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Abstract—High-level synthesis (HLS) research generally fo-
cuses on transferring “software engineering virtues” (e.g., modu-
larity, abstraction, extensibility, etc.) to hardware development
with the ultimate goal of making hardware development as
agile as software development. And recent HLS research has
focused on transferring ideas and techniques from high assurance
software formal methods to hardware development. Just as it
has introduced software engineering virtues, we believe HLS can
also become a vector for adapting software formal methods to
the challenge of high assurance security in hardware. This paper
introduces the Device Calculus and its mechanization in the Agda
proof checking system. The Device Calculus is a starting point for
exploring the formal methods and security of high-level synthesis
flows. We illustrate the Device Calculus with a number of
examples of formally verifiable security templates—i.e., functions
in the Device Calculus that express common security structures
at a high-level of abstraction.

Index Terms—High Level Synthesis, High Assurance, Security,
Type Systems, Proof Checking

I. INTRODUCTION

High-level synthesis (HLS) is usually motivated as a means
for addressing the “programmability problem” in reconfig-
urable technology [1] by giving hardware designers software-
like language abstractions and tools to achieve higher levels
of productivity. More recently, HLS has been pursued as
an avenue for producing high assurance hardware [2]–[4].
That is, by adopting ideas from software formal methods,
the correctness, safety, and security of hardware designs can
be formally analyzed and verified. But HLS abstractions
come with a price. High-level abstractions in HLS flows
must ultimately be translated to low-level HDLs, and this
compilation process itself introduces a new source of assurance
concerns. How do we know that an HLS hardware design is
implemented faithfully by its compiler? If we prove a property
of an HLS hardware design, how do we know that the circuit
implementing it also possesses that property? Has the HLS
compilation process itself introduced security flaws that may
be exploited by an adversary?

Answering these kinds of questions requires formally ver-
ifying an HLS flow and there are prerequisites to doing
so: both the HLS source and target languages must possess
rigorous mathematical semantics; and these semantic spec-
ification(s) must be formalized in verification systems like
Coq and Agda. Formal verification of software compilers is a
well-established area within programming languages research
that has, of late, enjoyed considerable success with realistic
compilers [5]. Compiler verification involves proving that,

for a source program p, the meaning of p according to the
source semantics can be related to the target semantics of the
compiled code for p. As with the case of software compiler
verification, both the HLS source and target languages must
be compared within a suitable semantic framework if the HLS
flow is to be verified. The formal semantics of commodity
HDLs like VHDL and Verilog is a known challenge [6]
and so the choice of target language is also an important
consideration. To achieve the highest levels of assurance,
proofs of correctness, safety, and security properties should
be developed and checked mechanically by an automated tools
like Coq and Agda; mechanizing the HLS source and target
semantics is, therefore, a prerequisite.

This article reports work-in-progress towards formal verifi-
cation for a particular HLS flow called ReWire. Prior research
has demonstrated ReWire’s application to the development of
high assurance hardware [4]This article focuses on one piece
of this larger verification agenda: the development of a suitable
mechanized semantic framework for the ReWire HLS flow that
we call the Device Calculus. The Device Calculus is, in effect,
a formalization of Mealy machines in the Agda proof assistant.
The Device Calculus is a variety of λ-calculus with special
operators for building Mealy machines and composing Mealy
machines from existing ones. Rather than presenting a com-
plete specification of the Device Calculus, we illustrate it with
examples of verifiable security templates. These templates are
functions that take Mealy machines as arguments and create
composite devices with verifiable security properties. The
technical details in this article have been kept to a minimum
to enhance its readability for a larger audience. Follow-on
publications will present the Device Calculus in precise detail.
All Agda code presented here is available upon request.

The rest of this section presents related work. Section II
introduces the Device Calculus and its mechanization in
Agda. Section III presents a number of examples of security
templates for hardware formulated in the Device Calculus.
Section IV considers future work and concludes.

Related Work: The ReWire functional hardware description
language is intended as a tool for producing high assur-
ance hardware. ReWire is a subset of the Haskell functional
programming language: every ReWire program is a Haskell
program, but not necessarily vice versa. Previous work has
described the design and implementation of ReWire [7] and
its support for formal verification of reconfigurable hardware
designs [4], [7]. Haskell was chosen as a host language for
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record Mealy (i : Set) (s : Set) (o : Set) : Set
where
coinductive
field mhead : i → s → (i × s × s × o)

mtail : i → s → Mealy i s o

Figure 1: Mealy Machines are the usual design model for
sequential circuits.

ReWire because Haskell is a pure functional language and,
hence, amenable to formal methods itself.

