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Abstract. This article demonstrates how a powerful and expressive
abstraction from concurrency theory—monads of resumptions—plays a
dual rôle as a programming tool for concurrent applications. The article
demonstrates how a wide variety of typical OS behaviors may be speci-
fied in terms of resumption monads known heretofore exclusively in the
literature of programming language semantics. We illustrate the expres-
siveness of the resumption monad with the construction of an exemplary
multitasking kernel in the pure functional language Haskell.

1 Introduction

Many techniques and structures have emigrated from programming language
theory to programming practice (e.g., types, CPS, etc.), and this paper advo-
cates that resumption monads make this journey as well. This work demonstrates
how a natural (but, perhaps, under-appreciated) computational model of con-
currency is used to construct multi-threaded concurrent applications suitable
for formal verification. The expressiveness of resumption monads is illustrated
by the construction of an exemplary multitasking operating system kernel with
process forking, preemption, message passing, and synchronization constructs all
requiring about fifty lines of Haskell 98 code1. And, because this machinery may
be generalized as monad transformers, the functionality described here may be
reused and refined easily.

The literature involving resumption monads [21, 23, 11, 22, 18, 17] focuses on
their use in elegant and abstract mathematical semantics for programming lan-
guages. The current work advocates resumption monads as a useful abstraction
for concurrent functional programming as well. The contributions of this
work are twofold: (1) the formulation of typical concurrent operating system
behaviors in terms of structures known heretofore in theoretical semantics lit-
erature and (2) a substantial case study illustrating this formulation within a
higher-order functional programming language. The purpose of the case study,
in part, is to provide an exposition so that the interested reader may grasp the
theoretical literature more readily.

? This research supported in part by subcontract GPACS0016, System Information
Assurance II, through OGI/Oregon Health & Sciences University.

1 All the code presented in this paper is available online [13].



A resumption [27] is stream-like construction similar to a continuation in that
both tell what the “rest of the computation” is. However, resumptions are con-
siderably less powerful than continuations—the only thing one may model with
resumptions is multitasking computation. This conceptual economy makes con-
current applications structured with resumption monads easy to comprehend,
modify, extend, and reason about. Specifically, we demonstrate how to construct
a multitasking operating system kernel based on three monads and their opera-
tions (written here in categorical style):

St A = Sto → A×Sto — state

R A = µX . (A + (St X )) — state+concurrency

Re A = µX . (A + (Req×(Rsp→St X ))) — state+concurrency+interactive i/o

St is the familiar state monad, while R and Re are resumption monads providing
what we call basic and reactive concurrency about which we will say much more
below.

The structure of this article is as follows. After reviewing the related work be-
low and the necessary background in Section 2, Section 3 describes in detail how
resumption monads may be used to model multitasking concurrency. Section 4
presents a resumption-monadic semantics for a concurrent language extended
with “signals”; a thread may signal the kernel to fork, suspend, preempt, print,
send or receive a message, and acquire or release a semaphore and Section 5
describes the kernel on which these threads execute. Section 6 summarizes the
work and outlines future directions.

Related Work. Functional languages are well-known for promoting mathe-
matical reasoning about programs, and, perhaps because of this, there has been
considerable research into their use for concurrent software such as OS kernels.
The present work has this pedigree, yet fundamentally differs from it in at least
one key respect: we explicitly encapsulate all effects necessary to the kernel with
monads: input/output, shared state and multitasking concurrency.

The concurrency models underlying previous applications of functional lan-
guages to concurrent system software fall broadly into four camps. The first
camp [16, 31, 32, 5] assumes the existence of a non-deterministic choice opera-
tor to accommodate “non-functional” situations where more than one action
is possible, such as a scheduler choosing between two or more waiting threads.
However, such a non-deterministic operator risks the loss of an important rea-
soning principle of pure languages—referential transparency—and considerable
effort is made to minimize this danger. Non-determinism may be incorporated
easily into the kernel presented here via the non-determinism monad, although
such non-determinism is of a different, but closely related, form.

