
handlers. 

}  If more devices than 
elements in interrupt 
vector, then chain:  
}  List of handlers for given 

address traversed to 
determine the appropriate 
one.  
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Processor Event-
Vector Table 



Hooking an Interrupt 

1.  Get location/length of IDT using Intel sidt instr. 
}  SIDT (Store Interrupt Descriptor Table) stores contents IDTR 

(Interrupt Descriptor Table Register) register,  
}  which is a selector that points into the Interrupt Descriptor Table. 

2.  Each descriptor is 8 bytes: Index into the Table by 8n 
bytes to change interrupt n 

3.  This descriptor contains the address of the Ring0 
code to run for interrupt n  

}  This address is changed to point to hooking code 
}  Additional work to chain 

 



Interrupt Hooking 

}  Interrupt hooking IS a legitimate technique,  
}  e.g. a disk compression utility might need to intercept disk 

accesses to compress and decompress on the fly: 

System with Disk Compression Utility

IVT entry for 13h Compression 
Handler

BIOS 
Handler
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Anti-virus Interrupt Monitors 

}  When an anti-virus program executes at boot-up 
time, it installs a monitor that lengthens the call chain 
even more: 

IVT entry for 13h Compression 
HandlerAV Monitor BIOS 

Handler

After Anti-virus Installation
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§  The AV monitor checks to see if it is first on the call 
chain.   

§  If so, calls the saved address for the next item on 
the chain (in this case, the compression handler). 



Detecting the Interrupt Hooking Virus 

}  However, if a virus has hooked the interrupt, then the 
anti-virus monitor code detects that it is not being 
called directly from the IVT: 

IVT entry for 
13h

BIOS 
Handler

Compression 
HandlerAV MonitorVirus 

Handler

Infected System with Anti-Virus Monitor
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§  The AV monitor now begins virus disinfection. 



Tunneling Viruses 

}  A tunneling virus defeats the anti-virus monitor by 
following the interrupt call chain until it finds the 
end, installing itself there instead of at the beginning: 

IVT entry for 
13h

BIOS 
Handler

Compression 
Handler

System Infected with Tunneling Virus

Virus 
HandlerAV Monitor
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§  The AV monitor now finds itself pointed to 
directly from the IVT and finds nothing to 
disinfect. 



Tunneling Methods 

}  The process of following the interrupt call chain is 
called tunneling, because the virus is trying to locate 
itself in the system in a place that is beneath the 
vision of the anti-virus software 

}  How can a virus follow the call chain? 
}  Emulation (sophisticated and costly) 
}  Stepping through instructions in debug mode 
}  In DOS, scanning all of memory to find the code that calls the BIOS 
handler, which must be the end of the chain 
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Defeating Tunneling Viruses 

}  The AV monitor  
}  can scan in both directions and record the call chain for 

later checking 
}  scan for virus code patterns throughout all the handlers 

in the call chain,  
}  in case the virus had already tunneled down the chain before 

the AV software was installed 

}  removes the virus handler when it is detected 
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Interrupt Wars 

}  An interrupt hooking virus usually has a memory-resident file 
infector component in addition to the interrupt handler; the 
handler calls the infector 

}  The memory-resident component can detect that the handler 
has been removed, and can re-install it at the end of the call 
chain 

}  The AV monitor will detect the new virus handler and remove 
it again; this interrupt war, carried on while interrupts are being 
processed, can make a system unstable 

}  Solution: find and remove the memory-resident code 
immediately before removing the handler 

12 



Armored Viruses 

}  An armored virus makes it difficult for anti-virus professionals 
to detect and analyze its functions 

}  Anti-virus professionals use a variety of detection and analysis 
tools: 

}  Disassemblers 
}  Debuggers 
}  Emulators 

}  Heuristic analyzers 
}  Goat files 

}  Armored viruses try to make each of these tools ineffective 
or more difficult to use 
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Armored Viruses 

}  Armored virus techniques fall naturally into five 
categories, corresponding to the five tools they are 
designed to combat: 
}  Anti-disassembly 
}  Anti-debugging 
}  Anti-emulation 
}  Anti-heuristics 
}  Anti-goat 
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Anti-Disassembly 

