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Abstract

This thesis explores the construction and correctness of modular compilers. Modular compilation
is a compiler construction technique allowing the construction of compilers for high-level program-
ming languages from reusable compiler building blocks. Modular compilers are defined in terms of
denotational semantics based on monads, monad transformers, and a new model of staged com-
putation called metacomputations. A novel form of denotational specification called observational
program specification and related proof techniques are developed to assist in modular compiler ver-
ification. It will be demonstrated that the modular compilation framework provides both a level of

modularity in compiler proofs as well as a useful organizing principle for such proofs.
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Chapter 1

Introduction

Compiler complexity is one of the most enduring problems in programming language research.
Traditional, hand-written compilers are large, complicated programs which take a long time to
write. Given the amount of work that goes into the creation of compilers, it is desirable to reuse
as much of this effort as possible. But, the monolithic structure of traditional compilers makes it
difficult to modify them, reuse parts of them in new compilers, and prove them correct.

As an example of a traditional, handwritten compiler, consider the GNU GCC-1750 (version
1.0) C++ compiler. The source code for this compiler has 278,949 lines of code in 168 separate

files. Certain questions naturally arise about the modularity and correctness of this compiler:
e How would one add or delete a source language feature from this compiler?

e How would one compile one source language feature (e.g., expressions) in a new compiler
just as in GCC? Which of the 278,949 lines from which of the 168 files would you choose?
In other words, is there any advantage to having the GCC source code when constructing

another compiler?

e How would one prove GCC correct? Is there any intelligible relationship between the immense

GCC compiler and the semantics of the language it compiles?

The complex, monolithic structure of traditional compilers like GCC makes answering these ques-
tions practically impossible.
These problems would be eliminated if compilers could be split up and built from reusable

compiler building blocks (RCBBs) which compile distinct source language features separately and
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Figure 1.2: Traditional Compilation is Separated into Phases

can then be reassembled easily as needed to create new compilers for bigger, high-level programming
languages. This novel approach to compiler construction is called modular compilation, and it is
illustrated in Figure 1.1.

Modular compilers have the following advantages over traditionally constructed compilers:

e They are more easily modified. To change the way a source language feature is compiled,

simply change the appropriate reusable compiler building block.

e To add or delete a source language feature, just add or delete the appropriate reusable compiler

building block.

e To reuse work from existing modular compilers, simply reuse the desired compiler building

blocks.

e Because each compiler building block is specified as a high-level definitional interpreter, it
is straightforward (albeit non-trivial) to prove the correctness of reusable compiler building

blocks and the compilers constructed from them.

Compilers have traditionally been factored into phases (e.g., parsing, code generation, etc.),

while modular compilers are also structured by source language feature (e.g., expressions, proce-



dures, etc.), allowing a “mix and match” approach to compiler construction. It is easy to modify
or extend an existing compiler which has been constructed according to this method, and it is
also a simple matter to reuse existing work. With this approach, compilers for a language with
many features (e.g., expressions, procedures, etc.) are built using compiler building blocks for
each specific feature. Each compiler building block compiles a specific feature and can be easily
combined with compiler building blocks for other features to provide compilers for non-trivial lan-
guages with many features. Furthermore, each compiler building block is reusable and may be used
in the construction of compilers for many different languages. Compilers constructed according
to this method are modular in that source language features may be added or deleted with ease,
allowing the compiler writer to develop compilers at a high level of abstraction. This approach to
structuring compilers is completely new in compiler design and is motivated by the insight that the
same advantages provided by using the categorical concepts of monads and monad transformers in
structuring interpreters[24, 25, 26, 10, 30, 10, 47] carry over to compilers.

The main accomplishments of this work are:
e Two implementations of reusable compiler building blocks are presented in this thesis, firstly

as metacomputations in Chapter 2 and secondly as monadic code generators in Chapter 3.

e The introduction of metacomputations as a semantic model for staged computation. This

model provides a modular and extensible style of staging denotational specifications.

e A novel approach to specifying and proving compiler correctness is developed. The correctness
of individual RCBBs is specified independently, and under certain preconditions (called linking
conditions), correct compiler building blocks may be combined into correct compilers, thereby

attaining a level of reusability in compiler correctness proofs.

e A new form of program specification called observations is developed to facilitate reasoning

about monadic specifications.

1.1 Modular Compilers

This section presents a number of compilers constructed modularly using “off-the-shelf” reusable

compiler building blocks. Although no implementations of reusable compiler building blocks have

3



Source Code:

[ I . .
Expressions new g:intvar in
F\p - ﬂ‘ let f = Av:intvar. Ae: intexp. v:=1+¢ ; v:=(g+1)+ein
1
Imperative fg(g+1)
[ I
Control Flow Target Code:
I I <0,0> := 0; <0,2> := 1;

Block Structure <0,1> := 1; <0,1> := <0,1> + <0,2>;
Il I <0,2> := <0,0>; <0,2> := <0,0>;
Booleans <0,3> :=1; <0,3> := 1;

1 1 <0,2> := <0,2> + <0,3>; <0,2> :=<0,2> + <0,3>;

Call-by-Name <0,0> := <0,1> + <0,2>; <0,0> := <0,1> + <0,2>;
M M <0,1> := <0,0>; halt;

Figure 1.3: Algol Compiler from Reusable Compiler Blocks

been given yet, the purpose of these examples is to illustrate the wide range of programming
language features (e.g., procedures, expressions, assignment, booleans, scoping and parameter-
passing mechanisms, as well as some optimization techniques) that can be represented as reusable

compiler building blocks.

1.1.1 Compiler for Algol

Figure 1.3 presents a compiler for an Algol-like language which was assembled from “off-the-shelf”
reusable compiler building blocks. It has imperative features (like assignment), block structure,
and call-by-name procedures. Note that, in this example, procedures are compiled with inlining
rather than with “call” and “return” instructions. This is merely to simplify the presentation—in
Section 1.1.5, a reusable compiler building block which compiles to closed subroutines (i.e., those
with call and return) is presented.

The compiler in Figure 1.3 and subsequent compilers produce code with display addresses of the
form <frame,disp>. frame refers to an activation record[1l] on the stack, while disp is an offset

into that activation record. Together, frame and disp indicate an address in storage.

1.1.2 Compiler for Functional Language

The next example illustrates how various parameter-passing mechanisms can be represented as
reusable compiler building blocks. Figure 1.4 presents two compilers for a simple functional lan-

guage. Again, these compilers were easily assembled from “off-the-shelf” reusable compiler building



Compiling: (lambda (i) (+

ii) -+ (+12)

3))

[ [ [ [
Expressions Expressions
1 1 1 1
Call-by-Name Call-by-Value
[ [ [ [
<0,0> := 1; <0,1> := 1;
<0,1> := 2; <0,2> = 2;
<0,0> := <0,0>+<0,1>; <0,1> := <0,1>+<0,2>;
<0,1> := 3; <0,2> := 3;
<0,0> := <0,0>+<0,1>; <0,1> := <0,1>+<0,2>;
<0,0> := -<0,0>; <0,0> := =<0,1>;
<0,1> := 1; <0,1> := <0,0>;
<0,2> := 2; <0,2> := <0,0>;
<0,1> := <0,1>+<0,2>; Acc := <0,1>+<0,2>;
<0,2> := 3;
<0,1> := <0,1> + <0,2>;
<0,1> := -<0,1>;

Acc := <0,0> + <0,1>;

Figure 1.4: Call-by-Name and Call-by-Value Compiler from Reusable Compiler Blocks

blocks. The compiler on the left has call-by-name procedures, while the compiler on the right has
call-by-value. Again, procedures are compiled via inlining.

Note that the code compiled with the call-by-name compiler evaluates the actual parameter (-
(+ 1 2) 3) twice, every time that the formal parameter i is evaluated. This is in accordance with
call-by-name parameter passing. In contrast, the code compiled with the call-by-value compiler

evaluates the actual argument once, storing the result in <0,0>, and uses the stored result twice.

1.1.3 Scoping Mechanisms as Reusable Compiler Building Blocks

The next example shows how different scoping mechanisms—static and dynamic—can be repre-
sented as reusable compiler blocks. Figure 1.5 presents two compilers constructed from “off-the-
shelf” compiler building blocks. The compiler on the left combines call-by-name procedures with
static scoping, while the compiler on the right combines call-by-name with dynamic scoping. As
before, we compile procedures via inlining. Note that in the body of £, with static scoping, s should
be 10. This is reflected in the compiled code on the left when 10 is used (boxed in the Figure) for s
as expected. With dynamic scoping, the most recent definition of s—here it is 5—should be used,

and the compiled code on the right does just that.



Compiling: let s=10inlet f = Az.z + s in
let g =As. f(s+11) in

1 1 1 1
Expressions Expressions
[ 1 [ 1
Static Scope Dynamic Scope
1 1 1 1
<0,0> := 5; <0,0> := 5;
<0,1> := 11; <0,1> := 11;
<0,0> := <0,0>+<0,1>; <0,0> := <0,0>+<0,1>;
<0,1> := ; <0,1> := ;
Acc := <0,0>+<0,1>; Acc := <0,0>+<0,1>;

Figure 1.5: Static and Dynamic Scope as Reusable Compiler Building Blocks

1.1.4 Optimizing Compiler for Expressions

The next example compiler optimizes the amount of stack space and the number of instructions
used in the compilation of expressions. Figure 1.6 displays the results of compiling an expression
with two different reusable compiler building blocks. The code on the left was produced by the
non-optimizing reusable compiler building block for expressions that has been used in all previous
examples involving expressions, while the code on the right was compiled by the optimizing compiler
building block for expressions. The non-optimizing compiler building block stores each interme-
diate value of an expression on the stack, with the result that more stack locations and machine
instructions are produced than are necessary. For example in the compilation of the subexpression
(1+2), both 1 and 2 are stored on the stack in locations <0,4> and <0,5>, respectively, and the
next instruction, <0,2> := <0,4>+<0,5>, computes the value 1 + 2 by reading from these two
temporary locations. The compiled code on the left in Figure 1.6 clearly involves more locations
and instructions than are necessary. Because 1 and 2 are simple right-hand sides (i.e., they do not
involve any arithmetic operations like addition or negation), it suffices to use the right-hand side
1+2 without storing 1 and 2 on the stack, and doing so would reduce the number of stack locations
and machine instructions produced. This is precisely what the optimizing compiler building block
does, and the savings in locations used and instructions issued by the optimizing block is clear

when comparing the code produced by both blocks.



Compiling: (((1+2)+(3+4))+((5+6)+(7+8)))

[ [
Expressions
[ [
<0,4> := 1;
<0,5> := 2;
<0,2> := <0,4>+<0,5>;
<0,4> := 3;
<0,5> := 4;
<0,3> := <0,4>+<0,5>;
<0,0> := <0,2>+<0,3>;
<0,4> := 5;
<0,5> := 6;
<0,2> := <0,4>+<0,5>;
<0,4> :=T7;
<0,5> := 8;

<0,3> := <0,4> + <0,5>;
<0,1> := <0,2> + <0,3>;
Acc := <0,0> + <0,1>;

Figure 1.6: Optimizing Compiler Building Block for Expressions

[ [

Optimizing .
Expreéssions

[ [

<0,0> = 1+2;
<0,1> := 3+4;

<0,0> := <0,0>+<0,1>;

<0,1> := 5+6;
<0,2> := T+8;

<0,1> := <0,1>+<0,2>;
Acc := <0,0>+<0,1>;

Compiling: let negat=(lambda

x.-x) in (3+(negat (7+9)))

1 1
Expressions
1 1
Call-by-Name
1 1
<0,0> := 3;
0,3> = 7;
<0,4> := 9;
<0,2> := <0,3>+<0,4>;
<0,1> := -<0,2>;

Acc := <0,0> + <0,1>;

Figure 1.7: Call-by-Name Compiler with and without Optimizing Expressions from Reusable

piler Blocks

I I
Optimizing
Expressions

[ [

Call-by-Name
M M

<0,0> := 7+9;
<0,0> -<0,0>;
Acc := 3 + <0,0>;

Com-




Compiling: let negat=(lambda x.-x) in (3+(negat (7+9)))

[l [l call 101 [103] 0 102;
Optimizing Expr
102: <0,0> := SBRS;
m_n ; ’
Acc := 3+<0,0>;
Closed CBN halt;
[ [
103: load SBRS,7+9;
return;
101: acall 1 1 1 100;
100: <1,0> := SBRS;

load SBRS,-<1,0>;
return;

Figure 1.8: Closed Call-by-Name Procedures as Reusable Compiler Building Block

Figure 1.7 presents another example involving the two compiler building blocks for expressions—
this time adding procedures.

Certainly, further optimizations could be performed on the code on the right-hand side of Fig-
ure 1.6 (e.g., constant folding[1] in particular), but the optimizing compiler building block for ex-
pressions demonstrates that at least some forms of optimization can occur within reusable compiler
building blocks. How code optimization in general fits into the framework for modular compilation

presented here remains an open question.

1.1.5 Closed Call-by-Name Procedure Block

Figure 1.8 presents an example compiler combining the optimizing expressions RCBB with the
closed call-by-name procedures block. The procedure is compiled into machine language subroutines

and subroutine calls.

1.2 Background

This Section outlines the necessary background for this thesis.



1.2.1 Partial Evaluation

Partial evaluation[17] is a program transformation technique which take a program p(x,y) and
part of its input x and returns a specialized version of p (denoted py). Given x, parts of p may
be evaluated, leaving a simplified program (called the residual program). Consider the following

program f which multiplies its inputs:

f(x,y) = if x=0 then 0
elsif x=1 then y
elsif even(x) then f(x/2,y)+f(x/2,y)

else y + f(x-1,y)

Partial evaluation of £ (3,y) yields the program f3(y) =y + y + y. It reaches this residual program

through the following steps:

£3,y) =y +£(2,y) > y+E(L,y) +E(Ly) =y +y+y

It should be noted that partial evaluation is equality-preserving (i.e., px(y) = p(x,y)) because only

equal terms are substituted for one another, and that it is a source program to source program
transformation.