The second model uses “demand-driven concurrency” [3, 30] in which threads
are mutually recursive bindings whose lazy evaluation simulates multitasking
concurrency. Interleaving order is determined (in part) by the interdependency
of these bindings. However, the demand-driven approach requires some alter-
ation of the underlying language implementation to completely determine thread
scheduling. Thread structure is entirely implicit—there are no atomic actions per



se. Demand determines the extent to which a thread is evaluated—rather like
the “threads” encoded by computations in the lazy state monad [19]. Thread
structure in the resumption-monadic setting is explicit—one may even view a
resumption monad as an abstract data type for threads. This exposed thread
structure allows deterministic scheduling without changing the underlying lan-
guage implementation as with demand-driven concurrency.

The third camp uses CPS to implement thread interleaving. Concurrent be-
havior may be modeled with first-class continuations [4, 34, 9, 33] because the
explicit control over evaluation order in CPS allows multiple threads to be “inter-
woven” to produce any possible execution order. Claessen presents a formulation
of this style using the CPS monad transformer [4], although without exploiting
the full power of first-class continuations—i.e., he does not use callcc or shift and
reset . While it is certainly possible to implement the full panoply of OS behav-
iors with CPS, it is also possible to implement much, much more—most known
effects may be expressed via CPS [7]. This expressiveness can make programs
in CPS difficult to reason about, rendering CPS less attractive as a founda-
tion for software verification. Resumptions can be viewed as a disciplined use of
continuations which allows for simpler reasoning.

The last camp uses a program-structuring paradigm for multi-threading
called trampoline-style programming [10]. Programs in trampoline-style are or-
ganized around a single scheduling loop called a “trampoline.” One attractive
feature of trampolining is that it requires no appeal to first-class continuations.
Of the four camps, trampolining is most closely related to the resumption-
monadic approach described here. In [10], the authors motivate trampolining
with a type constructor equivalent to the functor part of the basic resumption
monad (described in Section 3.1 below), although the constructor is never iden-
tified as such.

The previous research relevant to this article involves those applications
of functional languages where the concurrency model is explicitly constructed
rather than inherited from a language implementation or run-time platform.
There are many applications of functional languages to system software that
rely on concurrency primitives from existing libraries or languages [12, 1]; as the
modeling of concurrency is not their primary concern, no further comparison
is made. Similarly, there are many concurrent functional languages—concurrent
versions of ML, Haskell, and Erlang—but their concurrency models are built-in
to their run-time systems and provide no basis of comparison to the current work.
It may be the case, however, that the resumption-monadic framework developed
here provides a semantic basis for these languages.

Resumptions are a denotational model of concurrency first introduced by
Plotkin [27]; excellent introductions to this non-monadic form of resumptions
are due to Schmidt [29] and Bakker [2]. Moggi was the first to observe that
the categorical structure known as a monad was appropriate for the develop-
ment of modular semantic theories for programming languages [21]. In his initial
development, Moggi showed how a sequential theory of concurrency could be
expressed in the resumption monad. The particular formulation of the basic re-



sumption monad we use is due to Papaspyrou [23, 22], although other equivalent
formulations exist [21, 6, 8].

2 Review: Monads

Monads are algebras just as groups or rings are algebras; that is, a monad is a
type constructor (functor) with associated operators obeying certain equations—
the well-known “monad laws” [20]. There are several formulations of monads, and
we use one familiar to functional programmers called the Kleisli formulation: a
monad M is given by an eponymous type constructor M and the unit operator,
return : a →M a, and the bind operator, (>>=) : M a → (a →M b)→M b.
We assume of necessity that the reader possesses familiarity with monads and
their uses in modeling effects. Readers requiring further background should con-
sult the references [21, 20].

The State Monad in Haskell. We represent the monadic constructions here
in the pure functional language Haskell 98 [25], although we would be equally
justified using categorical notation or any other higher-order functional program-
ming language.