}  The broadest category of techniques that make 
disassembly difficult are the virus code encryption 
techniques, which we will study separately for several 
weeks starting next week. Other techniques: 
}  Encrypted data 
}  Code obfuscation 
}  Using checksums 
}  Compressed code 

}  We will examine each of these briefly 
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Encrypted Data 

}  The virus encrypts its data and decrypts it as it is 
used 

}  The encryption and decryption code is clearly visible, 
so it is straightforward to figure out 

}  BUT, when viewing the code in a disassembler, the 
data is garbled 

}  Labor-intensive: The anti-virus software engineer is 
slowed down by the need to emulate code, write a 
decryption utility program and paste data into it, etc. 
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Encrypted Data Example 

}  The Fix2001 worm attacked Windows 95 systems in 2001 
}  The worm sent stolen accounts and passwords by email back 

to a free email address (e.g. hotmail.com) obtained with a false 
identity 

}  The worm author did not want the email address to be 
readable to a disassembler 

}  The address was in a constant data section that was 
encrypted 

}  Stepping through a debugger to watch the data be decrypted 
slows down the analysis 
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Code Obfuscation 

}  We saw a DOS example two weeks ago that used a 
jump into the middle of a previous instruction 

}  Some obfuscation merely injects no-ops, do-nothings 
(e.g. add eax,0) 
}  Regular expression matching can filter these out 
}  Analysis is not slowed much by these instructions 

}  It is slower to analyze code with roundabout 
computations, computed jump addresses rather than 
direct jumps, etc. 
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Obfuscated Computation 
}  Example from Szor text, p. 223: 
}  Straightforward code to write 256 bytes into a file: 
    mov  cx, 100h   ; 100h = 256 bytes to write 
    mov  ah, 40h    ; 40h = DOS function number 
    int  21h        ; Invoke DOS handler 
}  Convoluted code to do the same thing: 
    mov  cx,003Fh   ; cx = 003fh 
    inc  cx         ; cx = 0040h 
    xchg ch, cl     ; swap ch, cl (cx = 4000h) 
    xchg ax, cx     ; swap ax, cx (ax = 4000h) 
    mov  cx, 0100h  ; cx = 100h 
    int  21h        ; Invoke DOS handler  
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Anti-Disassembly Checksums 
}  Straightforward code to match an imported function prototype, from the 

exported functions list in DLL,  
}  to decide which system functions to infect,  
}  might loop through the DLL function names list and  
}  compare each function name to a constant string, e.g. (in C pseudocode), 

     for (each prototype in DLL export table)  
      if (0 == strcmp(name,“GetFileHandle(int)”)) 
          infect(current export table address); 
     endfor 
}  Easy to read in the disassembled code;  

}  good disassembler can even search and find the string “GetFileHandle” if the anti-
virus researcher already suspects that is the function being infected 
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Checksums cont’d. 
}  Instead, the virus could compute a checksum over the ASCII bytes of the 

two strings, store one as a constant, and compare the checksums for 
equality: 

    int ConstantName = 0x89f7e5b2; /* Computed by virus writer */ 
    for (each prototype in DLL export table) 
       int foo = checksum(name);  
       if (foo == ConstantName) 
          infect(current export table address); 
    endfor 
 

}  This code no longer reveals the API name to a reader 
}  Labor Intensive: Anti-virus researcher must now step through the 

checksum computation to figure out what is going on 
}  i.e., impedes the analysis 

}  Similar idea to encrypting data 
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Anti-Disassembly Compression 

}  A virus can be stored using a compression algorithm, 
and decompressed during execution by a 
decompression code at the beginning of the virus 

}  As with encrypted data, the compression algorithm is 
exposed, but examination of disassembled code is 
greatly slowed down 

}  Anti-virus researcher might need to emulate the 
code, or step through it in a debugger 
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Armored Viruses 

}  Armored virus techniques fall naturally into five 
categories, corresponding to the five tools they are 
designed to combat: 
}  Anti-disassembly 
}  Anti-debugging 
}  Anti-emulation 
}  Anti-heuristics 
}  Anti-goat 
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Anti-Debugging 

}  We have seen that anti-disassembly techniques might 
drive an anti-virus researcher to step through virus 
code in a debugger 

}  The next step in the escalating war between the 
virus and anti-virus communities is the 
development of virus code that resists being 
executed in a debugger 
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Anti-Debugging Techniques 