In general, program execution can be divided into two distinct phases: static (or compile-time)
and dynamic (or run-time). The static phase consists of those reductions in the execution which
can be made by inspection of the program text alone (hence at compile-time). The dynamic phase
consists of those reductions which depend on some part of the program’s input unknown at compile-
time. Partial evaluation attempts to perform as many static reductions as possible to produce a

completely dynamic term.

1.2.2 Monads

Monads were first introduced to Computer Science by Eugenio Moggi to formalize different notions
of computation[30, 31]. There are many different notions of computation involving combinations of

states, continuations, environments, and errors. To illustrate, consider the following ML phrase e:



let val x = ref 0 in (x := !x + 1; !x) end

Evaluating e first creates a reference x to 0, then increments the current value of x; then the
dereference !'x returns the current value x. Clearly, e will always return 1 when evaluated. But it
would be inaccurate to claim that e is equivalent to the ML expression “1”, because evaluating e
and “1” are such vastly different computations. Evaluating e involves allocating and deallocating
references as well as assigning to and reading from a reference, while evaluating “1” only involves
returning the value 1.

Definition 1 presents the usual definition of monads as functional programmers represent them.
A monad is a type constructor M together with a pair of functions (obeying certain algebraic laws

stated below):

*M : M7 = (1 = M7') = M7’

unity : 7 - M7

A value of type M is called a 7-computation, the idea being that it yields a value of type 7 while
also performing some other computation. The %;; operation generalizes function application in
that it determines how the computations associated with monadic values are combined. unity
defines how a 7 value can be regarded as a 7-computation; it is always a trivial computation.

Definition 1 (Functional Programmer’s formulation) A monad is a type constructor T and

two polymorphic functions unit : Ya.a — Ta and * : Va,b.Ta — (a — Tb) — Tb such that the

following hold:

(unita) x k=ka (left unit)
z % unit =z (right unit)

z x (Aa.(ka x h))=(z x k) x h (assoc)

Figure 1.9 presents five different monads encapsulating five different notions of computation.

The simplest monad is the identity monad Id. Perhaps the best known monad is the state monad

10



Identity Monad ‘

Ida =a
unitz =z
T x f=fz

| One State Monad |
Sta = Sto — a x Sto
unitz = Ao : Sto. (z,0)
z * f=Xop: Sto.let (y,01) = (zop) in (fyor)

‘Two State Monad‘
St2a = Sto — Sto — a x Sto x Sto
unitz = \é : Sto.\o : Sto. (z,9,0)
T % f = Adp : Sto. Aoy : Sto.let (y,61,01> = (37(50 00) in (fy o1 0'1)

Environment+State Monad ‘
EnvSta = Env — Sto — a x Sto
unitz = \p: Env.\o : Sto. (z,0)
z x f=Apg: Env. oy : Sto.let (y,01) = (z pg o) in (f ypoo1)

CPS Monad

CPSa = (a — Ans) — Ans
unit (z :a) = Mk : a > Ans).(kx)
z x f=Xs.z(Ay.(fyr))

Figure 1.9: ADT Approach to Language Definition, Part 1: Various Monads
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St, which represents the notion of a computation as something that modifies a store. The bind
operation x for St handles the bookkeeping of “threading” the store through the computation. The
monad St2 has two separate stores so that its computations can cause side effects on each store.
The monad EnvSt has both an environment and a store, while the continuation-passing monad CPS

has first-class continuations.

Categorical View of Monads

Monads (or triples) are a categorical construction[28, 4] which predates Computer Science by several
decades. Definitions 2 and 3 present equivalent categorical formulations of monads, but Definition
3—the Kleisli formulation—corresponds to the “functional programmer’s formulation” of monads
in Definition 1. For further information on the categorical view of monads, please consult a standard

text on Category theory[28, 4].

Definition 2 (Standard formulation) A monad in a category C is a triple (T,n,p) of an end-
ofunctor T : C — C and two natural transformations n : Id - T and p : T2 = T such that the

following diagrams commute:

T T T
K L ar—1 .12 " 14
.
H H id e id
T2 * 7 T

Definition 3 (Kleisli formulation) A monad in a category C is a triple (T,n,_*) of an endo-
function T and two families of arrows ng : A — TA and * : (A — TB) — (TA — TB) (neither

required to be natural) such that, for arrows f : A— TB and g: B — C,

na = idta (1.1)
na; f*=f (1.2)

12



[f59 =39 (1.3)

1.2.3 Monads and the Abstract Data Type Approach to Language Definition

The principal advantage of the monadic approach to language definition is that the underlying
denotational model can be arbitrarily complex without complicating the denotational description
unnecessarily. The beauty of the monadic form is that the equations defining [-] : Ezp — Ma
can be reinterpreted in a variety of monads M. Monadic semantics separate the description of a

1. In this sense, it is similar to action semantics[34] and high-level

language from its denotation
semantics[23]. To borrow a term from the language of abstract data types, the monadic semantics
of programming languages yields representationally independent definitions. This is what prompts
some authors (notably Espinosa[l0]) to refer to monadic semantics as the “ADT approach to
language definition.”

Before seeing how monads are used in language definitions, let us first consider standard
functional-style language definitions and why they are essentially representationally-dependent.

Suppose we wish to define a language of integer expressions containing constants and negation.

The standard functional definition might be:

[—e] = —[e]

where [—] : Ezp — int. However, this definition is inflexible; if the integer expressions were part
of a larger language, then this equation would have to change. Consider what would happen if
integer expressions were part of a language with assignment. The semantic function might have
type [-] : Exzp — Sto — Value x Sto where Sto is a store used for defining assignment. The

equation defining negation would become:

[—e]o = let (v,0"Y=[e]o in (—v,o")

Although these two definitions of negation do the same thing, they look entirely different. Even

"Lee calls this property separability[23].
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‘[[—]] :Exp — int‘

Functional-style Identity Monad
[:]] =1 [:] = unit(s)
[—e] = —[e] [—e] = [e] * Av.unit(—v)

‘[[—]] : Exp — Sto — int X Sto‘

Functional-style State Monad
[i]o = (i,0) [i] = unit(s)
[—e]o = let (v,0")=[e]o in (—v,o") [—e] = [e] * Av.unit(—v)

‘[[—]]:5xp—>7—>Sto—>z'ntxr><Sto‘

Functional-style Two State Monad
[£](t : 7)(o : Sto) = (i,t,0) [:] = unit(z)
[—e]to = let (v,t',0'Y=[e]to in (—v,t, o') [—€e] = [e] * Av.unit(—v)

‘[[—]] : Exp = Env — Sto — int X Sto‘

Functional-style Environment+State Monad
[i1p0 = (i,0) [i] = unit(i)
[—e]po = let (v,0')=[e]po in (—v,d’) [—€] = [e] * Av.unit(—v)

‘ [-]: Exp — (int — Ans) — Ans ‘

Functional-style CPS Monad
[£](B : int — Ans) = Bi [:] = unit(7)
[—elB = [e](Av : int.p (—v)) [—e] = [e] * Av.unit(—v)

Figure 1.10: ADT Approach to Language Definition, Part 2: Functional and Monadic-style
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though negation does not use the store, its defining equation must still reflect the existence of the
store. In the left column of Figure 1.10, there are a number of other functional-style equations
defining negation for denotations with two states, an environment and a state, and continuations.

“—e” the same way—just negating the value of the subex-

Again, all of these definitions compute
pression e—but they appear completely different because they must all reflect the structure of
their underlying denotations. Functional-style denotational definitions are, therefore, necessarily
representationally-dependent.

In contrast, monadic-style semantic equations are free from the details of the underlying deno-

tation. To see why this is, consider the monadic definition for negation:

[—e] = [e] * Av.unit(—v)

This equation defines negation for all monads! Because the monadic unit and bind operations handle
the “bookkeeping” of passing the extra computational “stuff” (stores, environments, continuations,
etc.), and since negation does not use any of this data, its semantic equation need not refer to them

ezxplicitly. Thus, monadic language specifications are essentially representationally-independent.

1.2.4 Monad Transformers

Now, suppose we wish to create new monads from existing monads. For example, one might wish
to try to create the two-state monad St2 (see Figure 1.9) from the single state monad St. One
might expect to get St2 by applying the ordinary state monad twice. Unfortunately, (StoSt) 7 and
St2 7 are very different types. This points to a difficulty with monads: they do not compose in this
simple manner.

The key contribution of the work [10, 25] on monad transformers is to solve this composition
problem. When applied to a monad M, a monad transformer 7 creates a new monad M'. For
example, the state monad transformer, Tg; store, is shown in Figure 1.11. (Here, the store is
a type argument, which can be replaced by any value which is to be “threaded” through the
computation.) Note that 7g; Stold is identical to the state monad, but here we get a useful notion

of composition: Tg; Sto(Ts: Stold) is equivalent to the two-state monad St27. In addition to
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‘Identity Monad Id: ‘ ‘Environment Monad Transformer Tg,,: ‘
M'7T = Tenw Env M 1 = Env — M7t
unity x = Ap : Env. unity z

z v f=Xxp: Env.(zp) *m (Aa.fap)

ldr =171

unitiyz ==z

% =
THa f=fe liftmr—m- T =Ap: Env.x
rdEnv : M'Env = \p : Env. unityp
inEnv(p: Env, z: M'7) = A_. (zp) : M'7
‘CPS Monad Transformer 7Tcps: ‘ State Monad Transformer 7 ‘
M7t = Teps ans M T = M'r = Ts store M T = store — M(T X store)

(1 = Mans) = Mans unityy x = Ao : store. unity(z, o)

unityyy £ = Ak. kT

z e f = Ak.z(Aa.f ak)

z *wr f = Aog : store. (zog) *m (Ma,01).faoy)
liftmr—smrr T = Ao, T %y Ay. unity(y, o)

liftmrsmir T = *m update(A : store — store) = Ao.unitp(e, A o)
callcc : ((a = Mb) — Ma) — Ma getStore = \o. unity (o, o)
callcc f = As.f(Aa.A_.ka) K One element type: void such that e € void

Figure 1.11: The Identity Monad, and Environment, CPS, and State Monad Transformers

creating a new monad, monad transformers also define non-proper morphisms (i.e., morphisms
other than * and unit) which allow the new data to be manipulated. For example, the state
monad transformer 7g; Sto provides non-proper morphisms updateSto and getSto to update and
return the Sto state, respectively. When composing Ts: Sto with itself, as above, the operations on
the “inner” state need to be lifted through the outer state monad; this is the main technical issue

in [10, 25].

Categorical View of Monad Transformers

There are two equivalent categorical definitions of monad transformers in the literature occurring in
Moggi[30] and Espinosa[10]. We summarize Moggi[30] here. The interested reader should consult
[30, 10] for further details.

Moggi[30] defines monad transformers (which he called monad constructors) as endofunctors on
the category of monads Mon(C). The objects of Mon(C) are the monads over the category C. A
morphism in Mon(C) from monad (T,n”, u") to monad (S,7n°%, u%) is a monad-morphism from T

to S, where monad-morphism is defined below.
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Definition 4 (monad-morphism) Given monads (T,n",u™) over C and (S,n°,u") over D, a
monad-morphism is a pair (U,o), where U : C — D is a functor and o : T;U = U; S is a natural

transformation such that:

Uk Ul
UA 4 gy SHAyr2a

oA OTA
4
S(UA) S(U(TA))
So 4
M‘ISJ'A
S2(UA)

1.2.5 Modular Interpreters and Monad Transformers

The previous two sections have described how the representational independence of monadic lan-
guage definitions allows one specification [—] : £ — M(value) to be reinterpreted in many different
monads M, and how monad transformers allow monads to be combined easily. These two facts
make it possible to compose monadic language specifications as well. Let us say that we have

specifications for languages £; and Ls:

[=]1: £1 = My (Valuesy)  [—]2 : L2 = Ma(Valuess)

where My = 771 1d and My = 75 1d. Since My and My are constructed with monad transformers, it
is possible to create a “supermonad” 77(73ld) in which both [—]; and [—]2 may be reinterpreted.

This effectively composes [—]; and [—]2 into a single specification [—]; + [—]2:

=] + [-J2: (L1 + L2) = (T1(T21d))(Values; + Valuess)
[t]: : (Ti(T31d))(Values,), ifte Ly (1.4)
[t]2 : (T1(T21d))(Valuess), ift € Lo

[t + [t]2 =
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Cle] : M((int — M(int)) — M(int)) where Addr = int, Sto = Addr — int, and M = T Addr (T Sto Id).
C[n] = unit A\8. Bn
C[—t] =C[t] * Ae.unit ( AB.e(Ai.CreateTemp(i) * Av.deAlloc * A_.3(—v)) )

deAlloc = updateA(Aa.a — 1)
allocLoc = rdAddr % Aa.updateA(Aa.a + 1) * A_unita

CreateTemp(v) =
allocLoc * Aa. /*allocate Addr*/
updateSto[a — v] x A_. /*store v at ax/
rdSto * Ao. /*get curr. Sto*/
unit (o a) /#return val at ax/

Figure 1.12: Reusable Compiler Building Block for Ezp

Note that the composite specification [t]; + [t]2 returns a value in Values; if ¢ is in £1 and a
value in Valuesy if ¢t is in Lo (and not a pair of values). There is the (mild) proviso that all
environment monad transformers (7g,, 7) should be applied after any CPS monad transformers
(Tcps 7') are applied, because it has been shown[26] that the combinator inEnv defined by the
environment monad transformer can not be lifted through the CPS monad transformer. In practice,
this restriction causes no difficulties whatsoever.