A monad in Haskell typically consists of a data type declaration (defining the
computational “raw materials” encapsulated by the monad) and definitions for
the overloaded symbols (return) and (>>=) [25]. The state monad St , containing
a single threaded state Sto = Loc→Int , is declared:

data St a = ST (Sto → (a,Sto))
deST (ST x ) = x

return v = ST (λs. (v , s))
(ST x) >>= f = ST(λs. let (y, s′) = (x s)

in deST (f y) s′)

The state monad has operators for updating the state, u, getting the state,
g , and reading a particular location, getloc:

u : (Sto→Sto)→St ()
g : St Sto
getloc : Loc → St Int

u δ = ST (λ s. ((), δ s))
g = ST (λs. (s, s))
getloc x = g >>= λ σ. return (σ x )

Here, () is both the single element unit type and its single element. The “null”
bind operator, (>>) :M a→M b→M b, is useful when the result of >>=’s first
argument is ignored: x>> y = x >>= λ . y .

Notational Convention. We suppress details of Haskell’s concrete syntax
when they are unnecessary to the presentation (in particular, instance declara-
tions and class predicates in types). Haskell 98 reverses the standard use of (::)
and (:) in that (::) stands for “has type” and (:) for list concatenation in Haskell
98. We will continue to use the standard interpretation of these symbols.



3 Concurrency Based on Resumptions

Two formulations of resumption monads are used here–what we call basic and
reactive resumption monads. Both occur, in one form or another, in the liter-
ature [21, 23, 22, 6, 8]. The basic resumption monad (Section 3.1) encapsulates
a notion of multitasking concurrency; that is, its computations are stream-like
and may be woven together into single computations representing any arbitrary
schedule. The reactive resumption monad (Section 3.2) encapsulates multitask-
ing concurrency as well, but, in addition, affords a request-and-response inter-
active notion of computation which, at a high-level, resembles the interactions
of threads within a multitasking operating system.

To motivate resumptions, let’s compare them with a natural model of con-
currency known as the “trace model” [28]. The trace model views threads as
(potentially infinite) streams of atomic operations and the meaning of concur-
rent thread execution as the set of all their possible thread interleavings. Imagine
that we have two simple threads a = [a0, a1] and b = [b0], where a0, a1, and b0

are “atomic” operations, and, if it is helpful, think of such atoms as single ma-
chine instructions. According to the trace model, the concurrent execution a‖b
of threads a and b is denoted by the set2 of all their possible interleavings:

traces (a ‖ b) = {[a0, a1, b0], [a0, b0, a1], [b0, a0, a1]} (‡)

This means that there are three distinct possible execution traces of (a ‖ b), each
of which corresponds to an interleaving of the atoms in a and b. Non-determinism
in the trace model is reflected in the fact that traces(a ‖ b) is a set consisting of
multiple interleavings.

The trace model captures the structure of concurrent thread execution ab-
stractly and is well-suited to formal characterizations of properties of concurrent
systems (e.g., liveness). However, a gap exists between this formal model and an
executable system: traces are streams of events, and each event is itself a place
holder (i.e., what do the events a0, a1, and b0 actually do?). Resumption monads
bridge this gap because they are both a formal, trace-based concurrency model
and may be directly realized and executed in a higher-order functional language.

The notion of computation provided by resumption monads is that of se-
quenced computation. A resumption computation has a stream-like structure in
that it includes both a “head” (corresponding to the next action to perform)
and a “tail” (corresponding to the rest of the computation)—very much like the
execution traces in (‡). We now describe the two forms of resumption monads
in detail.

3.1 Sequenced Computation & Basic Resumptions

This section introduces sequenced computation in monadic style, discussing the
monad that combines resumptions with state. The monad combining resump-
2 This set is also prefix-closed in Roscoe’s model, meaning that it includes all prefixes of

any trace in the set. For the purposes of this exposition, we ignore this consideration.



tions with state is:

data R a = Done a | Pause (St (R a))
return = Done
(Done v) >>= f = f v
(Pause r) >>= f = Pause (r >>=St λκ. returnSt (κ >>= f))

(∗)

Here, the bind operator for R is defined recursively using the bind and unit
for the state monad (written above as >>=St and returnSt, respectively). Some
stateful computation—i.e., within “r >>=St . . .”—takes place.

