
Hardware Synthesis from Functional Embedded
Domain-Specific Languages?

A Case Study in Regular Expression Compilation

Ian Graves1, Adam Procter1, William L. Harrison1, Michela Becchi2, and
Gerard Allwein3

1 Department of CS, University of Missouri, Columbia, Missouri, USA
2 Department of ECE, University of Missouri, Columbia, Missouri, USA

3 US Naval Research Laboratory, Code 5543, Washington, DC, USA

Abstract. Although FPGAs have the potential to bring software-like
flexibility and agility to the hardware world, designing for FPGAs re-
mains a difficult task divorced from standard software engineering norms.
A better programming flow would go far towards realizing the potential of
widely deployed, programmable hardware. We propose a general method-
ology based on domain specific languages embedded in the functional
language Haskell to bridge the gap between high level abstractions that
support programmer productivity and the need for high performance
in FPGA circuit implementations. We illustrate this methodology with
a framework for regular expression to hardware compilers, written in
Haskell, that supports high programmer productivity while producing
circuits whose performance matches and, indeed, exceeds that of a state
of the art, hand-optimized VHDL-based tool. For example, after apply-
ing a novel optimization pass, throughput increased an average of 28.3%
over the state of the art tool for one set of benchmarks. All code discussed
in the paper is available online [1].

1 Introduction

FPGAs are notably difficult to program and this has motivated research into
high-level synthesis (HLS) from high level programming languages and, in par-
ticular, from domain-specific languages [2]. This language-based approach is at-
tractive because of its potential to make hardware engineering more like software
engineering with its support for modularity, reuse, and abstraction, and thereby
create a wider group of developers for programmable hardware. This paper de-
scribes a methodology for deriving performant hardware implementations di-
rectly from high-level functional embedded domain-specific languages (EDSL).

This work makes the following contributions. We present ReWire [3],
a subset of the Haskell functional language as a compiler target for compiling

? This research was supported by the Office of the Assistant Secretary of Defense
for Research and Engineering, the U.S. Department of Education under GAANN
grant number P200A100053, NSF CAREER Award 00017806, and NSF award CNS-
1319748.

2 I. Graves, A. Procter, W.L. Harrison, M. Becchi, and G. Allwein

domain-specific languages to FPGAs. We show that ReWire can be effectively
used as a compiler target because it supports the compilation of large input
programs (over 100K LOC) and can generate competitively fast hardware im-
plementations versus state of the art, domain-specific tools.

These contributions comprise a methodology supporting the “three P’s” [4]
for programming reconfigurable hardware: productivity, performance and porta-
bility. DSLs address the first two P’s directly because domain specialization sup-
ports programmer productivity and, furthermore, allows aggressive optimization
of domain-specific idioms. Portability is achieved by using ReWire, a retargetable
language for specifying hardware devices.

New language constructs raise issues with respect to performance. Is there a
performance price to be paid and, if so, is the increased expressiveness worth it?
Does the increased expressiveness enable better performance and programmer
productivity? In light of these questions, we evaluate our methodology via two
case studies. The case studies presented here consider a purely functional frame-
work for REHC construction, called RexHacc (for “Regular EXpression HArd-
ware compiler-compiler”). RexHacc is an EDSL-structured compiler-compiler,
implemented in Haskell, for Perl-compatible regular expressions (PCRE) similar
to those seen in popular intrusion detection systems (e.g., Snort [5]).

Problem
Domain

… ReWire VHDLEDSL 1 EDSL n

Fig. 1. FP Methodology for HLS

Overview of Methodology. The
methodology factors the problem of HLS
into a series of translations between ED-
SLs. An EDSL is a domain-specific lan-
guage that is defined as a collection
of constructs within an existing high
level language. The methodology is il-
lustrated in the inset figure. A problem
domain can be realized as a DSL embedded in Haskell. DSL cross-compilers tar-
geting ReWire enable synthesis onto an FPGA via the ReWire compiler. Sec. 2
presents a more in-depth discussion of our methodology.

The case studies involve regular expression to hardware compilation (see
Fig. 2) in which we generate artifacts that perform as well as and often better
than state of the art approaches. The case studies reported here consider the
problem domain of regular expression to hardware compilers (REHC) [6]. Fol-
lowing Fig. 1, we developed a reusable and modular framework for REHC called
RexHacc and demonstrated that circuits produced with it meet or exceed the
performance of state-of-the-art REHC.