Equational language definitions (such as those defining [—];) are frequently referred to as
interpreters[21, 11]. In the preceding paragraph, the pair consisting of the equations defining [—];
and the monad transformer 77 is called an interpreter building block[24, 25, 26] for the language
L1 (and similarly, ([—]2,72) is an interpreter building block for £;). Because a wide variety of
programming language features (e.g., variables, assignment, control-flow, procedures, etc.) may
be defined as interpreter building blocks, interpreters for languages with many features may be
constructed modularly in a “mix and match” fashion using interpreter building blocks, and this

gives rise to what Liang, et al., call modular monadic interpreters.

1.2.6 Modular Compilers and Monad Transformers

The previous Section outlined how interpreters structured by monad transformers are modular,
and compilers based on monad transformers have similar properties. In [13], the authors developed
a method of modular compiler construction analogous to the modular interpreter construction in
[24, 25, 10]. Compilers are organized in [13] as reusable compiler building blocks (RCBB) which can

be “mixed and matched” just as the modular interpreter building blocks described in the previous
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Scheme output from partial evaluator:

(lambda (store add negate read)
(lambda (a0) (lambda (stol)
(cons (cons star 0)
((store "Acc" (negate (read 0)))
((store 0 (negate (read 0))) ((store 0 1) sto1)))))))

Pretty printed version:

0 :=1; 0 := -[0]; Acc := -[0];

Figure 1.13: Compiling “— — 17

Section. In fact, the reusable compiler building blocks in [13] are really just “implementation-
oriented” interpreter building blocks. That is, extra implementation-level data is introduced using
monad transformers, and then type-directed partial evaluation[7, 8] is used to produce a term which
can be pretty-printed to produce machine code.

Figure 1.12 contains a RCBB for the arithmetic expression language Ezp (written in continuation-
passing style). It is implementation-oriented in that extra implementation-level data has been added
by the composite monad transformer AM.Ts; Addr (Ts; StoM). Addr is a “free address” counter
state, and Sto is a value store. The equations for C[e] define an alternative semantics for expres-
sions in which intermediate values of expressions are stored in the value store. C[e] behaves like
typical machine code for an expression, which is reflected by the residual term produced by partial
evaluating C[— — 1] in Figure 1.13. The term in the top half of that Figure is simply a sequence
of stores and reads from the value store, which can be reasonably pretty-printed as shown in the

bottom half of Figure 1.13.

1.2.7 Metacomputations, Metacomputation-style Staging and Modular
Compilers

Metacomputations—computations that produce computations—arise naturally in the compilation
of programs. Figure 1.14 illustrates this idea. The source language program s is taken as input
by the compiler, which produces a target language program t. So, compiling s produces another
computation—namely, the computation of t. Observe that there are two entirely distinct notions

of computation here: the compilation of s and the execution of t. The reader will recognize
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compile Target Interpreter

Parsing

Stack
Manipulation

Type Checking t:Target

s:Source

Code Generation
Updating Store

Optimization

Figure 1.14: Handwritten compiler as metacomputation

this distinction as the classic separation of static from dynamic. Thus, staging is an instance of
metacomputation.

We can formalize this notion of metacomputation using monads[10, 25, 31, 47| and use the
resulting framework as a basis for staging computations. Given a monad M, the computations of
type a is the type M a. So given two monads M and N, the metacomputations of type a is the type
M(N a), because the M-computation produces as a value an N-computation. This definition is not
superfluous; as we have noted, M o N is not generally a monad, so metacomputations are generally

a different notion altogether from computations.

1.3 Related Work

Structuring denotational semantics with monads and monad transformers was originally proposed
by Moggi [30, 31]. Hudak, Liang, and Jones [25], Espinosa [10], and Wadler [47] use monads and
monad transformers to create modular, extensible interpreters. Their work shows how interpreters
can be developed in a modular way, leaving open the question of whether compilers can be developed
similarly. Liang [24, 26] addresses that question, proposing that monadic semantics constructed
from monad transformers and monadic specifications provide a modular and extensible basis for
semantics-directed compilation. As an example of reasoning in monadic style, he axiomatizes the
environment combinators rdEnv and inEnv, and shows that these axioms hold in any monad con-
structed with standard monad transformers. He describes an experiment [26] wherein the Glasgow
Haskell compiler is re-targeted to the SML/NJ back-end, and he develops several examples of rea-

soning about monadic specifications. Liang’s work is the most closely related to ours, but since he
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does not compile to machine language, many of the issues we confront do not arise.

Jorring and Scherlis [20] introduced the term “pass separation”, which they defined as:

The idea of pass separation is to introduce intermediate data structure to pass values
between two phases of computation, enabling separation of the two phases.

They showed how compilers could be constructed by introducing intermediate data structures into
an interpreter and then partially evaluating. Their interpreter had no monadic structure. Also,
their derivations were non-automatic, as the introduction and exploitation of intermediate data
structure was quite subtle.

Danvy and Vestergaard [8] show how to produce code that “looks like” machine language,
by expressing the source language semantics in terms of machine language-like combinators (e.g.,
“update”, “popblock”, “push”). When the interpreter is closed over these combinators, partial
evaluation of this closed term with respect to a program produces a completely dynamic term,
composed of a sequence of combinators. These combinators, then, constitute the target language
of the compiler.

In Morris[32], Thatcher, et al.,[46], and Wand[48], the correctness of a compiler from source

language L to target language MachLang would be expressed by the following diagram:

compile
L P » MachLang
source semantics target semantics
encode
M - U

where M and U are the possibly distinct source and target semantic models and encode “imple-
ments” source denotations with target denotations. Given certain assumptions about these arrows
(e.g., compile is “syntax-directed” and both semantics are compositional), the compiler is correct
if the diagram commutes.

In [43], Reynolds demonstrates how to produce efficient code in a compiler derived from the
functor category semantics of an Algol-like language, which was an original inspiration for this study.
Our compiler for that language improves on Reynolds in two ways: it is monad-structured—that is,
built from interchangeable parts—and it includes jumps and labels where Reynolds simply allowed

code duplication and infinite programs.
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A syntactic form of metacomputation can be found in the two-level A-calculus of Nielson[37].
Two-level A-calculus contains two distinct A-calculi—representing the static and dynamic levels.
Expressions of mixed level, then, have strongly separated binding times by definition. Nielson[36]
applies two-level A-calculus to code generation for a typed A-calculus, and Nielson[37] presents an
algorithm for static analysis of a typed A-calculus which converts one-level specifications into two-
level specifications. Mogensen[29] generalizes this algorithm to handle variables of mixed binding
times. The present work offers a semantic alternative to the two-level A-calculus. We formalize
distinct levels (in the sense of Nielson[37]) as distinct monads, and the resulting specifications have
all of the traditional advantages of monadic specifications (reusability, extensibility, and modular-
ity). While our binding time analysis is not automatic as in [37, 29], we consider a wider range of
programming language features than they do.

In [49, 50], Wand presents a combinator-based approach to compilation, in which a continuation
semantics is rewritten in terms of special-purpose machine language-like combinators. The deno-
tation of a term according to the resulting semantics is a tree of combinators (with A-abstractions
removed) which can be rotated into a left linear (or almost linear) form through the application
of associative and distributive laws. After rotation, this tree resembles machine language code.
In [51], Wand extends this work with explicit loops by reintroducing variables in a restricted way
resembling labels in machine code. Wand[48] describes the correctness proof of the compilers from
[49, 50]. The present work differs from Wand’s in that our combinators are constructed semi-
automatically via monad transformation and lifting, and thus a number of properties of monadic
operations (e.g., the associativity of bind) are preserved. Many of Wand’s combinators appear to
be ad hoc versions of bind. A further difference is that code generation is automatically performed
by partial evaluation rather than by hand. Furthermore, it is not obvious that Wand’s original
semantics and his machine language-like combinator version of the semantics are related, because
the form of the combinator semantics is completely different. The pass separation transformations
used here make fairly minimal changes to the standard semantic equations and result in a com-
pilation semantics which is recognizably a more implementation-oriented version of the standard

semantics.
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Chapter 2

Reusable Compiler Building Blocks as
Metacomputations

This chapter concerns the implementation of reusable compiler building blocks as metacomputa-
tions. A metacomputation is “two-phase” computation; that is, a computation which produces
another computation. Metacomputation-style staging uses two monads to factor the static and
dynamic parts of a language specification, thereby staging the specification and achieving strong
binding-time separation. Because metacomputations are defined in terms of monads, they can be
constructed modularly and extensibly using monad transformers. A number of language constructs
are specified: expressions, control-flow, imperative features, block structure, recursive bindings,
and higher-order procedures. Metacomputation-style specification lends itself to semantics-directed
compilation, which is demonstrated by creating a modular compiler for a block-structured, imper-

ative while language with higher-order integer-valued functions.

2.1 Why Metacomputations?

Because metacomputations are a natural model for staged computation, it is clearly a reasonable
starting point for semantics-directed compilation. In fact, metacomputation-style language specifi-
cations have more than an aesthetic advantage over traditional monadic specifications with respect
to semantics-directed compilation. This Section describes at a high level why two monads are
better than one for modular compilation. Using metacomputations instead of a single monolithic
monad simplifies the use of the “code store” (defined below) in the specification of reusable compiler

building blocks.
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In [13], a technique from denotational semantics[44] is borrowed for modeling jumps, namely
storing command continuations in a “code store” and denoting “jump L” as “execute the continu-
ation at label L in the code store.” Viewing command continuations as machine code is a common
technique in semantics-directed compilation[50, 43]. Because the language specifications were in
monadic style, it was a simple matter to add label generator and code store states to the under-
lying monad. Indeed, the primary use for monads in functional programming seems to be that of
adding state-like features to purely functional languages and programs[47, 39], and the fact that
the monads in [13] are structured with monad transformers made adding the new states simple.

The use of a code store is integral to the modular compilation technique described in [13]. We
use it to compile control-flow and procedures, and the presence of the code store in the language
specifications allowed substantial improvements over Reynolds[43] (e.g., avoiding infinite programs
through jumps and labels). Yet the mixing of static with dynamic data into one “monolithic”
monad causes a number of problems with using the code store. Consider the program “if b then
(if ¥/ then c)”. Compiling the outer “if” with initial continuation halt and label 0 will result in the
continuation “[if & then c]; halt” being stored at label 0 and the label counter being incremented.
The problem here is that trying to compile this continuation via partial evaluation will fail. Why?
Because having been stored rather than executed, it will not have access to the next label 1. Instead,
the partial evaluator will try to increment a (dynamic) variable rather than an actual (static)
integer, and this will cause an error (e.g., a partial evaluator can evaluate “1+1” but not “x+1”
even if x is constant). In [13], the monolithic style specifications forced all static data to be explicitly
passed to stored command continuations, although this was at the expense of modularity. In fact
to compile if-then-else, the snapback operator[40] had to be used. These complications also make
reasoning about compilers constructed in [13] difficult. We shall demonstrate in Section 2.2 that
using metacomputations results in vastly simpler compiler specifications than in [13] and that this

naturally makes them easier to reason about.
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Standard:

Dynam = Id [—t] : Dynam(int) =
[t]] *p M.
unitp (—i)
‘ Implementation-oriented /Monolithic: ‘
Dynam = Ten, Addr (Ts: Stold) Mono[—t] : Dynam(int) =
Addr =int, Sto = Addr — int Mono[t] xp M.
Thread(i : int,a : Addr) = rdAddr *p Aa.
updateSto[a — i] xp A_.rdloc(a) inAddr (a + 1)
rdloc(a) = getSto *xp Ac.unitp(ca) (Thread(i,a) *p Av.unitp (—v))
‘ Metacomputation: ‘
C[—t] : Static(Dynam(int)) =
Dynam = 75 Stold rdAddr *g Aa.
Static = Tgny AddrId inAddr (a + 1)

(C[t] *s Awt : Dynam(int).

Yt *D Ai.
unitg| | Thread(i,a) *p Av.

unitp (—v)

Figure 2.1: Negation, 3 ways

2.2 Metacomputation-style Compiler Architecture

In this section, several compiler building blocks are presented. In Section 2.3, they will be combined
to create a compiler. For the first two of these blocks, monolithic versions are also given, drawn from
[13], to illustrate why metacomputation is helpful. Of particular importance to the present work,
Section 2.2.2 presents the reusable compiler building block for control flow, which demonstrates how
metacomputation-based compiler architecture solves the difficulties with the monolithic approach

outlined in Section 2.1.

2.2.1 Integer Expressions Compiler Building Block

Consider the standard monadic-style specification of negation[10, 25, 47] displayed in Figure 2.1. To
use this as a compiler specification for negation, a more implementation-oriented version is needed,

which might be defined informally as:

[—t] = [t] *p Ai. “Store ¢ at a and return contents of a” *p Av.unitp (—v)
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Cle1 + e2] : Static(Dynam int) =
rdAddr xgs Aa.
C|[el]] *9 )\(,01.
CHCQ]] *g )\(pg.
inAddr (a + 2)

©1 *D iz ant.

Y2 *p )\j :int.

unitg| | Thread(i,a) xp Avi.