}  Interrupts 1 and 3 are used often in x86 debugging 
}  INT 1 places the CPU in single-step mode 
}  INT 3 is inserted into the code by the debugger to set a 

 breakpoint 

}  First anti-debugging technique: Hook these two 
interrupts 
}  Anti-virus code must be used to unhook the interrupts  

 before debugging can proceed 

}  Next anti-debugging technique: use a checksum to 
defeat INT 3 breakpoints 
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Anti-Debugging Techniques 

}  If the virus code computes a checksum over a critical 
range of its code, stores that checksum in a constant, 
and then recomputes the checksum as it runs, it can 
detect the change when the INT 3 instruction is 
injected into that code range, and just abort 
}  The virus now runs successfully without a debugger, but 

 aborts when breakpoints are inserted 

}  Note that a code emulator, as opposed to a 
debugger, does not insert breakpoints and is not 
defeated by this technique 
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Anti-Debugging Techniques 

}  Next technique: Detecting changes in the state of the 
stack during single-step mode 

}  A single-step debugger places a state record on the 
stack, and updates it after each step, to record the 
current IP (instruction pointer) value and the 
contents of the FLAGS register 

}  The virus code can examine the stack and see 
changing values where they would not change during 
normal (non-debugger) execution, and abort 
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Detecting Stack Changes 

}  In single-step debug mode, the 
debugger, after each instruction, 
saves state change information in a 
record that is placed just beyond 
the top of the stack. 

}  This location will be trampled by 
any user program instructions that 
change the stack, but the old info is 
not needed after an instruction is 
executed. 

User Run-time 
Stack

Saved State

Higher Addresses

Lower Addresses

ESP
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Detecting Stack Changes 

}  Without single-step debug state changes, a location on the 
stack will remain unchanged until an instruction changes it, but 
will be changed by the debugger after every instruction during 
single-step debug: 

   mov bp,sp    ; bp gets current stack pointer 
   push ax 
   pop ax       ; old pushed value still at [bp-2] 
                ;  which is beyond current stack 
   cmp word ptr [bp-2],ax ; equal if no debugger 
   jne DEBUG    ; debugger detected! Go abort! 
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Anti-Debugging Techniques 

}  If the virus encrypts part of its code, it can use the 
stack pointer in the decryption routine 
}  When the debugger uses the stack to save state, it will change the stack 
pointer and cause the decryption to fail 
}  Virus now executes only without a debugger 

}  Disabling the keyboard interrupt during virus 
execution prevents the AV researcher from using a 
debugger 

}  Other techniques are listed in Szor, 6.2.7 
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Detecting Debuggers 

}  On Win32 operating systems, an API is available: 
IsDebuggerPresent() 
}  Virus can just abort if TRUE 

}  Many debuggers set registry keys when they are 
active 

}  Viruses can scan memory for debugger code 
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Armored Viruses 

}  Armored virus techniques fall naturally into five 
categories, corresponding to the five tools they are 
designed to combat: 
}  Anti-disassembly 
}  Anti-debugging 
}  Anti-emulation 
}  Anti-heuristics 
}  Anti-goat 
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Anti-Emulation Techniques  
}  em·u·la·tor noun  

}  1 : one that emulates; imitator 
}  2: hardware or software that permits programs written for one 

computer to be run on another computer 

}  Emulators approximate the behavior of their target 
}  Why is this? 
}  Emulation runs much more slowly than actual machine 

}  Anti-Emulation Armoring: 
}  Floating point code 
}  Take advantage of the approximation – be exceptional 
}  Time/logic bombs 
}  Dynamic code length 
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Anti-Emulation: Floating Point Code 

}  If armored viruses have driven AV researchers away from 
disassemblers and debuggers, 
}   next step for virus writers is to impair use of code emulators 

}  Early emulators only kept track of the integer CPU registers and 
memory,  
}  viruses were not floating-point code 

}  Viruses then began to deliberately use the floating point 
 coprocessor registers and instructions 

}  More recently, MMX and SSE vector graphics instructions are appearing in viruses 
}  Modern emulators responded by emulating all registers and instructions 

}  Also, can use undocumented x86 instructions to similar effect! 
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Anti-Emulation: Exceptions 