The RexHacc Framework. We performed an experiment in which we com-
pared RexHacc to the performance of the state-of-the-art REHC of Becchi and
Crowley [7] (henceforth reg2vhdl) against its own benchmarks. The goal is to
demonstrate both the productivity gain and high performance achievable via our
methodology in the construction and testing of compilers generated by RexHacc.
The presentation here is deliberately high-level. We suppress the definitions of
functions and data types; the code is online [1].

Hardware Synthesis from Functional Embedded Domain-Specific Languages 3

Perl-
Compa+ble-
Regular-

Expressions-

Finite-
Automaton1-

Finite-
Automatonn-

…-

RexHacc-Framework-

ReWire-

ReWire-Compiler-

VHDL-

Fig. 2. Combining the ease of use of traditional EDSLs with the power and run-time
performance of a virtualized language.

The entry point for RexHacc is the function rexhacc with Haskell type:

rexhacc :: (NFA a -> NFA a) -> RegEx a -> ReWire

The declaration form “::” is pronounced “has type”. The function rexhacc
takes two inputs, an optimization function (of type NFA a -> NFA a) as well
as a regular expression (of type RegEx a). The type NFA a (resp., RegEx a)
represents non-deterministic finite automata (resp., regular expressions) over an
alphabet of type a. A regular expression compiler is generated with RexHacc by
applying the top-level rexhacc function to an optimization pass, opt:

compiler :: RegEx a -> ReWire
(‡) compiler = rexhacc opt

where opt = (o1 . · · · . on)

Each oi is an optimization pass of functional type NFA a -> NFA a, all of
which are composed using Haskell’s function composition operator (i.e., the infix
“.”) into a single pass. This composition corresponds to the middle box in Fig. 2
and each oi is a phase inside that box. The generated compiler takes a regular
expression over an alphabet of type a and converts it into an NFA a, which is
then fed to the optimization pass opt. The optimization pass produces an NFA a
from which ReWire code is generated. The ReWire output from this compiler
can either be translated into VHDL by the ReWire compiler or executed as
software in any standard Haskell environment.

Summary of Case Study Results. Secs. 4 and 5 each describe the def-
inition of an REHC in the RexHacc framework. Each case study was tested
against reg2vhdl using existing test suites [7] with respect to standard metrics
for circuit size, clock speed and throughput (see Fig. 3). The first case study
(Sec. 4) implements the same optimization passes as reg2vhdl, and it was
clear that this compiler generally matched or exceeded the performance of the
hand-optimized compiler reg2vhdl with a tiny increase in circuit size. It was
observed that one of the benchmarks (tcp25) seemed to be particularly chal-
lenging for both the first case study compiler and reg2vhdl with respect to
throughput. This observation motivated the second case study (Sec. 5), which
improves on the first with an (apparently novel) optimization pass that results
in better performance than reg2vhdl on the tcp25 benchmark.

4 I. Graves, A. Procter, W.L. Harrison, M. Becchi, and G. Allwein

1675reg2vhdl

1675RexHacc Case Study 1k=1
2538RexHacc Case Study 2

2853reg2vhdl

2503RexHacc Case Study 1k=2
3287RexHacc Case Study 2

4137reg2vhdl

4282RexHacc Case Study 1k=4
4940RexHacc Case Study 2

0 1000 2000 3000 4000 5000

Maximum Throughput (Mbit/sec)

Fig. 3. Maximum throughput for the tcp25 benchmark, comparing reg2vhdl and the
RexHacc case study compilers (Secs. 4 and 5). Parameter k indicates stride length
(Sec. 4). Case study 2 shows an average of 28.3% throughput increase over reg2vhdl.

2 A Methodology for Synthesis from Functional EDSLs

Synthesis from pure functional languages (e.g., Haskell, www.haskell.org) is
appealing because combinational hardware is functional in nature, functional
languages have powerful features supporting programmer productivity (e.g.,
modularity, expressive data types, static type inference, etc.), and the absence
of side effects (e.g., destructive update) simplifies synthesis. But general pur-
pose functional languages also contain a number of features that cannot be
represented in hardware (e.g., general recursion and garbage collection) and this
makes HLS directly from existing functional languages more challenging.