Thread(j, (a + 1)) *p Avs.
unitp(v; + vs)

Figure 2.2: Specification for Addition

Let us assume that this is written in terms of a monad Dynam with bind and unit operations
*xp and unitp. Observe that this implementation-oriented definition calculates the same value as
the standard definition, but it stores the intermediate value ¢ as well. But where do addresses and
storage come from? In [13], they were added to the Dynam monad using monad transformers[10, 25]
as in the “Implementation-oriented” specification in Figure 2.1. In that definition, rdAddr reads
the current top of stack address a, inAddr increments the top of stack, and Thread stores ¢ at a.
The monad (Dynam) is used to construct the domain containing both static and dynamic data.

In the “metacomputation”-style specification, two monads are used, Static, to encapsulate the
static data, and Dynam to encapsulate the dynamic data. The meaning of the phrase is a meta-
computation: the Static monad produces a computation of the Dynam monad. Clear separation of
binding times is thus achieved. (In the examples, the dynamic parts of the computation are set in
a box for emphasis.)

Figure 2.2 displays the specification for addition, which is similar to negation. Multiplication

and subtraction are defined analogously.

2.2.2 Control-flow Compiler Building Block

We now present an example where separating binding times in specifications with metacomputations
has a very significant advantage over the monolithic approach. Consider the three definitions of
the conditional if-then statement in Figure 2.3. The first is a dual continuation “control-flow”

semantics, found commonly in compilers[2]. If B is true, then the first continuation, [c¢] *p &, is
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Control-Flow:
[if b then ¢] : Dynam(void) =

Dynam = Tcps void Id [b] *p AB : Bool.
Bool =Va.a x a— a
callcc (k.

B([¢] *p &,k))

Implementation-oriented /Monolithic: ‘

Mono[if b then c] : Dynam(void) =

Dynam = 7cps void (Tsy Label (Ts; Code Id )
Label = int, Code :( Label —>(Dynam voizi) Mono[b] +p /\)\B + Bool.
jump L = getCode xp AlIl : Code.(callcc Ak.II L) newlabel xp ALy
newlabel : Dynam(Label) = newlabel *p ALe.
getLabel xp Al : Label. callecc (Ak. . \
updateLabel[L — L+ 1] *p A_. newSegnent(Ly, k) *p A .
unit (1) newSegment(Lc., Mono[c] *p (jump L)) *p
B(jump L, jump L))
‘ Metacomputation: ‘

Dynam = Tcps void (T Code Id), Static = Ts; Label Id
[fThen : Dynam(Bool) x Dynam(void) x Label x Label — Dynam(void)

fThen(¢p, e, Le, L) = C[if b then c] : Static(Dynam Void) =
¢p *p AB: Bool. newlabel xg AL,.
callcc (Ak. newlabel xg AL..
updateCode[L, — ko] *xp A_. CIb] *s A
updateCode[L, — ¢, *p A_.jumpL,] *p A_. Cl] *i /\gf.
B(jump Le, jump L)) units(IfThen(pg, @e, Le, Li))

Figure 2.3: if-then: 3 ways
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executed, otherwise c is skipped and just & is executed. A more implementation-oriented (informal)

specification might be:

[if b then c] =
[b] *p AB.
“get two new labels L., L,” *p A(Lc, Lg).
callcc (k.
“store k at Ly, then ([¢] *p (“jump to L.”)) at L.” *p A

B(“jump to L.”, “jump to Ls”))

To formalize this specification, a technique from denotational semantics for modeling jumps is used.
We introduce a continuation store, Code, and a label state Label. A jump to label L simply invokes
the continuation stored at L. The second definition in Figure 2.3 presents an implementation-
oriented specification of if~then in monolithic style (that is, where Code and Label are both added
to Dynam). Again, this represents the approach in [13].

One very subtle problem remains: what is “newSegment”? One’s first impulse is to define it as
a simple update to the Code store (i.e., updateCode[L, > ke]), but here is where the monolithic
approach greatly complicates matters. newSegment can not be a simple update to the Code store.
Because the monolithic specification mixes static and dynamic computation, the continuation s
contains both kinds of computation. But because it is stored and not ezecuted, x will not have
access to the current label count and any other static data necessary for proper staging. Therefore,
newSegment must explicitly pass the current label count and any other static intermediate data
structures to the continuation it stores. Furthermore, x may have effects on the compile-time/static
data (like incrementing the label counter) that should be reflected further on in the compilation'.

The last specification in Figure 2.3 defines if-then as a metacomputation and is much simpler
than the monolithic-style specification. Observe that Dynam does not include the Label store, and
so the continuation k¥ now includes only dynamic computations. Therefore, there is no need to pass
in the label count to , and so, k may simply be stored in Code. This is a central advantage of

the metacomputation-based specification: because of the separation of static and dynamic

LA full description of newSegment is found in [13].
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Cle1 < eg] : Static(Dynam Bool) =
rdAddr xs Aa.
inAddr (a + 2)
C|[61]] *g )\(Pl-
Cl[eg]] *g )\(pz.
©1 *p Az int.
Y2 *p )\] :ant.
unitg| | Thread(i,a) *xp Av.
Thread(j, (a + 1)) *p Avo.
unitp (A k7, kp).((v1 < v2) = Kp,KkR))

C[while b do ¢] : Static(Dynam Void) =
newlabel xg )\Ltest-
newlabel xg AL.
newlabel xg AL.
ClIb]] *S )\(PB-
Cle] *s Ape.
callcc Ax.
updateCode[L, > ko] *p A_.
unitg updateCode[L. — ¢, *p A_.jump Lies] *p
updateCode[Licst — ¢ *p AB.(B(jump L., jump L,))] *xp A
jump Ltest

Figure 2.4: Specification for < and while

data into two monads, the complications outlined in Section 2.1 associated with storing command
continuations in [13] (e.g., explicitly passing static data and use of a snapback operator[40]) are
completely unnecessary.

Figure 2.4 contains the specifications for < and while, which are very similar to the specifica-

tions of addition and if-then, respectively, that have been seen already.

2.2.3 Block Structure Compiler Building Block

The block structure language includes new z in ¢, which declares a new program variable z in
c. The compiler building block for this language appears in Figure 2.5. The static part of this
specification allocates a free stack location a, and the program variable z is bound to unitg(a) in

the current environment p. c is then compiled in the updated environment and larger stack (a+1).
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Static = Tenv Env (Tgny AddrId), Dynam = s, Stold
Clzrva] : Static(Dynam(int))
Clzrpa] = TdEnv x5 Ap.(px) *s Aa. unitg(rdLoc(a))
C[new z in c] : Static(Dynam V oid)
C[new z in ¢| = rdAddr xg Aa.inAddr (¢ + 1)(rdEnv *gs Ap.inEnv (p[z — unitg(a)]) C[c])

Figure 2.5: Compiler Building Block for Block Structure

Static = Tgny Envld, Dynam = T5; Stold
C[c : comm] : Static(Dynam V oid)
Cler;e2] = Cle1] *s Ape, Cle2] *s Ape,-units(pe, *p A-e,)
Clz:=e] =rdEnv x5 Ap.(pz) *xs Aa.Cle] *s Ape.units(pe *p Ai: int.updateSto[a — i))

Figure 2.6: Compiler Building Block for Imperative Features

2.2.4 Imperative Features Compiler Building Block

The simple imperative language includes assignment (:=) and sequencing (;). The compiler building
block for this language appears in Figure 2.6. For sequencing, the static part of the specification
compiles ¢; and ¢y in succession, while the dynamic part runs them in succession. For assignment,
the static part of the specification retrieves the address a for program variable z from the current
environment p and compiles e, while the dynamic part calculates the value of e and assigns that

value to location a.

2.3 Combining Compiler Building Blocks

Figure 2.7 illustrates the process of combining the compiler building blocks for the block structure
and control-flow languages. It is important to emphasize that this is much simpler than in [13], in

that there is no explicit passing of static data needed. The process is nothing more than applying
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Block Structure Control-flow Block Structure + Control-flow

Aljz'r;vr Label
Static

Dynam

Eq ey

Equations:

Eqg1oa Y Edcr

Equock

Figure 2.7: Combining Compiler Building Blocks

the appropriate monad transformers to create the Static and Dynam monads for the combined

language. Recall that for the block structure language:

Static = Tenv Env (Tny Addr1d), and Dynam = Id

For the control flow language:

Static = Ts; Label Id, and Dynam = Tcps void (Tsy Code (Tsy Stold))

To combine the compiler building blocks for these languages, one simply combines the respective

monad transformers:

Static = Teny Env (Teny Addr (Tsy Label 1d)), and Dynam = Tcps void (Ts; Code (Ts: Stold))

Now, the specifications for both of the smaller languages, Eqpj,.x and Eqcr, apply for the “larger”
Static and Dynam monads, and so the compiler for the combined language is specified by Fqpioct UEqoF-

Code is generated via type-directed partial evaluation[7] using the method of Danvy and
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Compiler:
Dynam = Tcps void (Tt Coode (Tt Stold)), Static = Teny Env (Teny Addr (Ts: Label 1d))
Language = Expressions U Imperative U Control-flow U Block structure U Booleans

Equations = Eqgxpressions Y EqImperative Y E4Control-flow Y E4Block structure Y E4Booleans

Source Code: new z in new y in

T:=05y:=1;
while (1 < z) do
y = y*z; 2z 1= z-1;

Target Code:

0 :=5; 2 2 := [1]; 3: halt;
1 :=1; 3 := [0];
jump 1; 1 := [2] * [3];
2 := [0];
1 2 :=1; 3 :=1;
3 := [0]; 0 := [2] - [3];
BRLEQ [2] [3] 2 3; jump 1;

Figure 2.8: Compiler for While language and example compilation

Vestergaard[8]. Figure 2.8 contains the compiler for the while language, and an example pro-
gram and its pretty-printed compiled version. All that was necessary was to combine the compiler

building blocks developed in this section combined as discussed in Section 2.3.

2.4 The Run-time System for Subroutines

In this Section, the necessary runtime support for the procedure compilation techniques described

in Section 2.5 is outlined. This consists mainly of three things:
e displays and display addressing[1, 2]
e stack descriptors[43, 8], and
e the MachlLang instructions call, acall, and return.

A display (cf. Figure 2.9) is a way of organizing memory access in the runtime system of a
compiler. The display D is an array of pointers into memory. Accessing the store location loc is
accomplished by first dereferencing the pointer D|[f] and then counting up by displacement d. The

physical address of loc is, thus, D[f] + d. The display address of loc is the pair (f,d).
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D[]

loc

D[]

D[]

Figure 2.9: Referencing Store Location loc with Display D

It is necessary in the compilation of procedures to not have fixed addresses for procedure argu-

ments. Consider the definition of factorial in a suitable functional language:

fun fact n = if n=0 then 1 else n*(fact (n-1));

In evaluating “fact 57, there will be six different invocations of fact, each with its own version
of the argument n (namely, 0, ..., 5). Generally, the different versions of the formal arguments to
procedures must be stored at different addresses, and this is the main purpose of display addressing:
the formal argument to a procedure may be stored at display address (f, d), but (f, d) will generally
refer to different actual addresses throughout program execution.

At any point in program execution, if f is the largest number for which the display D[f] is
defined and if in the activation record pointed to by D[f] there are a total of d storage locations
used, then the run-time stack is said to have stack shape (f,d). In this situation, (f,d) is said to
be the stack descriptor. Stack descriptors are useful for determining the next free address in store,
which is (f,d + 1).

In this section, a particular format for activation records is presented, and it is shown how call,
acall, and return affect the run-time stack. It is a deliberate design decision to leave unfixed the

particular representation of activations, since there are many equivalent such representations and
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local storage

Display

Argument Labels

return label
dynamic link

Figure 2.10: Activation Record for call Ly f [L1,...,Ly] Lyet

it would diminish the generality of the compilation technique to fix upon any particular one. To
aid the reader’s understanding, however, a specific representation of activation records and the

run-time stack is given below and the actions of call, acall, and return are specified.

Activation Records

Figure 2.10 presents a representation for activation records. Activation records are created by calls:

call Lp f [Ll, . ,Ln] Lret

The dynamic link points to the topmost activation record before the call was executed (i.e., the
activation record of the caller), and is used to return from a subroutine call. The return label field
is L¢; in this example and indicates the code to be executed after the subroutine call is through.
The “Argument Labels” fields are filled in with the argument labels Li,...,L,. The “Display”
fields contain the previous display contents from before the subroutine call. Finally, local storage
starts at the top of the activation record, since it may grow or shrink throughout the execution of

the call.
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D'[0.. f+1]
AR L. L
D L | e
D[0.. max] D[0.. max]
AR .
D[ max] Jia -
0 [O.. 1]
L. L
D[f] --—~
D'[f]=0ff] -- -~
Before After

Figure 2.11: The effect on the stack of: call L f [L} ... L] Lyet

Effect of call and acall on the run-time stack

Figure 2.11 presents a “before and after” picture of a call to subroutine ¢ stored at L. 7 is presumed
to have a nesting level f + 1 (i.e., it may contain references to display locations (h,d) for 0 < h <
f+1). We assume that there is a register AR which points to the topmost activation in the frame
list. Observe that the current display D is stored in the topmost activation.

The effect of call L f [L} ... L] ] Lye on the stack configuration labelled Before in Figure 2.11

1s:

1. A new activation record is created on top of the stack with the dynamic link set to the current
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AN

D[0.. max]

L,..L.

L return

D'[0.. max]

Before

AR -.

] T

D'[0.. max]

D’ [ max

p——

After

Figure 2.12: The effect on the stack of return

activation, an appropriate return label, and argument labels L] ... L/ .

2. The new display D’ is identical to the display Dy except that it has an additional entry

D'[f + 1] pointing to the new activation. Observe that Dy is in the activation pointed to by

D[f]. D' is inserted into the new activation.