One inherent challenge to mechanized reasoning (i.e., that
performed with an automated proof tool like Agda) about hard-
ware languages is that hardware devices are non-terminating
by design and this non-termination must be represented one
way or another. Reasoning (mechanical or otherwise) about
infinite systems frequently involves a technique known as
“coinduction.” One principal advantage over prior research
formalizing ReWire [4] (which uses Coq) is that, with the
Device Calculus, security specifications such as the one from
Procter et al. [7] can be readily transcribed into Agda. What
makes this possible, we believe, is the deft handling of
coinduction in Agda in comparison to Coq.

The types-as-properties view is the basis for verification
systems like Coq and Agda that are based in dependent type
theory. With the dependent type theory approach of Coq
and Agda, program properties are formulated as types, and
then verifying a program becomes a type-checking problem.
Formal verification of hardware has been performed in this
manner [2]–[4], [8]. Within language-based security [9], this
view of security verification via type systems is also common.
This research is part of an agenda seeking to adapt sofware
language-based security ideas to hardware.

II. THE DEVICE CALCULUS IN AGDA

This section presents the Agda mechanization of the Device
Calculus or, rather, the portion of it necessary to understand
the security templates in Section III. This section is necessar-
ily technical, although the authors endeavor to describe the
material at a sufficiently high level so that readers without
expertise in formal methods generally or Agda in particular
can appreciate the basic approach.

Mealy machines (Figure 1, top), are a common model of
sequential circuits used in hardware visualization and design.
The sequential device in this takes two inputs on each clock
cycle, external inputs i and internal state feedback from the
register bank of storage, s. Based on these inputs, combina-
tional logic computes the external outputs o and the next state
s stored in the internal storage bank.

We assume that sequential circuits are intended to be non-
terminating, and, consequently, the Agda representation of

Mealy machines uses coinductive types to represent Mealy
machines. Coinductive types and related reasoning techniques
are usually used to represent and reason about (potentially)
infinite structures like streams.

Figure 1 (bottom) presents the Agda formalization of the
Mealy machine at the top of that figure using Agda’s coin-
ductive record syntax. Note that the Mealy type constructor
parameterizes over the input, internal storage, and output types
(i, s, and o, resp.) of a Mealy machine. There are two
operations used to define Mealy machines, mhead and mtail.
How these work is best explained through an example, which
we provide below, but their basic intuition is simple. Given
input, i, and the current internal storage, s, mtail produces
the “next state” in the Mealy machine. Thus, for any i and s,
there is always a next state (i.e., the machine never terminates).
Given those same i and s, mhead produces a “snapshot” that
records the current state of the circuit as a 4-tuple, (i, s, s′, o).
Here, i is the current input, s (s′, resp.) represents internal
storage at the beginning (end, resp.) of the clock cycle, and o

is the output produced at the end of the clock cycle.

iter : ∀ { i s o : Set } → (i → s → (o × s)) → Mealy i s o
mhead (iter f) i s = (i , s , π2 (f i s) , π1 (f i s))
mtail (iter f) i s = iter f

sharedreg : ∀ { r : Set } → Mealy (Req r) r (Rsp r)
sharedreg = iter io
where
io : ∀ {r : Set} → Req r → r → (Rsp r × r)
io nop r = (nil , r)
io (write r) _ = (ack , r)
io read r = (val r , r)

data Req (r : Set) : Set
where
nop : Req r
write : r → Req r
read : Req r

data Rsp (r : Set) : Set
where
nil : Rsp r
ack : Rsp r
val : r → Rsp r

Figure 2: A simple Device Calculus operator (iter) and an
example of its use defining a register (sharedreg).

Assume one has a function, f : i→ s→ (o× s), that, for
input values of type i and internal store s, returns a pair
of type, (o× s), consisting of the next output and updated
internal store. One simple device of type Mealy i s o simply
repeats function f ad infinitum, applying it to each new input
occurring at each new clock cycle. This Device Calculus
iteration operator is defined in Agda in Fig. 2 (top). In this
definition, π1 and π2, are the left and right projections; e.g.,
π1(x, y) = x. The type signature (first line) says that iter

take a function of f’s type and returns a Mealy i s o. The
second line defines the snapshot of iter f using mhead given
the current input i and internal store s. The third line defines
the next state transition using mtail given input i and current
store s—there is only one state in the iter f device so the
transition is particularly simple.