ReWire [3] is a proper sublanguage of Haskell—i.e., any ReWire program is
a Haskell program, but not all Haskell programs are ReWire programs. ReWire
programs, in contrast with general purpose functional languages like Haskell, are
always synthesizable to hardware. ReWire restricts Haskell by disallowing the use
of higher-order functions and general recursion at runtime (though techniques
like partial evaluation may enable their use at compile time). RexHacc uses the
ReWire hardware compiler as a back-end for producing VHDL implementations.

Front End. The RexHacc compilation process begins with a collection of regular
expressions written in Perl-compatible regular expression (PCRE) syntax. We
use the parser combinator library Parsec in Haskell to parse the regular expres-
sions in the source file. The regular expression is converted to the NFA type via
a textbook translation of regular expressions to NFAs [8]. The resulting NFA is
passed to the optimization portion of the compilation chain.

Simulating Circuits in Haskell. Because ReWire is a sublanguage of Haskell,
we can execute ReWire code as software in any Haskell environment with a test
harness for executing reactive resumptions. The implementation of rexhaccwas
tested and debugged using a test harness in Haskell which is included in the code
base [1].

Hardware Synthesis from Functional Embedded Domain-Specific Languages 5

a

d

a

2

3
1

Is ‘a’ Is ‘d’

1 2
3

True

Character Input

Output

Fig. 4. An NFA and its corresponding Sidhu and Prasanna-style implementation.

3 Related Work

The conversion of sets of regular expressions into NFAs is a well-known proce-
dure [8]. Sidhu and Prasanna [6] have proposed an efficient FPGA implementa-
tion of NFAs. Their solution is based on the one-hot encoding scheme; the use
of an NFA representation avoids the O(2n) space complexity that is characteris-
tic of DFA (deterministic finite automata) representations, typically adopted in
memory-based regular expression matching implementations [9–12]. Subsequent
efforts on FPGA [13, 7, 14, 15] have refined Sidhu and Prasanna’s implementation
and achieved gigabit/sec processing throughputs on real-world pattern sets.

There are a number of efforts to apply ideas and techniques from functional
programming to hardware design and synthesis. Arvind [16] describes the Blue-
spec synthesis language as “a relatively simple DSL (GAAs [Guarded Atomic
Actions] and modules) with a fully functioning Haskell-like meta programming
layer on top.” The methodology advocated here employs metaprogramming as
well, in that ReWire programs (which are also Haskell programs) are ultimately
produced by the rexhacc function. Within the Haskell community, perhaps the
most well known system for hardware synthesis is Lava [17]. Lava is a domain-
specific language for hardware specification embedded in Haskell. Primitives in
Lava are essentially structural and specify circuits at the level of signals. ReWire,
by contrast, compiles a subset of Haskell itself to hardware circuits, and relies on
an abstract set of behavioral primitives. The primary motivation for developing
ReWire is as a vehicle for the design, implementation, and formal verification of
high assurance hardware.

Cλash [18], is a compiler for a subset of Haskell to VHDL. Like ReWire,
Cλash uses Haskell itself as a source language. Cλash requires some limits be
placed on the kinds of algebraic data types used as well as the basic operating
types. ForSyDe is a platform to compile models of hardware written in Haskell to
circuitry [19]. This paper demonstrates that the ReWire compiler works at scale
as the generated ReWire programs are on the order of 100K LOC. Great care
was taken in the design of ReWire so that it possesses a rigorous denotational
semantics to support formal verification while maintaining synthesizability for
all of its programs [20].

The Delite DSL compiler framework [4] seeks to address the “three P’s”
with respect to implementing software on parallel, heterogeneous systems. Delite
addresses portability (i.e., retargetability of DSL compilers to a broad range of

6 I. Graves, A. Procter, W.L. Harrison, M. Becchi, and G. Allwein

parallel hardware) through language virtualization. ReWire is also a virtualized
DSL in that it has a separate compiler backend for producing FPGA-based
implementations while reusing large parts of its host language’s infrastructure—
including Haskell’s type system, front end, etc. In George, et al., [2], the Delite
framework is adapted to the generation of hardware from DSLs, specifically the
hardware acceleration of kernels in a heterogeneous setting.