Returning to the trace model example from the beginning of this section,
we can now see that R-computations are quite similar to the traces in (‡). The
basic resumption monad has lazy constructors Pause and Done that play the
rôle of the lazy list constructors cons (::) and nil ([ ]) in the traces example. If the
atomic operations of a and b are computations of type St (), then the following
computations of type R () are the set of possible interleavings:

Pause (a0 >> return (Pause (a1 >> return (Pause (b0 >> return (Done ()))))))
Pause (a0 >> return (Pause (b0 >> return (Pause (a1 >> return (Done ()))))))
Pause (b0 >> return (Pause (a0 >> return (Pause (a1 >> return (Done ()))))))

where >> and return are the bind and unit operations of the St monad. While
the stream version implicitly uses a lazy cons operation (h :: t), the monadic
version uses something similar: Pause (h >> return t). The laziness of Pause
allows infinite computations to be constructed in R just as the laziness of cons
in (h :: t) allows infinite streams to be constructed.

3.2 Reactive Concurrency

We now consider a refinement to the R monad allowing computations to sig-
nal requests and receive responses in a manner like the interaction between an
operating system and processes. Processes executing in an operating system are
interactive; processes are, in a sense, in a continual dialog with the operating sys-
tem. Consider what happens when such a process makes a system call. (1.) The
process sends a request signal q to the operating system for a particular action
(e.g., a process fork). Making this request may involve blocking the process (e.g.,
making a request to an I/O device would typically fall into this category) or it
may not (e.g., forking). (2.) The OS, in response to the request q, handles it by
performing some action(s). These actions may be privileged (e.g., manipulating
the process wait list), and a response code c will be generated to indicate the
status of the system call (e.g., its success or failure). (3.) Using the information
contained in c, the process continues execution.

How might we represent this dialog? Assume we have data types of requests
and responses:

data Req = Cont | 〈other requests〉
data Rsp = Ack | 〈other responses〉



Both Req and Rsp are required to have certain minimal structure; the continue
request, Cont , signifies merely that the computation wishes to continue, while
the acknowledge response, Ack , is an information-free response. The following
monad, Re, “adds” the raw material for interactivity to the monad R as follows:

data Re a = D a | P (Req,Rsp → (St(Re a)))

We coin the term reactive resumption to distinguish Re from R and use D
and P instead of “Done” and “Pause”, respectively. The notion of concurrency
provided by Re formalizes the process dialog example described above. A paused
Re-computation has the form P(q , r), where q is a request signal in Req and r ,
if provided with a response code from Rsp, is the rest of the computation. The
operations for Re are defined:

return = D
D v >>= f = f v
P (q , r) >>= f = P (q , λ rsp . (r rsp) >>=St λ κ . returnSt (κ >>= f ))

In this article, we use a particular definition of the request and response data
types Req and Rsp which correspond to the services provided by the operating
system (more will be said about the use of these in Section 5):

type Message = Int
type PID = Int
data Req = Cont | Sleepq | Forkq Process | Bcstq Message

| Rcvq |Vq | Pq | Prntq String
| PIDq |Killq PID

data Rsp = Ack | Rcvr Message | PIDr PID

Note that both Req and Rsp have Cont and Ack . The kernel in Section 5 will
use the response Ack for several different requests. Process is defined in the next
section.

Reactive resumption monads have two non-proper morphisms. The first, step,
recasts a stateful computation as a resumption computation3:

step : St a → Re a
step x = P (Cont , λAck . x >>=St (returnSt ◦ D))

The definition of step shows why we require that Req and Rsp have a par-
ticular shape including Cont and Ack , respectively; namely, there must be at
least one request/response pair for the definition of step. Another non-proper
morphism for Re allows a computation to raise a signal; its definition is:

sig : Req → Re Rsp
sig q = P(q , returnSt ◦ returnRe)

sigi : Req → Re ()
sigi q = P (q , λ . returnSt(returnRe ()))

Furthermore, there are certain cases where the response to a signal is intention-
ally ignored, for which we use sigi .
3 For R, step is defined similarly: step x = Pause(x>>=St(returnSt ◦Done)).