3. AR is set to this new activation, the display is set to D’, and control is sent to i.

The effect of acallj f[L)...L!] Ly is identical to the above, except that control is sent to

label L;, which is the jth label pointed to by D[f]. The acall instruction is used to call procedure

arguments.

subroutine at L; using an acall instruction.

Effect of return on the run-time stack

The effect of return is shown in Figure 2.12 and follows these steps:

For example, after executing callL f[L;...Ly| Lyet, the code at L may call the

1. Dereferencing the dynamic link gives the activation of the calling subroutine.
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call 101 0 [103] 102

102: <0,0> :

SBRS

103: <1,1> := #777

<1,0> := —<1,1>
ldreg SBRS,-<1,0>
return

101: acall 1 1 [] 100
100: <1,0> := SBRS

ldreg SBRS,<1,0>
return

Answer is: <0,0>

Figure 2.13: Compiling: (letclosed id(x) = x in (funcall id --777))

2. The previous display must be restored before returning, so the display is set to D’
3. AR is set to the activation of the calling subroutine.

4. The stack is popped, and control is sent to Lyesyrn for return and L; for ajump L;.

Sample Machine Language Program Execution

Figure 2.13 gives an example machine language program which was produced by the compiler
block for procedures which is defined in the next section. While that RCBB has not been defined
yet, it is instructive to go through the output code to understand how the runtime system works.
The particular program compiled in Figure 2.13 is the identity function on integers. Initially,
the runtime stack appears as in Figure 2.14(a). Execution begins with the call 101 0 [103] 102
instruction. This instruction creates a new activation record (cf. Figure 2.14(b)) and passes control
to the code at label 101. The code at label 101 is an acall to get the value of the argument --777.
acall 11 [] 100 calls the first argument label in the activation record pointed to by D[1]—that
is, 103. Executing the acall creates a new activation record pointed to by DI[1], as is shown
in Figure 2.14(c). The code at label 103 calculates --777, puts the result in a register SBRS,
and returns. Executing return means popping the top activation record off the stack (as in

Figure 2.14(d)) and sending control to the return label 100. The code at 100 essentially just
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(a) Initial Configuration

D [ O :I——<0—,O;| Unused

(b) After the call to label 101

(d) Argument call returns and stores contents

of sers register on stack top:
D[1] -~
arg label 103
<1,0>: contents of SBRS
return label 102 D |: l :|_ - >
arg label 103
dynam link
return label 102

dynam link

D O B _<0_,0;| Unused
[ :| <0,0>: | Unused
................................... D[O]---=

(c) Afteracail 1 <1,0> <1,0> 100

- it calls label 103
(e) Finally, the result of the application
D [ l ]— - -= is stored at <0,0>
return label 100
dynam link | D [ O :I— _<0_,0;| contents of SBRS
arg label 103 =
return label 102
dynam link |

D |: O ]__<0_0;| Unused Ié

Figure 2.14: Action of Figure 2.13 on run-time stack
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returns again, this time passing control to the code at 102. Executing the code at 102 simply saves

the value of the procedure call in (0,0). Now, the stack is as portrayed in Figure 2.14(e).

2.5 Compiling Procedures

There are two ways to handle the compilation of procedures generally. The first is to inline (i.e.,
substitute) the procedure body at each procedure call, in which case the procedure is called open.
Compiling a procedure application (funcall (proc (x) (x + x)) 2) (where (proc (x) (x +
x)) is treated as an open procedure) would inline the procedure body (x + x) with argument 2,
thus producing the same target language code as (2 + 2) does. As in [43, 13], the compilation
semantics for open procedures is identical to the usual monadic semantics for the call-by-name
A-calculus. The second method is to translate procedure bodies into target code stored at labels
and procedure applications into target language subroutine calls to those labels. Such procedures
are called closed procedures. Closed procedures are necessary for compiling recursive bindings
(since inlining recursive procedures does not terminate). We introduce special syntax, letopen
and letclosed, to distinguish open and closed procedure declarations, respectively.

It will be seen that very few changes need to be made to the standard semantics for procedures
(i.e., the lambda calculus semantics) to produce the compilation semantics. One change, though,
is that locations in store will now be specified as display addresses rather than as the simple fixed
addresses used so far. This is to be expected as most traditional compilation schemes for procedures
require some means of keeping track of multiple procedure activations[1]. Section 2.4 describes the
the runtime system which is assumed here. A procedural language is given—the integer-valued,
higher-order function language FunFzp—to demonstrate our procedural compilation technique.
FunFEzp extends integer expressions, and it clarifies our procedure compilation technique to show
how the compilation of FunFEzp terms interacts with the compilation of integer expressions. Finally,
the compilation semantics for FunFEzp is introduced.

To use display addresses, one need only change the “free address type” from addresses Addr =
int to stack descriptors SD = int x int (for a discussion of stack descriptors, see Section 2.4). The

changes to the previous compiler block definitions can be summarized as:
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Previous Defn. Replaced By.

Tenv Addr Tenv SD
rdAddr rdSD
inAddr inSD

(a + disp) (S + disp)

where (f,d) + disp = (f,d + disp). Changing the version of negation in Figure 2.1 to use stack
shapes yields:
C[—e] = rdSD %5 AS.
(inSD (S + 1) Cle]) *s A@e-
Qe *D Ai.
units | Thread(i,S) *p Mv.

unitp(—v)

For a procedure source language, the language of higher-order, integer-valued function expres-
sions FunFzxp is used. Its syntax and typing rules are summarized in Definition 5. To distinguish
integer expressions from integer values int, the type intexp is introduced for the syntactic or phrase

type of integer expressions below.

Definition 5 The Functional Ezpression language FunFEzp is:

FunEzp ::=funcall f e;...e, | letclosed f(z1:¢1,...,Zn:0n) =eine

for types ¢ ::=intexp | ¢ — ¢ and has typing rules:

F'Ff:pr—>...>p,—intexp T'Fer:¢r ... PFep:oy
'k (funcall f e;...ep) : intexp
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T{z1:¢01,...,2p : pp} Fe:intexp T{f:¢1 = ... > ¢, — intexp} I € : intexp
'+ (letopen f(z1: ¢1,...,Z, : o) = ein€) : intexp

(z; distinct)

T{z1:¢01,...,2n : pp} Fe:intexp T{f:¢1 = ... > ¢, — intexp} I € : intexp

'+ (letclosed f(z1: ¢1,...,%n : @) = eine) : intexp (z; distinct)
Observe that the only terms of higher type in this language are introduced by a letopen or
letclosed. Because there is only funcall rather than the more general function application, all
higher-typed terms must be explicitly named.

FunEzp extends the language of integer expressions by allowing higher-order function defini-
tions with open and closed procedures and function calls with funcall. FunFEzp is a powerful
enough language to demonstrate how procedures are compiled within the metacomputation-style
framework. As a starting point, the standard semantics of letopen, letclosed, and funcall is
considered first, which is nothing but the standard call-by-name semantics for the lambda calculus
as was mentioned previously. Then, the compilation semantics for the simplest example of a closed
integer-valued procedure is defined—namely, a procedure of type intexp. Once it is understood
how to introduce call and return for procedures of type intexp, adding arguments is a simple
matter.

Definition 6 specifies two helper functions, apply and Lambda which are used throughout this
Section. apply and Lambda are syntactic sugar for the usual, call-by-name semantics for application

and lambda abstraction. For example, if Az.f : intexp — intexp and e : intexp, then

apply [Az.f] [e] 2 rdEnv x Ap-[Az.f] = Ap. p(inEnv p [e]) 2 [(Az.f)e]

Lambda(z, [f]) 2 [Az.f]

1>

rdEnv * Ap.unit(Ac.inEnv p[z — ¢ [f])

Definition 6 (apply and Lambda) For ¢ = ¢1 — ... — ¢, — intexp,
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apply, : M(p) = M(p1) = ... = M(pn) = M(int)
apply,tz1...zp = TdEnv * Ap.
t % Apl.

(p1(inEnv p 1)) * Apa.

(pn—l(inEnV p xn—l)) * Apn-
(P (inEnv p zy))

Lambda(i,z) = rdEnv xg Ap.unitg(Ac.inEnv p[i — | x)

Definition 7 gives the standard semantics for FunFExp. It is nothing more than the usual
monadic semantics for the call-by-name A-calculus. Observe that the standard semantics for

letopen and letclosed are identical.

Definition 7 (Standard Semantics of funcall, letopen, and letclosed)

[letopen f(z1: @1,...,Zn : on) = ein €] = rdEnv x Ap. (inEnv p[f — [Az1.... Azp.€]] [€'])
[letclosed f(z1: ¢1,...,Zn : @p) = ein €] = rdEnv x Ap. (inEnv p[f — [Az1.... Azn-€]] [¢])

[funcall fe;...e,] = apply, [f][e1]---[en]

[Az.f] = rdEnv x5 Ap.unitg(Ac.inEnv p[z — ] [f])

where ¢ = 1 — ... = @, — intexp, f : ¢, and e; : p;

The defining equations of the compilation semantics for open procedures (given below in Defi-
nition 8) are identical to the standard semantics for open procedures. An example compilation is

presented in Figure 2.15.
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Definition 8 (Compilation Semantics for funcall and letopen)

C[letopen f(z1: ¢1,...,%n : pp) = € in €'] = rdEnv *g Ap. (inEnv p[f — C[Az1.... Azp.€]] C[€'])

C[funcall fe; ...e,] = apply, C[f]C[e1] - .- Clexn]

C[Mz.f] = rdEnv xg Ap.unitg(Ac.inEnv p[z — ] C[f])

where ¢ = 1 = ... =, — intexp, f : ¢, and e; : @;

We now consider the compilation of closed procedures into “call and return” code beginning
with the simplest case of a closed procedure—that is, a closed procedure of type intexp. After
that, it is shown how to compile procedures with arguments.

The key to compiling an integer expression e as a closed procedure is that the code for e is
stored at a label L. in the code store, and then a call to L, is made rather than executing the
code for e “in place” as before. Furthermore, the value produced by the code for e is returned to
the caller via a special register named SBRS (subroutine returng). Semantically, the SBRS register
can be modeled equally well by either including it as part the value store Sto or by applying the
state monad transformer (7s; int) to the Dynam monad. Whichever implementation is chosen, it is
assumed that there are operations setSBRS : int — Dynam(void) and getSBRS : Dynam(int) which
set and read the current value of the SBRS register, respectively. Following Reynolds[43], source
language procedures are distinguished from the target language subroutines which represent them.

The process of making a subroutine for an integer expression procedure e is as follows:

1. When the subroutine for e is called, it will be executed in a stack with one more activation
record, so if the current stack shape is (f,d), then compile e in the stack shape (f + 1,0).

Call 7, : Dynam(int) the result of compiling e.

2. The subroutine for e first executes 7., then stores the resulting integer in the SBRS register,

and executes a return.

Steps (1) and (2) can be neatly summarized as the function mksubrintexp, Whose specification is

found in Definition 9.
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Definition 9 (mksubr part I)

mksubrintexp : SD — Static(Dynam(int)) — Static(Dynam(void))
mkSUbTLiptexp S P = (inSD ST p) x5 Af.
f *p Aresult.
units | (setSBRS result) *p A

return

where (f,d)™ = (f +1,0).

In the standard semantics for (letclosed z = e in €’) (shown above in Definition 7), the variable
z is simply bound to the meaning of e in [¢’]. The compilation semantics for (letclosed z = e in €')
binds z to a computation which produces a call to L. instead. Of course, the compilation semantics
must make a subroutine for e and store it at L. as well. So, the compilation semantics for letclosed

for procedures of type intexp is:

C[letclosed z : intexp =ein €'] =
newlabel xg AlL.
rdEnv xg Ap.
rdSD x5 AS.
(mksubTintexp S Cle]) *s AT.
Cle'] *xs Amer.

(inEnv p[z — (mkcallintexp S Le)] )
unitg(updateCode[L, — 7| *p A_.7)

In this definition, a new label L, is generated to store the subroutine for e, then mksubrintexp is
used to create the subroutine 7, implementing e. The body of the letclosed, €', is then compiled
to T in an environment in which a reference to z in ¢’ will generate a call to L.. The dynamic
part of the metacomputation stores 7, in the code store at label L., and then executes the code
for €', m. But what is mkcallintexp S Le?

mkcallintexp O Le is a function that must generate a call to L, whenever z is referenced in e.
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For each reference to z in €', a new return label will have to be generated to represent the different
places in the code to which the subroutine for e will return. Furthermore, x may be referenced
from within nested definitions (e.g., (letclosed z = e in ... (letclosed y = ¢y in z + y)...)), and
so it will be necessary to determine which activation records must be visible from the subroutine
for e. If the current stack shape is (f,d) when the procedure e is defined, then the first f activation

records should be visible during the execution of subroutine m.. The definition of mkcall;ptexp is:

Definition 10 (mkcall part I)

mkcalliptexp : SD — Label — Static(Dynam(int))
mkcallintexp (f,d) L =
newlabel xg AL;q.
callcc A8 : int — Dynam(void).
units | updateCode[L,e; — (getSBRS xp )] *p A-.

call L f [] Lret

Here, mkcallintexp (f,d) L generates a return label Ly¢;. The return code is determined by getting
the current continuation 8, which will have type int — Dynam(void) since this call is being made
from within an integer expression, and passing 8 the value in the SBRS register: getSBRS xp [.
Finally, the call (call L f [] Ly¢t) is given.

As an example of how all of this fits together, consider the compilation of the simple FunFEzp

expression: letclosed 7 = 1 in (funcall 7). The compiled code for this program should generate a
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call to a subroutine which returns the value 1 via the SBRS register. By Definition 12:

C[letclosed i = 1 in (funcall i)] =
newlabel xg AL;.
rdEnv %5 Ap.
rdSD x5 AS. (2.1)
(mksubTintexp S C[1]) *xs Am.
C[funcall 7] xg Amc.