4 Case Study 1: Matching State of the Art

We undertake the construction of a tool equivalent in functionality to the state
of the art [7] (reg2vhdl) and to examine the feasibility of duplicating this func-
tionality with our approach. The purpose of this case study is to demonstrate
the ease with which such a tool can be constructed. The optimizations were cho-
sen to match those of Becchi and Crowley [7] and include head zipping, striding,
alphabet compression, and epsilon elimination. These results indicate that the
rexhacc-based compiler compares favorably to and often surpasses reg2vhdl
where throughput is concerned, and area utilization is similarly competitive.
Each optimization phase was implemented in a few dozen lines of Haskell code;
this is a rough indication that the amount of programmer effort required is small.

– Head zipping. Head zipping is a transformation that merges outbound tran-
sitions from a state that have the same transition labels. Nodes with more
than one inbound transition are not head zipped because this would result
in a non-equivalent NFA. Head zipping is performed by merging the desti-
nation nodes of the matching transitions into one node that includes all of
the outbound transitions from the merged nodes.

– Striding. Striding is an optimization pass that doubles the number of charac-
ters an NFA matches at each transition. Striding traverses the graph’s edges
and looking two transitions ahead from each state, converts two-transition
sequences to a single transition consuming two characters.

– Alphabet compression. Alphabet compression is a technique that increases
sharing of logic by exploiting the identical treatment of different characters
by an NFA. If two characters always result in the same transitions between
all states, then these characters are compressed into one character class.

– Epsilon elimination. Eliminating ε-transitions reduces the complexity and
size of NFAs and simplifies code generation. NFAs with ε-transitions allow
state transitions without consuming input. States connected to an NFA solely
by ε-transitions can be eliminated. Eliminating unnecessary states reduces
the number of flip flops required to implement the NFA on an FPGA. A
textbook ε-elimination algorithm is used [8].

Experiments and Evaluation. To test the performance of RexHacc, we se-
lected three benchmark sets of regular expressions from the literature [9, 7].
Snort24 is a set of 24 regular expressions drawn from the Snort network in-
trusion detection system [5]. Tcp25 is a set of 79 regular expressions designed

Hardware Synthesis from Functional Embedded Domain-Specific Languages 7

0	
 500	
 1000	
 1500	
 2000	
 2500	
 3000	

snort24	
 (k=1)	

snort24	
 (k=2)	

snort24	
 (k=4)	

bro217	
 (k=1)	

bro217	
 (k=2)	

bro217	
 (k=4)	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

(a)	
 #	
 Logic	
 Slices	

r2v	

RexHacc	

0	
 500	
 1000	
 1500	
 2000	
 2500	
 3000	
 3500	
 4000	
 4500	
 5000	

snort24	
 (k=1)	

snort24	
 (k=2)	

snort24	
 (k=4)	

bro217	
 (k=1)	

bro217	
 (k=2)	

bro217	
 (k=4)	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

(b)	
 #LUTs	

r2v	

RexHacc	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	

snort24	
 (k=1)	

snort24	
 (k=2)	

snort24	
 (k=4)	

bro217	
 (k=1)	

bro217	
 (k=2)	

bro217	
 (k=4)	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

(c)	
 Throughput	
 (Mbit/sec)	

r2v	

RexHacc	

Fig. 5. Performance comparisons of RexHacc to reg2vhdl tool (here, “r2v”).

to match malicious SMTP traffic, also drawn from the Snort NIDS. Bro217 is
a set of 217 regular expressions drawn from the Bro NIDS [21]. Matchers for
each of these benchmarks were generated using reg2vhdl, as well as RexHacc.
Each benchmark was tested at stride lengths k = 1, k = 2, and k = 4, producing
circuits that consume input streams at one, two, and four bytes per clock cycle.
The resulting VHDL was then synthesized using Xilinx’s XST synthesis tool for
the Xilinx Spartan-3E X3CS500E FPGA, speed grade -4. The synthesis tools
are optimized for speed. The frequencies that we list are synthesis estimates.

Fig. 5 compares the resulting circuits in terms of three performance metrics:
(a) logic slice utilization, (b) LUT utilization, and (c) maximum throughput
as measured in megabits per second. (Flip flop utilization was extremely close
between the two tools and thus is not shown.) RexHacc compares favorably with
reg2vhdl on virtually all fronts.