Using iter, Fig. 2 (middle) defines a simple register,
sharedreg of type Mealy (Req r) r (Rsp r), where the request
and response types, Req and Rsp, are also defined in that figure.
Note that the type of storage, r, is parameterized over within
these definitions; r could be a single bit or a 64-bit word,
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dwngrd 

downgrade :
∀ { os dst od iu unclst u2s ou is secst : Set} →
Mealy os dst od → -- dwngrd
Mealy (iu × od) unclst (u2s × ou) → -- unclass
Mealy (is × u2s) secst os → -- secret
(od × (u2s × ou) × os) →
Mealy (iu × is) (dst × unclst × secst) ou

downgrade dwngrd unclass secret o0 =
feedback out1 rte1 o0 (dwngrd <||> unclass <||> secret)

Figure 3: Downgrader from Rushby [10] (simplified to two
security domains).

etc. The Device Calculus, in other words, inherits Agda’s
expressive polymorphism. The io function, when passed a
write r request, replaces the current storage with the new
value r and, when passed a read request, returns the current
stored value.

While the Device Calculus has a number of operators, the
only ones used in Section III are iter, <||>, and feedback; the
types of the latter two are:

<||> : ∀ {i1 i2 s1 s2 o1 o2 : Set} →
Mealy i1 s1 o1 →
Mealy i2 s2 o2 →
Mealy (i1×i2) (s1×s2) (o1×o2)

feedback : ∀ {i1 i2 s o1 o2 : Set} → (o1 → o2)→
(o1 → i2 → i1)→ o1 → Mealy i1 s o1 → Mealy i2 s o2

An application of the parallelism operator, m1 <||> m2, places
two devices, m1 and m2, in parallel and in isolation from one
another. Note that the input, internal storage, and output types
of m1 <||> m2 are just pairs of their respective component input,
internal storage, and output types. If m2 is defined in terms of
an existing device m1 (e.g., as in feedback out rte o0 m1) it
is useful to think of the output and routing functions, out

and rte, as combinational logic. (We refer to such functions
as output and routing throughout the remainder.) The output
function, out : o1 → o2, determines m2’s output directly from
m1’s. The routing function, rte : o1 → i2 → i1, takes m1’s out-
put and m2’s input and feeds them back into m1. Device m1’s
initial output is just o0.

III. SECURITY TEMPLATES IN THE DEVICE CALCULUS

Template 1: Downgrader: The first template (Fig. 3)
presents the Device Calculus formalization of the downgrader
from Rushby [10]. A downgrader performs declassification—
i.e., taking data from a higher security level and lower-
ing it. Declassification breaks classic Goguen-Meseguer non-
interference [11], because higher security level entities may
communicate with lower security level entities, albeit only via
a trusted intermediary (e.g., dwngrd in Fig. 3). Declassification
is accomplished here simply with the routing function rte1

defined below in which the output of the secret device (os
in the l.h.s. pattern) is passed to, and only to, the input of
dwngrd. The output function, out1, ensures that only the output
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hi shared 
reg 

(Rsp r)×i 

(Req r)×o (Req r)×o 

i×i 

o×o 

harness : ∀ { i s o r : Set } →
((Req r × o) × (Rsp r) × (Req r × o)) →
Mealy (Rsp r × i) s (Req r × o) →
Mealy (Rsp r × i) s (Req r × o) →
Mealy (i × i) (s × r × s) (o × o)

harness o0 lo hi
= feedback out2 rte2 o0 (lo <||> sharedreg <||> hi)

Figure 4: Dual Core Template from Procter et al. [7].

from the unclass device reaches the output of the composite
downgrade device.

rte1 : ∀ {od u2s ou os iu is : Set} →
(od × (u2s × ou) × os) →
(iu × is) →
(os × (iu × od) × (is × u2s))

rte1 (od , (u2s , _) , os) (iu , is)
= (os , (iu , od) , (is , u2s))

out1 : ∀ {od u2s ou os : Set} →
(od × (u2s × ou) × os) → ou

out1 (_ , (_ , ou) , _) = ou

Template 2: Secure Dual Core: Fig. 4 presents the Device
Calculus formulation that generalizes the secure dual-core
template from Procter et al. [7]. Within this configuration,
sharedreg is read-only for the lo processor and write-only for
the hi processor, thereby enforcing a “no write down” security
policy. Like the previous example, the work of restricting
information flow takes place in the definition of the routing
function rte2 in which a write request results in a nop signal
to sharedreg: rte2 (· · · , · · · , (write x, o2)) (i1, i2) = (· · · , nop, · · · ).

The security specification for the dual-core presented in
Procter et al. [7], a form of non-interference [11], states,
roughly speaking, that the lo processor’s behavior is un-
changed when the hi is replaced with a “no-op” processor
that does nothing at all. This behavioral invariance of lo

implies that, regardless of the behavior of the hi processor, no
information can flow from hi to lo. The security specification
in the aforementioned article is formulated as an equation and
is proved “by hand” (i.e., not machine-checked). This same
specification can be expressed directly in Agda as an equation
in the Device Calculus; this is a significant advantage over
prior work [4]. Follow-on publications will elaborate on this
as space concerns do not permit so here.