(inEnv p[i — (mkcalljntexp S Li)] )
unitg(updateCode[L; — 7] *p A7)

Notice that C[funcall i] in Equation 2.1 can be simplified to:

newlabel *g AL;g.

callcc A8 : int — Dynam(void).

(2.2)
unitg (updateCode L, (getSBRS *xp f)) *p A
call L; f [] Lyet
if S = (f,d). By Definition 9:
mKsubTintexp S C[1] =
(inSD ST C[1]) *s A : Dynam(int). 23)
T *xp Aresult : int. ) (setSBRS 1) *p A
= unitg
units | (setSBRS result) xp A_. return
return
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C[letclosed i = 1 in (funcall )] =
rdSD xs A(f,d).
newlabel xg AL;.
newlabel x5 ALjg.
(updateCode[L; — (setSBRS1) xp A_.return| *xp A
anits callcc A8 : int — Dynam(void).

(updateCode L;¢; (getSBRS xp f)) *p A-.
call L; f [] Lyes

Given the initial stack descriptor and label, (0,0) and 100, and initial (dynamic) continuation

Bo, the right hand side of Equation 2.4 reduces to this dynamic semantic term:

updateCode[100 — (setSBRS1) xp A_return| xp A
updateCode[101 — (getSBRS *p Av : int.(setSBRSw) *p [o)] *p A (2.5)
call 100 0 [] 101

This term may reasonably be pretty-printed as:

call 100 0 [1 101;

100: ldreg SBRS,1;
return;

101: ldreg SBRS,SBRS;
halt;

One detail left out of the previous analysis is that the value of a function call returned in the
SBRS register should be saved in a temporary location to avoid having it overwritten by another
function call. To this end, savereg is introduced in Definition 11. Any closed function calls should

be wrapped by a savereg, as is shown in Definition 12.

Definition 11 (savereg) savereg is used to store the contents of the SBRS after the return from a

function call:
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savereg : Static(Dynam(int)) — Static(Dynam(int))
savereg u = rdSD % AS.
U *s A : Dynam(int).

unitg(¢ *p i :int.Thread(i, S))

Definition 12 (Compilation Semantics of letclosed and letrec)

Clletclosed f(z1: p1,...,2n: @0n) = eine] =
newlabel x5 ALjs.
rdEnv *xg Ap.
rdSD x5 AS.
(mksubry, S C[Az1....A\zy.€]) xs Amy.
Cle'] xs Amy.

(inEnv p[f + (mkcall, S Ly)]
units(updateCode[Ls — mf] *p A_.Tr)

Clletrec f(z1: ¢1,...,2n: ) =eine] =
newlabel s ALys.
rdEnv xg Ap.
rdSD x5 AS.
(mksubry S (inEnv p[f — (mkcally S Ly)] C[Az1. ... Azyn.€])) %5 Amy.
Cl[e'] xs Ame.
(inEnv p[f — (mkcally S Ly)]

unitg(updateCode|[Ls — 7] *p A_.7)

C[funcall fe ...e,] = savereg(apply,, C[f] C[e1] - - - C[en])
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where ¢ = 1 = ... = , — intexp,

2.5.1 Adding function arguments

The compilation method described previously can be easily extended to higher types. Consider the

FunFExp expression e:

letclosed p = (Ax.b) in (funcall p (1 + 2)) * (funcall p (3 + 4))

where p : intexp — intexp. The compilation of e will involve compiling the arguments (1+2) and
(3+4) into subroutines 71 and 7o, respectively, using mksubrintexp, and then storing 71 and mo in
the code store at new labels L1 and Ls, respectively. References to x within b should result in calls
to Ly and Ly in the subroutine for (Ax.b). To be more precise, references to x within b should
result in the appearance of appropriate acall instructions within the subroutine for (Ax.b).

To make a call to an argument label, an appropriate acall instruction must be generated. In
the case of a reference to x within b, this is accomplished in a manner which is very similar to

mkcalljntexp, €xcept that an instruction

acall i f arg-label-list return-label

is used instead of a call. Since x is the first argument to b, ¢ will be 1 in this case. Since x is of

type intexp, arg-label-list will be [1, and for each funcall to (Ax.b), a new return label return-label

will be generated. This is encapsulated by the helper function mkargcall

intexp:
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Definition 13 (mkargcall part I)

mkargcallinieyy - SD — int — Static(Dynam(int))

mkargcall; ..., (f,d) j = newlabel x5 ALyet.
rdSD xg AS'.
callcc A3 : int — Dynam(void).
unitg (updateCode L, (getSBRS xp [)) *p A-.

acallj f [] Lre

(mkargcall (f,d) j) produces an acall to the i-th argument label in the f-th frame. Recalling
the above example FunFExp expression e, the appropriate argument call for x in b is produced by
(mkargcall;piexp (f 1+ 1,0) j) if e is compiled in a stack with shape (f,d). The stack descriptor
(f+1,0) signifies that arguments to (Ax.b) will be executed in a stack with one additional activation

record.
To compile (Ax.b) into a subroutine, it is necessary to define mksubr,, for ¢ = intexp — intexp.

(MKSUBT;ptexp - intexp S C[(Ax.D)]) will apply C[(Ax.b)] to an appropriate mkargcall for x:

MKSUDTintexp s intexp O C [()\X-b)]] =
(1nSD S [aPPlYintexp s intexp CL(AX-D)] (mkargeall; i, ST 1)]) x5 Ams : Dynam(int).
Tp *p Aresult.
units | (setSBRS result) xp ..

return

7y generates the return value corresponding to some function call funcall (Ax.b) arg, which is then
stored in the return register SBRS, and then the subroutine returns. The definition of mksubr,, for

arbitrary ¢ is found in Definition 14.
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Definition 14 (mksubr part IT)

mksubr,, : SD — Static(Dynam(y)) — Static(Dynam(void))

mksubr, S p =
(inSD S [apply,, p (mkargcall, ST 1)...(mkargcall, S*n)]) xs Af.
f *p Aresult.
units [ (setSBRS result) *p A

return

where ¢ = @1 — ... — o, — intexp and (f,d)* = (f +1,0).

Consider again the example FunFEzp expression e:

letclosed p = (Ax.b) in (funcall p (1 + 2)) * (funcall p (3 + 4))

To compile either function call in e, the last thing to do is extend mkcall to type intexp — intexp.

The static part of (mkcallipexp s intexp (f> @) L) must:

e take the actual argument arg (i.e, (1+2) or (3+4)),

e get the current stack descriptor S,

e compile arg into a subroutine 7 using (mksubTintexp ST arg),

e generate new labels L, and L for the return code and 7.
The dynamic part of (mkcallintexp s intexp (f>d) L) must:

e store 7w at L; in the code store,

e store the return code at L,.¢, and

e execute (call L f [L1] Lye)-
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(mkcalliptexp - intexp (f>d) L) may be neatly encapsulated as:

Lambda(1,

newlabel x5 ALjg.

rdSD *g AS'.

rdEnv *g Ap.

(pl) x5 Aaj.

(mksubTintexp (S')" a1) *s Ami.

newlabel xg ALj.
callcc A3 : int — Dynam(void).

anits updateCode[L; — 1] *p A-. )
(updateCode[L,¢; — (getSBRS xp )] *p A
call L f [L1] Lyet

The definition of mkcall,, for arbitrary ¢ is found in Definition 15. The (quite analogous) definition

of mkargcall,, for arbitrary ¢ is found in Definition 16.
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Definition 15 (mkcall part IT)

mkcall, : SD — Label — Static(Dynam(y))

mkcall, (f,d) L =

Lambda(1,

Lambda(n, newlabel xg ALye;.
rdSD *g A\S'.

rdEnv xg Ap.

(pl) x5 Aai.

(pn) *S Al

(mksubr,, (S')T a1) *g Am.

(mksubr,,, (S)t a,) *xs Am,.

newlabel %xg ALj.

newlabel xg AL,.
callcc AS : int — Dynam(void).
updateCode[L; — 71| *p A_.

it
units updateCode[L,, — 7] *p A_.

(updateCode|L,¢; — (getSBRS *xp ()] *p A-.

call L f [L1, e ,Ln] Lyet

where ¢ = 1 — ... = Y, — intexp.
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Definition 16 (mkargcall part II)

mkargcall, : SD — int — Static(Dynam(yp))

mkargcall, (f,d) j =

Lambda(1,

Lambda(n, newlabel xg ALpe;.
rdSD *g AS'.

rdEnv xg Ap.

(pl) x5 Aai.

(pn) *S Alp.

(mksubr,, (S')T a1) *g Am.

(mksubr,,, (S)t a,) *xs Am,.

newlabel %xg ALj.

newlabel xg AL,.
callcc AS : int — Dynam(void).
updateCode[L; — 71| *p A_.

it
univs updateCode[L,, — 7] *p A_.

(updateCode|L,¢; — (getSBRS *xp ()] *p A-.

acall j f [Li,...,Ly] Lye

where ¢ = 1 — ... = Y, — intexp.
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Compiling: (letopen inc(x) = x+1 in (funcall inc --99))

<0,2> := 99;
<0,1> := -<0,2>;
<0,0> := -<0,1>;
<0,1> := 1;

Answer is: <0,0>+<0,1>

Compiling: (letclosed inc(x) = x+1 in (funcall inc --99))

0: call 2 0 [4] 3

1: <1,0> := SBRS
<1,1> := 1
ldreg SBRS,SBRS+1
return

2: acall 11 [1 1 /* call to 4 */
3: halt /* Answer in SBRS */

4: <1,1> := 99

<1,0> := =<1,1>
ldreg SBRS,-<1,0>
return

Figure 2.15: Compiling the open and closed versions of the same procedure

2.5.2 Sample Compilations

Figures 2.15 and 2.16 present examples compilations of FunExp procedures. Figure 2.15 demon-
strates the difference between the compilation of open and closed procedures. The open version
of the procedure inc(x) = x+1 simply inlines the body of the procedure at the call site. In other
words, the resulting code is identical to the code that would be produced by (— — 99+ 1). Fig-

ure 2.16 shows an example of the compilation of a recursive program.

2.6 Conclusions

This chapter introduced a new form of denotational specification based on metacomputations.

Metacomputations are a simple and elegant structure for representing staged computation within
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Compiling:

letrec

fact(n): (int->int) = (n=0 ==> 1, (n*(funcall fact (n-1))))
in

(funcall fact 2)

call 100 [110] <0,0> <0,0> 109 /* initial funcall */

109: <0,0> := SBRS /* <0,0> has 2! */
halt
110: ldreg SBRS,#2 /* subr. for original arg. */
return
100: acall 1 1 [] 104 /* gets n for n=0 test */
104: brzero SBRS 101 102 /* n=0 test */
101: <1,0> := #1 /* return 1 if n=0 */
jump 103
102: acall 1 1 [ 105 /* get n for else clause */
105: <1,1> := SBRS /* store n */
call 100 0 [108] 106 /* rec. call to fact */
108: acall 1 1 [] 107 /* get n for (n-1) arg */
107: <2,0> := SBRS /* subr. calculates (n-1) */
<2,1> := #1
ldreg SBRS,<2,0>-<2,1>
return
106: <1,3> := SBRS /* nx(fact (n-1)) */
<1,2> := <1,3>
<1,0> := <1,1>x<1,2>
jump 103
103: ldreg SBRS,<1,0>
return

Figure 2.16: Compiling a letrec
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the semantics of a programming language. Metacomputation-style specifications use two monads
to factor the static and dynamic parts of the specification, thereby staging it and achieving strong
binding-time separation iin the sense of [29]. Because metacomputations are defined in terms of
monads, they can be constructed modularly and extensibly using monad transformers.

Reusable compiler building blocks (in the sense of Section 1.1) may be implemented as metacomp-
utation-style language specifications. In fact, this chapter presented the first implementation of
RCBBs (the second implementation—as monadic code generators—appears in the next chapter).
Reusable compiler building blocks were presented for a wide variety of language features: ex-
pressions, booleans, imperative, control-flow, block structure, recursive bindings, and higher-order
integer-valued functions.

An original inspiration for this study was Reynold’s derivation of a compiler from the functor
category semantics for Algol[43]. Both the run-time system for subroutines and the target language
for the compiler blocks presented here are based on that work. However, one difference is that the

target language presented here includes jumps and labels.
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Chapter 3

Reusable Compiler Building Blocks as
Monadic Code Generators

This chapter concerns the implementation of reusable compiler building blocks as monadic code
generators. A monadic code generator (MCG) is simply a monadic source language specification
which is target language-valued. For each source language feature, a function compile : Source —
M(TargetLang) is defined which specifies how each feature is translated into the target language.
Not surprisingly, the definitions of compile closely resemble what are called translation schemas or
semantic actions in traditional work on compilation[1, 35, 2].