4 The Language of Threads

This section formulates an abstract syntax for kernel processes. Operating sys-
tems texts typically define threads as lightweight processes executed in the same
address space4. Events are abstract machine instructions—they read from and
write to locations and signal requests to the operating system. Processes are
infinite sequences of events, although it is straightforward to include finite (i.e.,
terminating) processes as well, but it suffices for our presentation to assume
non-terminating, infinite processes.

Process = Event ; Process
Event = Loc:=Exp | bcast(Exp) | recv(Loc) | print(String,Exp)

| sleep | fork(Process) | P | V | kill(Exp)
Exp = Int | Loc | pid

The Exp language is self-explanatory except for the pid expression that re-
turns the process identifier of the calling process. The Event language has a
simple assignment statement, l:=e, which evaluates its right-hand side, e∈Exp,
and stores it in the location, l∈Loc, on the left-hand side. The language includes
broadcast and receive primitives: bcast(e) and recv(l). The event bcast(e)
broadcasts the value of expression e, while recv(l) receives an available message
in location l . There is also a process spawning primitive, fork(p), producing a
child process p executing in the same address space. The language has a single
semaphore with test release operations, P and V. Finally, there is a process killing
primitive, kill(pid), that terminates the process with identifier pid (if such a
process exists). Where the language and its semantics differ from previous work
[22] is the inclusion of signals; that is, programs may request intervention from
the kernel.

Figure 1 defines expressions, events, and processes with E [[−]], A[[−]], and
P[[−]], respectively. In most respects, this is a conventional store passing se-
mantics in monadic form, the difference being that individual St actions (e.g.,
getloc x ) are lifted to Re via the step function. step creates an “atomic” action
out of a single St action, and A[[−]] “chains together” one or two such actions.
For example, A[[P]] is the single kernel signal (sigiPq), while A[[x:=e]] chains to-
gether “E [[e]]” and “store x” with >>=. The meaning of a process, P[[p]], is the
infinite “chaining-together” of its event chains. These semantics are similar to
published resumption-monadic language semantics [22] for CSP-like languages,
differing only in the inclusion of signals (i.e., requests made with with sig and
sigi to be handled by the kernel).

5 The Kernel

This section describes the structure and implementation of a kernel providing a
variety of services typical to an operating system. For the sake of comprehensi-
bility, we have intentionally made this kernel simple; the goal of the present work
4 We use the terms “thread” and “process” interchangeably throughout.



[l 7→v] : (Loc→Int)→Loc→Int

[l 7→i ] σ n =


i l = n
σ n l 6= n

store : Loc→Int→Re a
store l i = (step◦u) ([l 7→i ])

E [[−]] : Exp → Re Int
E [[i ]] = return i
E [[x ]] = step (getloc x )
E [[pid]] = sig PIDq >>= (return ◦ prj )

where prj (PIDr pid) = pid
P[[−]] : Process → Re ()
P[[e; p]] =A[[e]] >> P[[p]]

A[[−]] : Event → Re ()
A[[x:=e]] = E [[e]] >>= store x

A[[print(m,e)]] = E [[e]] >>= print
where

out m v = m++“ : ”++show v
print = sigi ◦Prntq ◦ (out m)

A[[sleep]] = sigi Sleepq

A[[fork(p)]] = sigi (Forkq p)
A[[bcast(x)]] = E [[x ]] >>= (sigi ◦ Bcstq)
A[[recv(x)]] = sig Rcvq >>= (store x ) ◦ prj

where prj (Rcvr m) = m
A[[P]] = sigi Pq

A[[V]] = sigi Vq

A[[kill(e)]] = E [[e]] >>= (sigi ◦ Killq)

Fig. 1. Semantics of Expressions, Events, and Processes. All monad operations belong
to the Re monad.

is to demonstrate how typical operating system services may be represented us-
ing resumption monads in a straightforward and compelling manner. It should
be clear, however, how more powerful or expressive operating system behaviors
may be captured as refinements to this system.