}  The emulation environment is not always able to 
predict whether the next instruction will cause an 
exception (why?) 
}  Viruses have been written to exploit this problem by putting part of 
their code in exception handlers, and then causing very subtle 
exceptions to occur 
}  If part of the virus decompressor or decryptor code is in an exception 
handler, the emulator will fail to decrypt or decompress and emulation 
will try to execute garbage bytes 
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Anti-Emulation: Time and Logic Bombs 

}  Arrange for virus to execute only…  
}  at certain times of day (time bomb),  
}  or only under random conditions (logic bomb) that might 

be controlled by random number generation 
}  If the time/condition not met, the virus just transfers 

control to the infected host program and does no 
damage 

}  When executed in an emulator, the virus will 
probably be dormant and cannot be analyzed by the 
emulator 
}  AV analysis forced to use a debugger 
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Anti-Emulation: Dynamic Code Length 

}  Code emulation is very slow (interpretation of an 
entire simulated machine environment) 
}  Not a problem for most viruses, as most they start up 

pretty quickly and are written in tight code 
}  Anti-emulation Armoring: However, use huge loops 

of do-nothing instructions with a few real virus 
instructions thrown in & a high loop count 
}  Emulation becomes too lengthy 
}  Can also be done by encoding brute-force decryptors into the virus, 
which run billions of instructions before successfully decrypting it 
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Armored Viruses 

}  Armored virus techniques fall naturally into five 
categories, corresponding to the five tools they are 
designed to combat: 
}  Anti-disassembly 
}  Anti-debugging 
}  Anti-emulation 
}  Anti-heuristics 
}  Anti-goat 
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Anti-heuristic Viruses 

}  Scanning a PE file for virus code patterns is not always as 
simple as using regular expressions,  
}  especially when detecting new viruses or new variants 
}  E.g., metamorphic viruses 

}  Search heuristics have been developed that can find suspicious 
code without having exact patterns from a pattern database 

}  Static heuristics are used in scanners to analyze executable files 
}  Dynamic heuristics analyze code running under emulation 

}  In addition to anti-emulation techniques directed against the 
dynamic heuristics, virus writers learned to write viruses in 
such a way as to evade the static scanners 
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Anti-heuristic Techniques 

}  It is common for virus code to be appended, or placed in the 
last section in the PE file 

}  Scanners are programmed to flag PE files in which the entry point is directed 
to the last section of the file 
}  This can cause a false positive for self-extracting archives, in which the 
extractor code is often at the end, so other  heuristics must be used in 
combination with this one 

}  Virus writers responded by adding some of their own data 
sections after their code section, so the entry point was not 
the last section any more,  
} e.g., the Resure virus 
} Peter Szor, “Attacks on Win 32 – Part 2” for more details 
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Anti-heuristic Techniques 

}  Another way to append virus code without having 
the entry point be in the last section of the PE file 
}   place the beginning of the virus in the slack area at the 

end of the host program code section,  
}  …with a jump to the appended virus code at the end 

}  Emulators have been designed to detect jumping 
from one PE file section to another 
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Anti-heuristic Techniques 

}  The EPO (entry-point obscuring) techniques that we 
studied previously are also anti-heuristic techniques, 
as they make it hard for a scanner to detect that 
control passes to a virus 
}  Import Address Table (IAT) replacement  
}  Call hijacking 
}  Replacing an arbitrary call with a jump into the virus 

}  Modern scanners cannot just look at entry points 
and the top and bottom of PE files 
}  Scanning is getting more expensive as a result 
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Armored Viruses 

}  Armored virus techniques fall naturally into five 
categories, corresponding to the five tools they are 
designed to combat: 
}  Anti-disassembly 
}  Anti-debugging 
}  Anti-emulation 
}  Anti-heuristics 
}  Anti-goat 
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Anti-goat Viruses 

}  Anti-virus software often uses goat files, a.k.a 
sacrificial goats, which are dummy files whose 
infection will signal the presence of a virus 
}  Short, simple files, of known content 
}  Easy to find a virus within them 
}  Scattered around the disk in various file types that are prone to 
infection, e.g. *.exe, *.vbs, *.com 
}  Also in various sizes, as viruses often infect only files with a certain 
minimum size 

}  Detecting which goat files are infected, and which are 
not, helps identify the virus 
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Anti-goat Techniques 

}  An anti-goat virus will try to detect goat files and 
avoid infecting them 

}  Files are examined for goat file characteristics: 
}  Lots of no-ops and do-nothing instructions 
}  Clusters of files with sequential numbers in their names,  e.g. 
abcd0001.vbs, abcd0002.vbs, etc. 