The RCBB implementations presented in this chapter differ from those of Chapter 2 in that
monadic code generators produce target language code directly without relying on the intermediate
process of partial evaluation. Avoiding partial evaluation is an advantage of the straightforward
MCG approach to code generation, because the use of a partial evaluator can be complicated in
practice. Furthermore, certain optimizations are easier to implement within MCGs than within
metacomputation-based definitions because an MCG can inspect target code values (while the dy-
namic computations produced by metacomputation-based specifications, being functions, may not
be inspected). An example of this kind will be seen in the optimizing MCG for expressions presented
in Section 3.3. From the point of view of compiler correctness, however, MCGs are one step further
removed from the standard semantics of their source language than are the metacomputation-based
RCBBs of Chapter 2. This introduces further requirements in the correctness proof of MCG-based
modular compilers as will be seen in Chapter 5 where the MCG compiler block implementations

are formally related to the metacomputation-based implementations.
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MachlLang : :=
NOP|
S :=Rhs |
MachLang ; MachLang |
JUMP L |
ALLOC S |
DEALLOC S |
ENDLABEL L. MachlLang |
SEGM (L,MachLang) |
BRLEQ Rhs Rhs |
MachLang ¢ MachlLang x MachlLang |
call L f arg-label-list return-label |
acall i f arg-label-list return-label |
return

Rhs ::= SRhs | -SRhs | SRhs+SRhs
SRhs ::= (f,d) € SD | #c for integer ¢

IntProducer = MachLang x Rhs x Set(SD)

TargetLang = MachLang + IntProducer

Figure 3.1: BNF for the Target Language

3.1 Target Language

The target language TargetLang used in this work is presented in Figure 3.1. It is composed of
two sublanguages: the machine language MachLang and the integer producer language IntProducer.
MachLang is a three-address code as one might find in [1, 35, 2]. That is, it contains assignments to
locations, sequencing, and jumps. Source language commands are compiled to MachLang programs.
Target language right-hand sides Rhs include at most one arithmetic operation as is typical of right-
hand sides of intermediate and machine languages|1, 35, 2].

MachLang also contains several commands which are not typically found in three-address code:

e two structured label operators ENDLABEL and SEGM, which allow new labels and code segments

to be introduced,
e storage allocation and deallocation operators ALLOC and DEALLOC,

e code-level apply with ¢. This is used to provide labels to a branch and will be discussed in
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Section 3.7 (control-flow MCG).

The command (ENDLABEL L ) introduces a new label at the end of the MachLang program .
An alternative would be to introduce a Label(L): command into MachlLang instead, and then
“(ENDLABEL L w)” would be equivalent to “r ; Label(L)”. The command SEGM(L,7) defines a
new code segment 7 at label L. The commands ALLOC and DEALLOC explicitly allocate and deallocate
stack locations. Although these commands are not typical intermediate code, we shall see in
Chapters 4 and 5 that it is convenient for the purpose of relating the source and target language
semantics to have these commands.

Source language phrases of type intexp are compiled to programs in the integer producer
language IntProducer = MachLang x Rhs x Set(SD). An IntProducer captures the notion of integer-
producing code by pairing a machine language right-hand side to a machine language sequence.
Machine language sequences do not produce values as they are commands, so how does one model
source language integer expressions as sequences of machine language instructions? The key is to
model an integer expression e as a sequence of machine instructions 7, and a machine language
right-hand side rhs, with the following intended meaning. First 7, is executed, and then rhs, is
evaluated, thereby producing an integer value. m, may use temporary locations tmps, to calculate
intermediate values of e, and then the evaluation of rhs. uses these locations prepared by m,. to
produce the value for e. When we conjoin the temporaries tmps, to m, and rhs., we get the integer
producer (me, rhse, tmps,).

The simplest example of an IntProducer is the code produced for an integer literal ¢, which
is the triple (NOP,#c,{}). The code necessary for calculating an integer constant is a NOP (“no
operation”), because there are no intermediate values to be stored. The right-hand side is simply
the target language constant #c, and since no temporary locations were used, the empty set {} is
the third component.

An IntProducer produced in the compilation of the integer expression “-777” is:

(ALLOC (0,0) ; (0,0):=#777,—(0,0),{(0,0)})

Operationally, this triple means the following:
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compile(e : intexp) : M(IntProducer)
M = T SD Id

compile(z) = unit(NOP, #1, { })

compile(—e) =

rdSD * AS.inSD (§+1) ( unit{r. ; ALLOC S ; S:=rhs. ; (pop tmps,), —S, {S})

(compilee) * A(me, rhse, tmps,). )
compile(er +e2) =
rdSD * A(f,d).
(compile e1) * A{m1, Ths1, tmps,).
(compile e2) x A(ma, rhsa, tmps,).
unit(m ;ALLOC (f,d); (f,d):=rhs1; (pop tmps,);
w2 ; ALLOC (f,d + 1) ; (f,d + 1):=rhs2; (pop tmps,),
(f,d) +(f,d+1),
{(f,d), (F,d+1)})

inSD ({f,d + 2))

where:

(pop {}) = NOP
(pop {S1,...,5,}) = DEALLOC S} ; ... ; DEALLOC S,

Figure 3.2: Monadic Code Generator for Exp

1. Execute ALLOC (0, 0) ; (0,0):=#777, which first allocates a temporary location (0, 0), and then
stores the intermediate value 777 in (0,0). This code prepares the store for the evaluation of

the right-hand side.
2. Evaluate the right-hand side, —(0, 0), which returns the value of the expression.

3. The set of temporary locations {(0,0)} keeps track of the locations which were used in the

evaluation of “~777”, which may now be deallocated.
Generally, an IntProducer program (., rhs., tmps,) means operationally:
1. execute m,
2. evaluate the right-hand side rhs.,

3. deallocate tmps,
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fun assign S (IP ((SEQ pi),rhs,Slist)) result =
IP(SEQ(pi@[ALLOC S,ASSIGN(S,rhs) ,DEALLOC Slist]), result,[S]);

fun AddAssign (IP ((SEQ pil),rhsi1,tmpl)) (IP ((SEQ pi2),rhs2,tmp2)) S1 S2 =
IP(SEQ(pil @ [ALLOC S1,ASSIGN(S1,rhs1),DEALLOC tmpl] @
pi2 @ [ALLOC S2,ASSIGN (S2,rhs2),DEALLOC tmp2]),
(ADD (stackLoc(S1),stackLoc(S2))),[S1,S2]);

fun compile (e:Expr) =
case e of
(IntLit i) => wunit (code (IP((SEQ []1),(simpRHS (Lit i)),[1)))
| (*x N.b., assign and AddAssign do the deallocation *)
(Negate e’) =>
rdSD bind (fn S as (f,d) =>
(inSD (f,d+1) ((compile e’) bind (fn cv as (code c) =>
(unit (code (assign S ¢ (NEG (stackLoc S)))))))))
|
(Add (el,e2)) =>
rdSD bind (fn S as (f,d) =>
(inSD (£f,d+2)
((compile el) bind (fn cvl as (code cl1) =>
(compile e2) bind (fn cv2 as (code c2) =>
(unit (code (AddAssign c1 c2 (f,d) (£f,d+1)))))))));

Figure 3.3: ML Monadic Code Generator for Exp

3.2 Monadic Code Generator for Expressions

Figure 3.2 presents the MCG for integer expressions and Figure 3.3 shows its implementation in
ML. Here, the compiler function compile : M(IntProducer), will generate an IntProducer. Observe,
also, that display addresses are used here for the “free address” type, although for this MCG,
Addr = int would serve equally well. We add display addresses with the environment monad
transformer (g, SD).

The IntProducer corresponding to an integer literal ¢ requires neither code nor temporary loca-
tions, so ¢ is mapped to the triple (NOP, #i, {}). To compile a negation —e, first the top free address
S is calculated and subexpression e is compiled in a larger stack S + 1, producing (e, Ths., tmps,).

The MachLang component for —e is:

Te ; ALLOC(S) ; S:=rhs. ; (pop tmps,)

This code executes 7w, (thus preparing rhs. for evaluation), allocates S and stores the value of
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Ths. in S, and then deallocates the temporaries tmps, used in 7, using pop!. After executing that
code, the target language right-hand side for negation, —S, can be evaluated to produce the value
for —e. The temporaries used in that code are only {S}. compile(e; + e2) is defined similarly to

compile(—e).

3.3 Optimizing Monadic Code Generator for Expressions

While the MCG for expressions presented in the previous section has the advantage of simplicity,
it does not always produce space-efficient code because every intermediate value of a term is stored
in a temporary location. For example, the code produced by the MCG in the previous section for

the integer expression “~777” is (if the current stack descriptor is (0,0) at the time of compilation):

<ALL0C <Oa 0) H <O7 0>::#777a _<0, O>, {<07 0>}>

Clearly, the use of the location (0, 0) is unnecessary, as a more space-efficient IntProducer for “-777”
is:

(NOP, # — 777,{})

Figure 3.4 presents an alternative MCG specification for expressions which is considerably more
thrifty with regards to storage. By applying the CPS monad transformer, and thereby having access
to continuations, we can choose whether or not to store an intermediate value. The specification
presented here is reminiscent of Reynolds usetmp operator in [43].

A target language right-hand sides (e.g., #777, —(f,d), (f1,d1)+(f2,d2), etc.) may have at
most one operation. Define a simple right-hand side to be a target language right-hand side with no
operations in it—i.e., a literal #n or a storage reference (f,d). If (me, rhse, tmps,) is the IntProducer

generated for expression e where rhs. is simple, then the code for —e can simply insert a negation

'(poptmps,) is a sequence of DEALLOC instructions, and although its definition is under-specified in
Figure 3.2 because tmps, is a set (ie., pop{(0,1),(2,5)} could be “DEALLOC(0,1);DEALLOC(2,5)” or
“DEALLOC (2, 5) ; DEALLOC (0, 1)”), it should be clear that pop could be defined as a function given some total or-
dering on SD (like the lexicographical order, for example). Because the order of deallocations is irrelevant, such
details are unnecessary.
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compile(e : intexp) : M(IntProducer)
M = T SD Tcps void Id

compile() = unit(NOP, #i, { })

compile(—e) =
callcc AQ8.
(compilee) * A(me, rhse, tmps,).
case (simple rhse) of

true = B(me,—rhse, tmps,) |

false = rdSD % AS.
inSD(S + 1)

B (me ; ALLOC S'; S:=rhs. ; (pop tmps, ), —S,{S})

compile(er + e2) =
callcc AB.
(compilee1) * (w1, rhs1, tmps,).
case (simple rhs1) of
true =
(compileez) * X(ma, rhsa, tmps,).
case (simple rhs2) of
true = B(m1;m2, rhsi+rhsa, tmpsU tmps,) |
false = rdSD % AS.
inSD(S + 2)
B {m1;72;ALLOC S + 1; S + 1:=rhsa; (pop tmps,), ths1+S + 1, tmps, U {S + 1})
false =
rdSD * AS.
inSD(S + 2)
(compileez) x A(ma, rhsa, tmps,).
case (simple rhsz) of

[ true = B (m;ALLOCS + 1;S + 1:=7hs1 ; (pop tmps,);m2, (S + 1) + rhs2, {S + 1} U tmps,) ]
false =
rdSD * AS’.
inSD(S’ + 1)
Ty
ALLOCS;
S:=rhs1;
p(| PoRimE)i | st (s, 5
ALLOC S’ ;
S'i=rhs2;
| (pop tmps,)

Figure 3.4: Optimizing Monadic Code Generator for Exp
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in front of rhs,:

(Te, —Thse, tmps,,)

If rhs, is not simple, then a temporary location must be allocated for rhs. just as the MCG in
Section 3.2 did.

The use of continuations with callcc allows control over whether a temporary location is
allocated or not. Let (e, rhs., tmps,) be the IntProducer generated for the subexpression e of the
negation —e. Then, if rhs. is simple, the IntProducer (e, —rhs., tmps,) is passed along to the
current continuation . But if rhse is not simple, then a temporary location S is allocated (just
as the MCG in the previous section did). The rest of the code is informed of this allocation using
inSD (S + 1):

inSD (S + 1) (B (me ; ALLOC S ; S:=rhs, ; (pop tmps,), —S,{S}))

The definition for addition proceeds along similar lines. Figure 3.5 presents example compilations

using the ML implementations of the optimizing and non-optimizing MCGs for expressions.

3.4 Monadic Code Generator for Imperative Features

Figure 3.6 presents the MCG for the imperative language block. To compile an assignment “z:=e”,
retrieve the address S; of = in the current environment and compile the right-hand side e, producing
(7e, Thse, tmps,). The code emitted for the assignment will first execute m to prepare rhs. for
evaluation, then update the location S, by the value of rhs., and finally, deallocate any temporaries
used by m.. To compile the command sequence c;;co, compile ¢; and co, producing TargetLang
commands 7y and 7o, respectively. The code which is emitted for c¢1;co simply concatenates the
code for ¢; and co: 71 ; ma. Figure 3.7 presents an ML implementation of the MCG for imperative

features.
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Compiling: -(777+----99) Compiling: -(777+----99)

ALLOC <0,0> ALLOC <0,1>
<0,0> := -#99 <0,1> := #777
<0,0> := -<0,0> ALLOC <0,6>
<0,0> := -<0,0> <0,6> := #99
ALLOC <0,1> ALLOC <0,5>
<0,1> := -<0,0> <0,5> := -<0,6>
DEALLOC <0,0> DEALLOC <0,6>
ALLOC <0,0> ALLOC <0,4>
<0,0> := #777+<0,1> <0,4> := -<0,5>
DEALLOC <0,1> DEALLOC <0,5>
rhs=-<0,0>, tmps=[<0,0>] ALLOC <0,3>
<0,3> := -<0,4>

DEALLOC <0,4>

ALLOC <0,2>

<0,2> := —<0,3>

DEALLOC <0,3>

ALLOC <0,0>

<0,0> := <0,1>+<0,2>
DEALLOC <0,1>

DEALLOC <0,2>
rhs=-<0,0>, tmps=[<0,0>]

Figure 3.5: Optimizing vs. Non-optimizing MCG Output from ML Implementation

compile(e : comm) : M(TargetLang)
M = Tn Env Id

compile(z :=e) : M(TargetLang) =
rdEnv x Ap.
(px) x ASs.
compile(e) * A(me, rhse, tmps, ).
unit (e ; Sz:=rhse ; (pop tmps,))

compile(cijc2) : M(TargetLang) =
compile(c1) * Am.
compile(c2) * Ama.
unit(m ; m2)