The structure of the kernel is given by the global system configuration and
two mutually recursive functions representing the scheduler and service han-
dler. The system configuration consists of a snapshot of the operating system
resources; these resources are a thread waiting list, a message buffer, a single
semaphore, an output channel, and a counter for generating new process identi-
fiers. The system configuration is specified by:

type System = ([(PID ,Re ())], — waiting list
[Message], — message buffer
Semaphore, — Semaphore=Int, 1 initially
String , — output channel
PID) — identifier counter

The first component is the waiting list consisting of a list of pairs: (pid , t). Here,
pid is the unique process identifier of thread t . The second component is a mes-
sage buffer where messages are assumed to be single integers and the buffer itself
is a list of messages. Threads may broadcast messages, resulting in an addition to
this buffer, or receive messages from this buffer if a message is available. There is
a single semaphore, and individual threads may acquire or release this lock. The
semaphore implementation here uses busy waiting, although one could readily
refine this system configuration to include a list of processes blocked waiting on
the semaphore. The fourth component is an output channel (merely a String)
and the fifth is a counter for generating process identifiers.



The types of a scheduler and service handler are:

sched : System → R ()
handler : System → (PID ,Re ())→ R ()

A sched morphism takes the system configuration (which includes the waiting
list), picks the next thread to be run, and calls the handler on that thread.
The sched and handler morphisms translate reactive computations—i.e., those
interacting threads typed in the Re monad present in the wait list—into a single,
interwoven scheduling typed in the basic R monad. The range in the typings of
sched and handler is R () precisely because the requested thread interactions
have been mediated by handler .

From the waiting list component of the system configuration, the scheduler
chooses the next thread to be serviced and passes it, along with the system con-
figuration, to the service handler. The service handler performs the requested
action and throws the remainder of the thread and the system configuration
(possibly updated reflecting the just-serviced request) back to sched. The sched-
uler/handler interaction converts reactive Re computations representing threads
into a single basic R computation representing a particular schedule.

There are many possible choices for scheduling algorithms—and, hence, many
possible instances of sched—but for our purposes, round robin scheduling suf-
fices:

rrobin : System → R ()
rrobin ([], , , , ) = Done () — stop when no threads
rrobin (((i , t) :: w),mq , s, o, g) = handler (w ,mq , s, o, g) (i , t)

The handler fits entirely in Figure 2. A call (handler sys (i ,P(q , r))) responds
to query q based on the contents of sys and follows the same pattern:

P (q, r) → Pause(〈St action〉 ; returnSt (rrobin sys′))

Here, the “〈St action〉” is a (possibly empty) St computation determined by
r and sys ′ is the System configuration reflecting changes to kernel resources
necessary to handling q . Each handler branch is discussed in detail below and
the labels (a.)-(l.) refer to lines within Figure 2.

Basic Operation. When handler encounters a thread which is completed (i.e.,
the thread is a computation of the form D ), it simply calls the scheduler with
the unchanged system configuration (a.). If the thread wishes to continue (i.e.,
it is of the form P(Cont , r)), then handler acknowledges the request by passing
Ack to r (b.). As a result, the first atom in r is scheduled, and the rest of the
thread (written next (i , κ) above) is passed to the scheduler.

Dynamic Scheduling. A thread may request suspension with the Sleepq signal
(c.); the handler changes the Sleepq request to a Cont and reschedules the thread.
The effect of this is to delay the thread by one scheduling cycle. An obvious
refinement of this service would include a counter field within the Sleepq request
and use this field to delay the thread through multiple cycles.



(a.)
(b.)

(c.)

(d.)

(e.)

(f.)

(g.)

(h.)

(i.)

(j.)

(k.)