Throughput. RexHacc matches or exceeds reg2vhdl’s total throughput for all
but one of the nine benchmarks. In the best case (benchmark bro217, k =
1) throughput is around 60% higher. In the worst case (benchmark tcp25,
k = 2) throughput is around 13% lower. Both tools, in all cases, are capable of
processing input at a rate of more than 1 Gbit/sec. In the best case, RexHacc
is capable of handling input rates up to 7.5 Gbit/sec on a Xilinx Spartan-3E

8 I. Graves, A. Procter, W.L. Harrison, M. Becchi, and G. Allwein

FPGA at a relatively low clock rate. Tests on a Xilinx 7-series platform (not
presented here, but available online [1]) indicate that throughputs of up to 25
Gbit/sec are achievable with a more modern FPGA.

Logic utilization. With the exception of the single-strided (k = 1) benchmarks,
LUT utilization for RexHacc-generated circuits ranged from 88% to 116% of
their reg2vhdl counterparts. In the specific case where k = 1, RexHacc tends
to produce circuits with higher LUT counts (up to 219% higher), suggesting
that the combinational next-state logic produced by the RexHacc code generator
is more complicated for these circuits. For all benchmarks, flip flop utilization
for RexHacc was close to, but slightly higher than, the results generated by
reg2vhdl. This is not surprising since each state in the NFA is represented by
a single flip flop, and both tools tend to generate similar numbers of NFA states.
RexHacc, however, pays a small penalty here, because it generates output signals
synchronously, storing them in flip flops, while reg2vhdl does not. Please note,
however, that the choice of synchronous outputs rather than asynchronous ones
is optional in the most recent version of ReWire.

The results exhibited here suggest that the case study compiler is competitive
with the state of the art. The extra flexibility of the modular, purely functional
design does not come at a prohibitive cost in terms of circuit size, and indeed
brings substantial benefits with respect to throughput.

5 Case Study 2: Surpassing State of the Art

In this case study, we demonstrate the agility of the RexHacc approach by iden-
tifying an opportunity for an optimization, and rapidly implementing that opti-
mization as a compiler phase in RexHacc. The modular nature of RexHacc made
it easy both to identify a key performance bottleneck, and to implement a new
optimization pass to address it.

Identifying the bottleneck. While conducting the experiments of Sec. 5, we no-
ticed that one of the benchmarks, tcp25, stood out for its relatively low max-
imum throughput when processed by RexHacc as well as by reg2vhdl. While
striding enabled our compiler to produce circuits with maximum throughput in
excess of 6 Gbit/sec for snort24 and bro217, maximum throughput for tcp25
just barely exceeded 4 Gbit/sec. The throughput advantage over reg2vhdl ob-
served for snort24 and bro217 was essentially nonexistent for tcp25.

To explore the reasons for this, we instrumented our compiler pipeline by
using the Haskell Functional Graph Library’s built-in support for generating
graph visualizations via GraphViz (www.graphviz.org). We observed that the
tcp25 NFA exhibited a structural feature that was not present in the snort24
and bro217 NFAs. Specifically, the tcp25 NFA contained one state that had
a large number of inbound transitions. A simplified example of this problem is
exhibited in Fig. 6 (left), where state 9 has eight inbound transitions. A large

Hardware Synthesis from Functional Embedded Domain-Specific Languages 9

� �

�

���

�

���

�

���

�

���

�

���

�

���

�

���

�

���

�

��� ��� ��� ��� ��� ��� ��� ���

� �

�

���

�

���

�

���

�

���

�

���

�

���

�

���

�

���

��

��� ���

��

��� ���

��

��� ���

�

��� ���

Fig. 6. NFA for (a|b|c|d|e|f |g|h)z, before state splitting (left) and after (right).

number of inbound transitions emerges when the source regular expression con-
tains a long chain of choice operators. This pattern is not uncommon in packet
inspection rulesets (e.g., consider a long chain of alternative filenames followed
by the common suffix “.exe”).

In the circuit implementation the inbound transitions translate to a large fan-
in of signals that must be ORed together to determine whether to activate that
state. As the size of this fan-in grows large, the combinational logic involved be-
gins to dominate the critical path of the circuit. The result is a sharp reduction in
maximum operating clock frequency, and therefore throughput. This suggested
an opportunity for optimization: namely, to transform the NFA in such a way
as to reduce the number of inbound transitions to heavily-loaded states.

