
File Infection Techniques:
 File Resident Viruses

CS 4440/7440 Malware Analysis & Defense
Bill Harrison

Viruses: Online Resources

2

}  Symantec Virus Encyclopedia:
http://securityresponse.symantec.com/avcenter/
vinfodb.html

}  McAfee Virus Information Library:
http://vil.nai.com/vil/default.aspx

File Infection Techniques

3

}  Executable files (*.EXE, *.COM, *.BAT, etc.) are often the
target of viruses

}  Executing an infected file usually triggers replication of
the virus into other files

}  Executable file infection techniques can be categorized
broadly by asking where the virus code is placed in the
file

Location: Beginning of the File

4

}  Henceforth, beginning always refers to the start of the
executable code, which might follow a header area in
some file formats

}  A virus can either preserve the original beginning of the
file, or destroy it by overwriting

}  Destructiveness always reduces the stealthiness of the
virus

Beginning of the File with Destructive
Overwrite

5

}  Two primary methods:
}  Replace *.exe file with virus *.exe
}  Overwrite only the beginning of a *.exe that is larger than the virus

*.exe

}  Neither method is stealthy:
}  The *.exe has lost its functionality entirely, so the user notices that

something is wrong
}  Anti-virus software finds a virus easily right at the beginning of the file

}  The first method often changes the file size, making it
even less stealthy than the second method

Beginning of the File with Destructive
Overwrite

}  Two primary
methods:

Program Code
Virus Code

Program Code Program Code

Virus Code

Replacement

Overwriting

6

Beginning of the File with Destructive Overwrite
cont’d.

}  The file size change was only significant for stealthy viruses when
first-generation anti-virus software depended on keeping track
of file sizes

}  Both kinds of overwriting viruses can only be repaired by
restoring files from a backup

}  E.g. the LoveLetter mass mailer worm, after replicating by email,
overwrote every file on the system that had one of 32 file
extensions: *.c, *.cpp, *.mp3, *.vbs, etc.

}  It had already replicated to other systems, so it no longer tried to remain stealthy;
a common design for worms

7

Loveletter screenshot

8

Random File Location with Destr. Overwrite

}  The Russian Omud virus, also called 8888, overwrote at a
random location in the *.exe file.

}  Anti-virus software must now search the entire file to find it;
}  this defeated early anti-virus software

}  Control might transfer to the virus during execution of the *.exe, or it might not,
or program might crash; stealth came at a price!

Program Code Program CodeVirus Code

Random
Overwriting

9

Appending Viruses

}  A jump, or tricky jump, to the virus address is overwritten on
the first few bytes of the executable

}  Virus code is appended to the file
}  Overwritten instructions are saved in the virus

}  When the virus is about to terminate, it executes the saved instructions
and jumps back to the spot that followed them
}  Application program functionality is preserved (stealth)

}  So common among DOS .COM files that it was called the
normal COM virus technique;
}  Vienna and Suicide are famous examples of this kind of virus

10

Appending Viruses

}  The jump, or tricky jump, is easily spotted by anti-virus
software

}  The file size has changed

Program Code Program Code

Virus Code

Tricky Jump

JUMP

11

Appending Viruses

}  The stealth depends on
}  executing the original application successfully when the

virus code has finished, AND
}  not spending too long in the virus code

}  In order to execute the application successfully, the
virus often
}  copies the application code into a temporary file, then

}  calls system() or a similar function to execute the contents of
that file

}  Must pass original command-line arguments!

12

Multiple Techniques

}  Many viruses implement, in one virus, several of the
techniques we have studied

}  1991 DOS normal COM example: Phantom
} Appending COM file infector (normal COM)
} Memory resident: installs itself into high DOS memory, reduces available
memory by about 2KB, monitors system activity and infects COM files as
they are executed
} Hooks interrupts 20h and 21h in order to intercept COM file executions
} Existed in multiple variants with different messages

13

Phantom Visual Payload

14

Amazing that the payload and the replication only took 2KB!
Tight ASM programming.

Cavity Viruses

}  Virus creators often search for space within a file that is filled
with zeroes or ASCII blanks

}  These spaces, or cavities, can be filled with virus code without
changing the file size

}  A single cavity might be big enough for the whole virus, or the
virus might be distributed into multiple small cavities, loaded
into memory by the virus loader code at the head of the virus,
connected by jump instructions (a fractionated cavity virus)

}  Still need to reach the start of the virus with a jump, or modify
the PE entry point

15

Cavity Viruses

}  Jump, or modified PE entry point, detectable by anti-
virus software

}  Disinfection can be difficult (was the original cavity full
of zeroes, or ASCII blanks?)

Program Code Program Code

Virus Code

Tricky Jump

JUMP

Cavity

16

Compressing Viruses

}  Application code is compressed
}  Virus code plus decompressor code fits into the space that was

saved
}  Can keep the file size from changing
}  Might not even change the entry point!