(l.)

handler : System → (PID ,Re ())→ R ()
handler (w ,mq , s, o, g) (i , t) =
case t of

(D v) → rrobin (w ,mq , s, o, g)
(P(Cont , r)) → Pause (r Ack >>=St λκ. returnSt (next (i , κ))

where
next t = rrobin (w++[t ],mq , s, o, g)

(P(Sleepq , r)) → Pause (returnSt next)
where

next = rrobin (w++[(i ,P(Cont , r))],mq , s, o, g)
(P(Forkq p, r)) → Pause (returnSt next)

where
parent = (i , cont r Ack)
child = (g ,P[[p]])
next = rrobin (w++[parent , child ],mq , s, o, g + 1)

(P(Bcstq m, r)) → Pause (returnSt next)
where

next = rrobin (w++[(i , cont r Ack)],mq++[m], s, o, g)

(P(Rcvq , r)) | (mq == []) → Pause (returnSt next)
where

next = rrobin (w++[(i ,P(Rcvq , r))], [], s, o, g)
(P(Rcvq , r)) | otherwise → Pause (returnSt next)

where
next = rrobin (w++[(i , cont r (Rcvr m))],ms, s, o, g)
m = head mq
ms = tail mq

(P(Prntq msg , r)) → Pause (returnSt next)
where

next = rrobin (w++[(i ,P(Cont , r))],mq , s, o++msg , g)
(P(Pq , r)) → Pause (returnSt next)

where
next = if s > 0 then goahead else tryagain
goahead = rrobin (w++[(i ,P(Cont , r))],mq , s − 1, o, g)
tryagain = rrobin (w++[(i ,P(Pq , r))],mq , s, o, g)

(P(Vq , r)) → Pause (returnSt next)
where

next = rrobin (w++[(i , cont r Ack)],mq , s + 1, o, g)
(P(PIDq , r)) → Pause (returnSt next)

where
next = rrobin (w++[(i , cont r (PIDr i))],mq , s, o, g)

(P(Killq j , r)) → Pause (returnSt next)
where

next = rrobin (wl ′,mq , s, o, g)
wl ′ = filter (exit j ) (w++[(i , cont r Ack)])
exit i (pid , t) = pid /= i

cont : (Rsp → St (Re a)) → (Rsp → Re a)
cont r rsp = P (Cont , λAck . r rsp)

Fig. 2. The Request Handler



A thread may request to spawn a new thread (d.). The child process is
(g ,P[[p]]) for new identifier g . Then, both parent and child thread are added
back to the waiting list. We introduce the “continue” helper function, cont ,
that takes a partial thread, r , and a response code, rsp, and creates a thread
which receives and continues on the response code rsp. Another useful service
(á la Unix fork system call) would include a response Forkr Bool in Rsp to
distinguish child and parent processes.

Asynchronous Message Passing. For a thread to broadcast m (e.), the mes-
sage is simply appended to the message queue. When a Rcvq signal occurs and
the message queue is empty, then the thread must wait (f.) and so is put back on
the thread list. Note that, rather than busy-waiting for a message, the message
queue could contain a “blocked waiting list” for threads waiting for the arrival
of messages, and, in that scenario, the handler could wake a blocked process
whenever a message arrives. If there is a message m in the message queue, then
it is passed to the thread (g.).

Printing. When a print request (Prntq msg) is signaled (h.), then the string msg
is appended to the output channel out and the rest of the thread, P(Cont , r),
is passed to the scheduler. An alternative could use the “interactive output”
monad formulation for R: R A = µX . (A + (String×S X )) instead of encoding
the output channel as the string o.

Synchronization Primitives. Requesting the system semaphore (i.) will suc-
ceed if s > 0, in which case the requesting thread will continue with the semaphore
decremented; if 6> 0, the requesting thread will suspend. These possible out-
comes are bound to goahead and tryagain in the following handler clause, and
handler chooses between them based on the current value of s: Note that this
implementation uses busy waiting merely for simplicity’s sake. One could easily
implement more efficient strategies by including a queue of waiting threads with
the semaphore. A thread may release the semaphore (j.) without blocking. Note
this semaphore is general rather than binary, meaning that the counter s may
have as its value any non-negative integer rather than just 0 or 1.

Process Id Request. A thread may request its identifier i (k.), which is simply
passed to it in cont r (PIDr i).

Preemption. One thread may preempt another by sending it a kill signal rem-
iniscent of the Unix (kill -9) command; this is implemented by the handler
declaration at line (l.). Upon receiving the signal Killq j , the thread with pro-
cess identifier j (if one exists) is removed from the waiting list using the Haskell
built-in function filter : (a→Bool)→[a]→[a]. In a call (filter b l), filter returns
those elements of list l on which b is true (in order of their occurrence in l).