State Splitting Optimization. To address the performance bottleneck, we ex-
tended the compiler of Sec. 4 with an optimization called state splitting. Suppose
we have in our NFA a state s with inbound transitions e1, · · · , en, and assume
without loss of generality that s has no self-loops. Observe that we can produce
an equivalent NFA by “splitting” s in two: that is, introducing a new state (call
it s′), and reassigning half of the inbound transitions (say, e1, · · · , edn/2e) to s′

instead of s. State splitting works by applying this transformation to each node
whose indegree exceeds a certain fixed threshold t. Fig. 6 (right) illustrates the
results of applying state splitting to the NFA for t = 2. N.b., the maximum
indegree has been reduced from 8 to 2 in this example.

The reader may note that this optimization may have the effect of increasing
the number of inbound transitions for successor states of split nodes. This is
generally not a problem for two reasons: first, as long as state splitting succeeds
in reducing the maximum indegree, it is likely to pay off even if some states
see their number of inbound transitions increased. Second, state splitting may
be iterated; if the splitting of state s1 results in state s2 exceeding the split
threshold, s2 itself may be split.

The full code for the state-splitting optimization, consisting of 17 lines of
code, is given as the splitStates function in the code base [1]. We can insert
the state-splitting into the optimization pipeline simply by adding an extra phase
to the rexhacc call; this is an instance of (‡) from Sec. 1:

10 I. Graves, A. Procter, W.L. Harrison, M. Becchi, and G. Allwein

0	
 500	
 1000	
 1500	
 2000	
 2500	
 3000	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

#	
 Logic	
 Slices	

r2v	

RexHacc	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

#LUTs	

r2v	

RexHacc	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	

tcp25	
 (k=1)	

tcp25	
 (k=2)	

tcp25	
 (k=4)	

Throughput	
 (Mbit/sec)	

r2v	

RexHacc	

Fig. 7. Comparisons of RexHacc with state splitting enabled to reg2vhdl (here,
“r2v”) tool.

6 Conclusions and Future Work

This research is a substantial case study utilizing the ReWire compiler at scale.
ReWire is a subset of Haskell limited in expressive power to ensure the synthesiz-
ability of every ReWire program. There is a potential drawback to such restric-
tions: it excludes many powerful functional programming idioms. In spite of this
potential drawback, we demonstrate that ReWire maintains sufficient expressive-
ness to support the design and implementation of high level DSLs for specifying
fast hardware accelerators. Future work aims to improve the resource usage of
ReWire-generated devices by optimizing ReWire’s code generation stages.

The methodology leverages the intrinsic power of Haskell and functional pro-
gramming. RexHacc is modular and customizable in the sense that optimization
passes can be easily added and removed. Because the ordering of passes is ex-
posed as function composition in Haskell, experimentation with optimization
ordering is enabled. A RexHacc-generated compiler can be instrumented in a
straightforward manner as we did with GraphViz and take advantage of existing
external Haskell tools.

Hardware Synthesis from Functional Embedded Domain-Specific Languages 11

The flexibility of the RexHacc framework derives from the cross-compilation
to ReWire and the ability of ReWire to generate VHDL synthesizable to effi-
cient circuits. The methodology we have introduced lowers the barrier to entry
for reconfigurable computing for functional programmers. At the same time, it
provides an opportunity for hardware designers to leverage the power of the
functional paradigm to improve productivity. The choice of a purely functional
language does not come at a performance cost: our benchmarking demonstrates
that we match or exceed the performance of a state-of-the-art hand-tuned com-
piler for a number of real-world tests.

The two research directions we are pursuing have to do with increasing
the expressiveness of the type system to support metaprogramming and hard-
ware security. The current methodology is based on metaprogramming (i.e.,
ReWire/Haskell programs are generated by Haskell programs) and there are
type systems for staged programming (e.g., MetaML [22]) that we believe will
improve programmer productivity further while automatically enforcing type
safety. We developed a type system for enforcing fault isolation on ReWire [23]
and we are currently extending to information flow security.

7 Acknowledgments

The authors would like to thank Jason Agron of Intel Corporation and David
Andrews of the University of Arkansas for their helpful feedback.