}  As with all armored virus techniques, the point is not 
to be the mythical “undetectable virus”, but just to 
slow down detection and analysis 
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Retroviruses 

}  In nature, a retrovirus replicates in a different manner than 
normal viruses and is thus partly immune to many antiviral 
drugs 

}  The HIV retrovirus attacks the immune system 

}  Computer retroviruses directly attack anti-virus software in 
an effort to make themselves immune 

}  Szor, section 6.3: “A retrovirus is a computer virus that 
specifically tries to bypass or hinder the operation of an 
antivirus, personal firewall, or other security programs.” 
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Vulnerability to Retroviruses 

}  Most of us log on to our personal computers with 
administrative capabilities 
}  More convenient than having to change your login every time you 
perform an administrative task 
}  Everyone was an administrator under DOS 

}  This gives a retrovirus the same administrative 
capabilities, meaning that it can kill anti-virus 
processes, remove anti-virus files, etc., just as you 
could 

}  Paves the way for other viruses to work freely 
}  Might be the only function of a given retrovirus 
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Retroviruses: Direct Attack on Security 
Software 

}  With admin capabilities, a retrovirus can kill the processes 
that it recognizes as being AV or firewall software, behavior 
blockers, etc. 
}  A behavior blocker is a background process, from the OS or from an AV 
package, that prevents certain suspicious behaviors, such as changing the 
interrupt chain or doing a disk write to an existing executable file 

}  Sometimes, settings in firewalls and AV monitors can be 
changed to bypass them without killing them (stealthier than 
killing) 

}  Can also delete AV or firewall files from disk 
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Retroviruses: Attack on Security Software 
Files 

}  Many AV programs maintain an integrity checking 
database full of checksums and file sizes for various 
system files 

}  Retroviruses can attack this database: 
}  Delete the files (not too stealthy) 
}  Modify the files so that checksums and sizes must be recomputed for 
infected files; this hides the infection by storing the new sizes and 
checksums 
}  Replace the database with a modified database that prevents virus 
detection, causes virus misidentification, and even launches viruses (i.e. 
database is now a Trojan horse) 
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Example: Altering Integrity Database 
Entries 

}  The IDEA.6155 virus was designed to infect *.COM 
and *.EXE files while escaping detection in the 
integrity database: 
}  The integrity database checksum record “thisfile.exe 23f7e65b” would 
be altered to “lhisfile.exe 23f7e65b” after infection of thisfile.exe  

}  notice the change to the first character from “t” to “l” 
}  AV integrity checker concludes, on its next scan, that thisfile.exe must 
be a new file, so it computes a checksum of  the infected file and adds 
a new record to the integrity database: “thisfile.exe 269b7fc2” 
}  Infected file now seems to have integrity 
}  Full scan will be required, searching for virus patterns, etc., to find the 
problem; full scans are not done often because of time constraints 
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Retroviruses: Indirect Attacks on AV 
Programs 

}  Older versions of AV programs sometimes placed an integrity 
check record at the end of a validated file, with encrypted 
checksums 

}  Files with a mark did not need to be scanned again 
}  Cut down on scanning time by only scanning modified or newly created files 

}  The Tequila virus removed this record from files it infected, so 
that infection would not cause an integrity check failure 

}  Simpler non-cryptographic checksums, such as CRC, can be 
defeated by appending a few bytes to an infected file that 
cause its new CRC checksum to match the old one; 
Hybris worm used this technique on PE files, which had to be 
restored (could not be repaired) 
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Retroviruses: Deterring AV Use 

}  A retrovirus can attack analysis tools used by anti-virus 
researchers 

}  A retrovirus can remain dormant until it detects AV software, 
then start damaging the system 

}  What would you do if the following message appeared on 
your screen: 

   WARNING! Infected System! 
   Virus will do no harm unless you install 
   anti-virus software. Then it will destroy 
   your files! 
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Assignment 

}  Read Szor, Chapter 7 through section 7.5 (virus 
encryption techniques) before the next lecture 
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