Fig. 5 (top) presents the Device Calculus formalization of
a hardware integrity monitor [12]. The main elements in the
security template are a processor device p placed in parallel
with monitor device m. On each clock cycle, p consumes an
input of type i and produces an output of type o. In parallel on
the same clock, monitor m consumes a pair of inputs (resp., of
types mi and r) and produces a pair of outputs (resp., of types
mo and a). Types r and a represent reset and alarm signals.
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monitor : ∀ { dw iw sd o ibit r sm mo a o’ i’ : Set } →
Mealy (dw × iw) sd o → -- processor
Mealy (iw × ibit × r) sm (mo × a) → -- monitor
((o × mo) → o’) → -- combine
(i’ → ((dw × iw) × ibit)) → -- sample
(o × (mo × a)) → -- initial outputs
Mealy (i’ × r) (sd × sm) (o’ × a)

monitor p m c s o0 = feedback (out3 c) (rte3 s) o0 (p <||> m)

Bypass

Crypto

BlackRed
pkt

hdr hdr’

msg

o

encmsg

cryptctrl :
∀ {pkt hdr msg s1 s2 s3 s4 hdr’ encmsg o : Set} →
Mealy pkt s1 (hdr × msg) → -- Red
Mealy hdr s2 hdr’ → -- Bypass
Mealy msg s3 encmsg → -- Crypto
Mealy (hdr’ × encmsg) s4 o → -- Black
((hdr × msg) × hdr’ × encmsg × o) →
Mealy pkt (s1 × s2 × s3 × s4) o

cryptctrl red byp cry blk o0

= feedback out4 rte4 o0 (red <||> byp <||> cry <||> blk)

Figure 5: Hardware Integrity Monitor [12] (top) and Crypto-
controller [10] (bottom). For reasons of space, the output and
routing functions are not defined for either.

Monitor m connects to the processor p’s inputs and outputs via
combinational logic s and c (resp., for sampling and combine
functions). Appropriately typed p, m, s, and c can be composed
into an m-monitored version of p, and this entire composition
itself forms a device (indicated by the gray dotted line) with
inputs, i′ and r, and outputs, o′ and a. This composed device
produces an alarm a when the monitor m detects anomalous
behavior based on p’s inputs.

Fig. 5 (bottom) presents a channel control scenario from
Rushby [10]. This system takes a packet pkt as external
input which is, in turn, split into a header hdr and message
msg by Red. Bypass simply passes the header on, producing
the presumably identical header hdr′. Crypto encrypts its
input msg, producing encmsg as output. Black reassembles and
outputs the header and encrypted payload, o.

IV. FUTURE WORK AND CONCLUSIONS

This paper has introduced the Device Calculus, which
is envisioned as a suitable semantic framework for formal
verification of the ReWire HLS flow. The Device Calculus
is mechanized within the Agda proof assistant, thereby sup-
porting automated proof construction and checking. This short
paper has not exhibited the full specification of the Device Cal-
culus; we leave that and much else for follow-on publications.

Instead, a number of security-related hardware constructions
from the literature illustrated the Device Calculus.

Part of the burgeoning Chisel hardware ecosystem is
the FIRRTL language (“Flexible Internal Representation for
RTL”), which is an open-source hardware intermediate repre-
sentation targeted by the Chisel compiler. The current ReWire
compiler targets VHDL directly, but the lack of a formal
semantics for VHDL renders formal verification of the current
ReWire compiler essentially intractable. The authors became
interested in retargeting the ReWire compiler to produce
FIRRTL as an alternative to VHDL because FIRRTL is small,
both well-designed and documented, and strongly typed—and,
hence, an amenable target for formalization in the Device
Calculus. To specify FIRRTL, the Device Calculus will be
extended to multiple clock domains. Semantic models of mul-
tiple clock domains are rare (to the authors’ best knowledge,
only Czeck et al. [13] have published on this subject).

There are many formalisms for specifying hardware—how
do you judge a new formalism like the Device Calculus?
The evaluation of a formalism is, in part, a fundamentally
qualitative or even aesthetic judgment: how easily and how
aptly are useful designs expressed? The Device Calculus
allowed expression of a number of verifiable security patterns
from the literature that were succinct and, we would argue,
straightforward as well. Agda’s facilities for coinductive rea-
soning and structures provided a suitable formal foundation for
developing the Device Calculus and this was, for the authors,
a happy and somewhat unexpected discovery.
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