References

1. Graves, I., Procter, A., Harrison, W.L., Becchi, M., Allwein, G.: ARC 15 Code
Base. http://goo.gl/efJ6SO

2. George, N., Lee, H., Novo, D., Rompf, T., Brown, K., Sujeeth, A., Odersky, M.,
Olukotun, K., Ienne, P.: Hardware system synthesis from domain-specific lan-
guages. In: Proc. of 24th Int. Conf. on Field Prog. Logic and App. (FPL ’14).

3. Procter, A., Harrison, W., Graves, I., Becchi, M., Allwein, G.: Semantics-directed
machine architecture in ReWire. In: 2013 Int. Conf. on Field Programmable Tech-
nology (FPT ’13). 446–449

4. Lee, H., Brown, K., Sujeeth, A., Chafi, H., Rompf, T., Odersky, M., Olukotun,
K.: Implementing domain-specific languages for heterogeneous parallel computing.
IEEE Micro 31(5) (September 2011) 42–53

5. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proc. of the
13th USENIX Conf. on System Administration. LISA ’99 (1999) 229–238

6. Sidhu, R., Prasanna, V.K.: Fast regular expression matching using FPGAs. In:
Proc. of the the 9th Annual IEEE Symp. on Field-Programmable Custom Com-
puting Machines. (2001) 227–238

7. Becchi, M., Crowley, P.: Efficient regular expression evaluation: theory to prac-
tice. In: Proc. of the 4th ACM/IEEE Symp. on Architectures for Networking and
Communications Systems, ACM (2008) 50–59

8. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley (2006)

12 I. Graves, A. Procter, W.L. Harrison, M. Becchi, and G. Allwein

9. Becchi, M., Crowley, P.: An improved algorithm to accelerate regular expression
evaluation. In: Proc. of the 2007 ACM/IEEE Symp. on Architecture for Networking
and Communications Sys. 145–154

10. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to
accelerate multiple regular expressions matching for deep packet inspection. In:
Proc. of the 2006 Conf. on Applications, Technologies, Architectures, and Protocols
for Computer Communications. SIGCOMM ’06 (2006) 339–350

11. Brodie, B.C., Taylor, D.E., Cytron, R.K.: A scalable architecture for high-
throughput regular-expression pattern matching. In: 2006 ISCA. 191–202

12. Becchi, M., Crowley, P.: A hybrid finite automaton for practical deep packet
inspection. In: Proc. of the 2007 ACM CoNEXT Conf. 1–12

13. Mitra, A., Najjar, W., Bhuyan, L.: Compiling PCRE to FPGA for accelerating
SNORT IDS. In: Proc. of the 2007 ACM/IEEE Symp. on Architecture for Net-
working and Communications Sys. 127–136

14. Sourdis, I., Bispo, J.a., Cardoso, J.a.M., Vassiliadis, S.: Regular expression match-
ing in reconfigurable hardware. J. Signal Process. Syst. 51(1) (April 2008) 99–121

15. Yang, Y.H.E., Jiang, W., Prasanna, V.K.: Compact architecture for high-
throughput regular expression matching on fpga. In: Proc. of the 2008 ACM/IEEE
Symp. on Architectures for Networking and Communications Sys. 30–39

16. Arvind: Bluespec and haskell. In: Proc. 1st Ann. Workshop on Fun. Prog. Concepts
in Domain-specific Languages. (2013) 1–2

17. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware design in Haskell.
In: 3rd ICFP. (1998) 174–184

18. Baaij, C., Kuper, J.: Using rewriting to synthesize functional languages to digital
circuits. In: Trends in Fun. Prog. Volume 8322 of LNCS. (2014) 17–33

19. Sander, I., Jantsch, A.: System modeling and transformational design refinement
in ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 23(1) (2004) 17–32

20. Procter, A.: Semantics-Driven Design and Implementation of High-Assurance
Hardware. PhD thesis, Univeristy of Missouri, 2014. Department of Computer
Science. (2014)

21. Paxson, V.: Bro: A system for detecting network intruders in real-time. In: Proc.
of the 1998 Conf. on USENIX Security Symp. 3–3

22. Taha, W., Sheard, T.: Metaml and multi-stage programming with explicit anno-
tations. Theoretical Computer Science 248(1) (2000) 211 – 242

23. Harrison, W.L., Procter, A., Allwein, G.: The confinement problem in the presence
of faults. In: Proc. 14th ICFEM. (2012) 182–197