Time Behavior of >>=R and >>=Re . Because the bind operations for R and
Re are both O(n) in the size of their first arguments, one can write programs
that, through the careless use of the bind, end up with quadratic (or worse)
time complexity. Note, however, the kernel avoids this entirely by relying on
co-recursion in the definition of handler .



Executing the kernel. An R computation may be run by projecting it to St
with run : R a→St a defined by

run (Done v) = returnSt v run (Pause ϕ) = ϕ >>=St run

Running the kernel on initial processes p1, . . . , pn is accomplished with

run (rrobin ([P[[p1]], . . . ,P[[pn]]], [], 1, "", 0))

Sample executions are provided in the code base [13].

6 Conclusions

As of this writing, resumptions as a model of concurrency have been known for
thirty years and, in monadic form, for almost twenty. Yet, unlike other tech-
niques and structures from language theory (e.g., continuations, type systems,
etc.), resumptions have evidently never found wide-spread acceptance in pro-
gramming practice. This is a shame, because resumptions—especially in monadic
form—are a natural and beautiful organizing principle for concurrent applica-
tions: they capture exactly what one needs to write and think about multi-
tasking programs—and no more! Resumptions capture precisely the intuition
that threads are potentially infinite sequences of atoms interacting according
to some discipline. The framework presented here has been applied in a num-
ber of diverse settings and expresses a broad sampling of concurrent behaviors.
This is solid evidence that resumptions express the true essence and structure
of multitasking computation.

Although the kernel is, of necessity, simple, it does demonstrate both the
wide scope of concurrent behaviors expressible with resumption monads and
the ease with which such behaviors may be expressed. To be sure, more effi-
cient implementations and realistic features may be devised (e.g., by eliminat-
ing busy-waiting). As each of the three monads may be generalized as monad
transformers, instances of this kernel inherit the software engineering benefits of
monad transformers that one would expect—namely, modularity, extensibility,
and reusability. Such kernel instances may be extended by either application of
additional monad transformers or through refinements to the resumption monad
transformers themselves. Such refinements are typically straightforward; to add
a new service to the kernel of Section 5, for example, one merely extends the
Req and Rsp types with a new request and response and adds a corresponding
handler definition. The kernel in Section 5 may, in fact, be viewed as the result
of multiple extensions to a core “basic operation” kernel (i.e., one having only a
Cont request).

The framework developed here has been applied to such seemingly diverse
purposes as language-based security [15] and bioinformatics [14]; each of these
applications is an instance of this framework. The difference is evident in the
request and response data types Req and Rsp. Consider the subject of [14], which
is the formal modeling of the life cycles of autonomous, intercommunicating
cellular systems using domain-specific programming languages. Each cell has
some collection of possible actions describing its behavior with respect to itself



and its environment. The actions of the photosynthetic bacterium Rhodobacter
Sphaeroides are reflected in the request and response types:

data Req = Cont |Divide |Die | Sleep |Grow |LightConcentration
data Rsp = Ack | LightConcRsp Float

Each cell may undergo physiological change (e.g., cell division) or react to its
immediate environment (e.g., to the concentration of light in its immediate vicin-
ity). The kernel instance here also maintains the physical integrity of the model.

The kernel presented here confronts many “impurities” considered difficult to
accommodate within a pure, functional setting—concurrency, state, and i/o—
which are all members of the so-called “Awkward Squad” [24]. In Haskell, these
real world impurities are swept, in the memorably colorful words of Simon Pey-
ton Jones, into a “giant sin-bin” called the IO monad5. But is IO truly a monad
(i.e., does it obey the monad laws)? All of these impurities have been handled in-
dividually via various monadic constructions (consider the manifestly incomplete
list [21, 26]) and the current approach combines some of these constructions into
a single monad. While it is not the intention of the current work to model the
awkward squad as it occurs in Haskell, the techniques and structures presented
here point the way towards such models.
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