Program Code
Program Code

PE Header

Entry Point field (EP)

PE Header

Entry Point field (EP)

Virus Code +
decompressor()

17

Compressing Viruses cont’d.

}  How can a compressing virus be detected and
disinfected?

}  The virus code might even be compressed, so that
only the decompressor code is recognizable as normal
code

}  However, a self-extracting archive would have a similar
appearance and be quite legitimate

}  File size and entry point could be unchanged
}  Application behavior could be preserved

18

Detecting a Compressing Virus

}  When a virus outbreak occurs, reports come in to major anti-
virus software vendors from their customers

}  More expensive system scans than are normal for a background
anti-virus program might reveal that known applications now
have unintelligible executables

1.  Disassembly tools are used to examine the code, and
1.  human intelligence is needed to find the decompressor code

2.  A copy of the virus code can be decompressed using the
decompressor

3.  The virus design is then figured out by walk-throughs

19

Detecting a Compressing Virus cont’d.

}  Which other files on the system are targeted for infection can
now be determined by examining the virus code

}  A code pattern is devised that describes unique instruction
sequences in the decompressor code

}  The system is scanned to verify that this code pattern is not
found in uninfected files

}  The virus code pattern database is updated, and customers
download the update

}  More on pattern recognition shortly
}  How can such a file be disinfected?

20

Disinfecting a Compressing Virus

}  With the virus and decompressor understood, the
decompressor algorithm can be applied to the compressed
application code

}  The virus code and decompressor are removed
}  The anti-virus software might maintain a database of

cryptographic checksums for application executables
}  If the disinfected application now matches its stored checksums,

success is declared
}  Otherwise, restore the file from backup

21

Entry-Point Obscuring (EPO) Viruses

}  Anti-virus software closely examines PE file headers,
entry points, and the initial code executed at the entry
point
}  A stealthy virus must be designed to avoid changes to any

of these locations

}  An EPO virus obscures its own entry point by finding
a call instruction in the targeted PE file and “hijacking”
the call so that the virus code is called instead

22

EPO Viruses cont’d

}  A function call within the application becomes a call to
the virus code.

Program Code

Call whatzit

Program Code

Call virus

Virus Code

PE Header
EP

PE Header
EP

.reloc section

23

EPO Viruses cont’d

}  The virus code saves the registers in order to
preserve the parameters that were being passed. Also
saves the original call target address.

}  When the virus finishes executing,
}  it restores the registers and
}  does a jump back to the original call target

}  Q: How does a virus find a call to hijack?

24

EPO Viruses cont’d

}  How can a virus find a function call?
}  The binary opcodes can be scanned. However, constant

data in the code section can happen to have the same value
as a call opcode

}  The most well-designed viruses examine the field that
gives the target of the call.
} What does the virus do with this field?
} How does this help the virus?

25

If it points to an address that looks like a function
prologue (e.g. push ebp; mov esp,ebp) then the virus
proceeds to hijack the call

EPO Viruses cont’d

}  How can a virus find a function call?
}  The binary opcodes can be scanned. However, constant

data in the code section can happen to have the same value
as a call opcode

}  The most well-designed viruses examine the field that
gives the target of the call.
} What does the virus do with this field?
} How does this help the virus?

}  If target points to an address that looks like a
function prologue (e.g. push ebp; mov esp,ebp) then the
virus proceeds to hijack the call

26

EPO Viruses cont’d

}  The .reloc section gives information to be used if the program
has to be relocated during execution,
}  i.e. reloaded at a different load point because the system had to

defragment memory or some other reason

}  Relocation during execution is unusual, so the .reloc section
usually sits unused, e.g. in statically linked executables
}  Unfortunately, this provides a large cavity for viruses to use and still

leave the file size unchanged

}  How could such an infection be detected?

27

Detecting Call-Hijacking Viruses

}  The .reloc section is examined by modern anti-virus
software to see if it looks like a legitimate .reloc
section

}  Code patterns such as saving state, tricky jumps, etc.,
can be detected in the .reloc section

}  Some EPO viruses are accidentally destructive; hard to
re-enter the application successfully in some cases

28

EPO Viruses: IAT Replacement

}  The IAT (import address table) is the function pointer
table that exports the API (application program
interface) that the user application is presenting to
outside callers

}  Several IAT function pointers can be saved in the virus
body, then replaced with pointers to the virus code

}  After the virus code is memory-resident, it can restore
the IAT in memory so that the API is preserved and
stealth is maintained

29

EPO Viruses: IAT Replacement

}  The Tentacle and Tentacle-II viruses were 16-bit
Windows examples, infecting the NE (New
Executable) files that were the ancestors of PE

Program Code

IAT:
whatzit()

foo()
bar()

Program Code

New IAT:
virus()
virus()
virus()

Virus Code

Saved IAT

PE Header
EP

PE Header
EP

.reloc section

30

Tentacle Screenshot

31