Figure 3.6: Monadic Code Generator for Imp

fun compile (e:Expr) =
case e of
Assign(x,e) =>
rdEnv bind (fn Rho as (env rho) =>
(rho x) bind (fn A as (address S) =>
(compile e) bind (fn R as (code (IP ((SEQ pi_e),rhs,tmps))) =>
unit (code(0OC(SEQ (pi_e @ [(ASSIGN (S, rhs)),pop tmpsl)))))))
I
Seq(el,e2) =>
(compile el) bind (fn cl as (code(0C (SEQ pil)))
(compile e2) bind (fn c2 as (code(0C (SEQ pi2)))
unit (code(0C (SEQ(pil @ pi2))))))

>

)
v

Figure 3.7: ML Monadic Code Generator for Imp
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compile(er < e2) : M(TargetLang) =
rdSD x AS.
inSD (S + 2)
compile(e1) * A(m1, rhsi, tmps,).
compile(e2) * A(ma, Thsa, tmps,).
unit(my ; ALLOC(S) ; S:=7rhs1 ; w2 ; ALLOC(S + 1) ; (S+1):=7hs2 ; (pop tmps,) ; (pop tmps,) ; BRLEQ S (S+1))

Figure 3.8: Monadic Code Generator for Bool

fun compile (e:Expr) =
case e of

LTEQ(el,e2) =>
rdSD bind (fn S =>
inSD (inc (inc S))
((compile el) bind (fn ic as (code (IP ((SEQ pil1),rhsi,tmps1)))
(compile e€2) bind (fn ic as (code (IP ((SEQ pi2),rhs2,tmps2)))
unit (code (0OC
(SEQ (pi1 @ [ALLOC(S), (ASSIGN (S,rhs1))] @
pi2 @ [ALLOC(inc S), (ASSIGN ((inc S), rhs2)),
DEALLOC (tmps1@tmps2) ,
(BRLEQ ((simpRHS(stackLoc S)), (simpRHS(stackLoc (inc $)))))1))))))))

nn
vV Vv

Figure 3.9: ML Monadic Code Generator for Bool

3.5 Monadic Code Generator for Boolean Expressions

Figure 3.8 contains the definition of the MCG for the boolean sublanguage. The compilation
of the source language predicate e; < eg is similar to addition, although, instead of generating
an IntProducer, a code sequence ending in a branch is produced. Observe that the target labels
are not provided yet to the branch—that is, one might expect the branch produced to look like
(BRLEQ ry Ty Ly Ly), where control is given to Ly if ry < ry and to Ly otherwise. These labels are
provided when the boolean code is used in the control-flow block. See Section 3.7 for further

discussion. Figure 3.9 presents an ML implementation of the MCG for boolean features.

3.6 Monadic Code Generator for Block Structure

Figure 3.10 presents the MCG for the block structure language. To compile a new integer variable
declaration, (newz inc), first the current free location S is calculated and the body c is compiled

for the larger stack S + 1, producing the TargetLang command 7.. The code which is emitted first
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compile(newzinc) =  rdSD x AS.rdEnv x Ap.
[inSD (S+1) (inEnv p[z — (unit S)] (compilec))] * An..
unit(ALLOC(S) ; m. ; DEALLOC(S))

compile(z) = rdEnv * Ap.(pz) * AS.unit(NOP, S, {})

Figure 3.10: Monadic Code Generator for Block Structure

fun compile (e:Expr) =
case e of
NewIntVar (x,c) =>

rdSD bind (fn S =>

rdEnv bind (fn rho =>

(inSD (inc S)

(inEnv (xEnv (x,(unit (address S))) rho) (compile c)))

bind (fn D as (code(0C (SEQ pi_c))) =>
unit((code(0C (SEQ [ALLOC S] @ pi_c @ [DEALLOC S1)))

(Exp x) =>
rdEnv bind (fn env_rho as (env rho) =>
(rho x) bind (fn addr as (address Sx) =>
unit (code(IP (SEQ [], (simpRHS(stackLoc Sx)),[1)))))

Figure 3.11: ML Monadic Code Generator for Block Structure

allocates the location S, executes 7., and then deallocates S once outside the scope of the new.
When the program variable z appears as part of an expression, compile(z) generates an IntProducer
which looks up the value of the location S, associated with z: (NOP, Sy, {}). Figure 3.11 presents

an ML implementation of the MCG for block structure.
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compile(if b then ¢) =
newlabel * ALeyis.
newlabel x AL..
compile(b) * Amp.
compile(c) * Ame.
unit (ENDLABEL Leyis (SEGM[Lc, e ; JUMP Lexis] 5 (7 © (JUMP L, JUMP Lexit))))

compile(while b do ¢) =
newlabel x ALegit.
newlabel x AL..
newlabel * ALicst.
(compiled) * Amp.
(compilec) * Ame.
unit(ENDLABEL L.yi; (SEGM[Lc, e ; JUMP Licyt] 5 SEGM[Ltest, 75 © (JUMPL,, JUMP L yis)] 5 JUMP Lycsy))

Figure 3.12: Monadic Code Generator for Control Flow

fun compile (e:Expr) =
case e of
IfThen(b,c) =>

newlabel bind (fn Lexit =>

newlabel bind (fn Lc =>

(compile b) bind (fn B as (code (0C (SEQ pi_b))) =>

(compile c) bind (fn MP as (code (0C (SEQ pi_c))) =>

let val b_code = (diamond ((SEQ pi_b), (JUMP Lc,JUMP Lexit)))

in
unit (code(0C(SEQ
([ENDLABEL (Lexit,[b_code] @
[(SEGM (Lc, pi_c @ [JUMP Lexitl))1)1)
»N)

end

)N

end))))

WhileDo(b,c) =>
newlabel bind (fn Lexit =>
newlabel bind (fn Lc =>
newlabel bind (fn Ltest =>
(compile b) bind (fn B as (code (0C (SEQ pi_b))) =>
(compile c) bind (fn MP as (code (0OC (SEQ pi_c))) =>
let val b_code = [(diamond ((SEQ pi_b, (JUMP Lc,JUMP Lexit))))]

in
unit (code (0C (SEQ [ENDLABEL(Lexit,
[SEGM(Lc, (pi_c@[JUMP Ltest])),
SEGM(Ltest,b_code),
(JUMP Ltest)])1)))
end

))));

Figure 3.13: ML Monadic Code Generator for Control-flow
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3.7 Monadic Code Generator for Control Flow

Figure 3.12 presents the MCG for the control-flow block. A conditional “if b then ¢” would typically

be compiled into machine code of the form:

(generate new labels Legit, L)
(code for b)

branch on b to L,

jump to Legi

L. : (code for c)

Lyt -

The definition of compile(if b then c) is similar to this translation schema. First, two new labels,
Lezit and L, are generated. Then, b and ¢ are compiled, producing 7, and ., respectively. A code
segment SEGM[L., 7. ; JUMP Leyi¢] is created for the code for ¢ which jumps to the exit label Lz
when done. This segment is sequenced with the code for the boolean (mj ¢ (JUMP L., JUMP Leyit)),
and then wrapped by an ENDLABEL command.

This is the first use of the code-level apply operator ¢, and it was convenient to wait until
now to discuss its intended interpretation. Observe that in the above definition for if-then, 7 is
always code produced by a source language boolean expression, and so its intended interpretation
is as a control-flow boolean value (i.e., a value in Va.a X @ — «) which chooses between the
alternative jumps JUMP L. and JUMP Leyi;. The operator ¢ represents the application of the control-
flow boolean value signified by 7, to this choice of jumps. This intended interpretation is made

formal in Chapter 5.
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A translation schema similar to the one above for “while b do ¢” is:

(generate new labels Legit, Le, Liest)
jump to Liegt
L.: (code for c)
jump to Lyest
Lyest : (code for b)
branch on b to L,
jump to Legi

Legit :

The control-flow MCG compiles “while b do ¢” similarly. First, new labels Legit, Le, and Liegt
are generated. Then, b and ¢ are compiled to 7, and 7., respectively. The code for the loop body,
e 3 JUMP Lyegy, is stored at L. using SEGM, and the code for the loop test, (¢ (JUMP L., JUMP Leyit)),
is stored at Lyt using SEGM. The initial jump to the test code, JUMP Ly is then emitted. Finally,
the exit label Ly is declared using ENDLABEL.

Note that in both of the above definitions, 7, always ends will a branch; that is it has the
form: (... ; BRLEQr; ry). We use the ¢ operator as a “code-level” apply to pass in the appro-
priate labels to the branch. The code (... ; BRLEQ ry ry) ¢ (JUMP L1, JUMP L) is pretty-printed as

(. ey BRLEQ Iy Io Ll LQ).

3.8 Monadic Code Generator for Closed Procedures

Figure 3.14 presents the MCG for the FunFEzp language. Here, FunFExp expressions are compiled
into IntProducers. The development of this MCG follows very closely the development of the pro-
cedural metacomputation-style compiler block in Section 2.5. Auxiliary functions mksubr, mkcall,
and mkargcall analogous to those in Section 2.5 are defined to compile procedures definitions and

procedure and procedure argument calls. Figures 3.15 and 3.16 give an ML implementation of this

MCG.
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M = Tenv Env (Teny SD (Tsy Label 1d)), compile : Ezpr — M(IntProducer)

compile(v) = rdEnv x Ap.(pv) compile(funcall v) = savereg(rdEnv x (Ap.(p v)))
compile(An.e) =
compile(i) = unit(NOP, #i,{}) rdEnv * Ap.

unit(Ac.(inEnv p[n — ¢| (compilee)))

savereg : M(IntProducer) — M(IntProducer)
savereg @ = rdSD * AS.
@ *s Am, rhs, tmps).
unitg((m ; ALLOC(S) ; S:=rhs ; (pop tmps), S,{S}))

compile(funcall(f,e)) =
rdEnv * Ap.
savereg | (pf) * AF : M(IntProd) — M(IntProd).
F(compilee)

compile(letclosed f = e: g ine: intexp)) =
rdSD x AS.
(mksubr ¢ S (compile e)) * A(mf, rhs, tmps).
newlabel x ALy.
rdEnv * Ap.

: (compile €) *x A(me, rhse, tmps,).
inEnvp[f — (mkcall ¢ S Ly)] ( unit(me; SEGM[L; : ], rhse, tmps.,)

Figure 3.14: Code Generator for function expression language
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fun compile (e:Expr) =
case e of

(Var v) =>
rdEnv bind (fn env_rho as (env rho) => (rho Vv)) |

(lambdaN (n,b)) =>
rdEnv bind (fn rho =>
unit (Fun (fn c =>
(inEnv (xEnv (n,c) rho) (compile b))))) |

(funcall (f,e)) =>
(savereg (
rdEnv bind (fn rho_env as (env rho) =>
(rho f) bind (fn fval as (Fun F) =>
(F (compile e)))) ) ) |

(fcall v) =>
(savereg (rdEnv bind (fn env_rho as (env rho) => (rho v)))) |

(letclosed (f,phi,le,e)) =>

rdSD bind (fn S =>
(mksubr phi (newframe S) (compile le)) bind (fn c as (code(IP((SEQ pi_f),rhs,tmps))) =>
newlabel bind (fn Lf =>
rdEnv bind (fn rho =>

(inEnv (xEnv (f,(mkcall phi S Lf)) rho)

(compile e) bind (fn ip as (code(IP((SEQ pi_e),rhs_e,tmps_e))) =>
(unit (code(IP((SEQ (pi_e@[SEGM(Lf,pi_£)]1)), rhs_e,tmps_e))))
NN

Figure 3.15: ML Implementation of Code Generator for functional expression language
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fun Lambda (n,x) = rdEnv bind (fn rho => unit(Fun (fn c¢ => inEnv (xEnv (n,c) rho) x)));

(* only for Mf: M(IntProd->IntProd) *)
fun Apply Mf Mx = rdEnv bind (fn rho => Mf bind (fn fv as (Fun f) => f (inEnv rho Mx)));

fun mkargcall phi S i =
case phi of
intexp =>
newlabel bind (fn Lret =>
rdSD bind (fn S’ =>
unit (code(IP ((SEQ [ACALL (i,[],S,S’,Lret), LABEL Lretl),(simpRHS SBRS),[1)))));

fun mksubr phi S a =
case phi of
intexp =>
(inSD S (a bind (fn ip as (code(IP((SEQ pi),rhs,tmps))) =>
(unit (code (IP (SEQ(pi @ [(LOADSBRS rhs),(DEALLOC tmps),RETURN]), (simpRHS SBRS),[1))))))) |

(arrow(intexp,intexp)) =>
(inSD S
((Apply a (mkargcall intexp S 1)) bind (fn ip as (code(IP((SEQ pi),rhs,tmps))) =>
unit(code (IP(SEQ (pi@[LOADSBRS rhs,(DEALLOC tmps),RETURN]), (simpRHS SBRS),[1))))));

fun mkcall phi S Lf =
case phi of
intexp =>
newlabel bind (fn Lret =>
rdSD bind (fn S’ =>
rdEnv bind (fn rho_env as (env rho) =>
unit (code(IP((SEQ [CALL(Lf,[],S,S’,Lret), LABEL Lret]), simpRHS(SBRS),[1)))))) |

(arrow(intexp,intexp)) =>
(Lambda ((ms 1),
(newlabel bind (fn Lret =>
rdSD bind (fn §’ =>
rdEnv bind (fn rho_env as (env rho) =>
(mksubr intexp (newframe S’) (rho (ms 1))) bind (fn ip as (code(IP((SEQ pi),_,[1))) =>
newlabel bind (fn L1 =>
unit (code(IP((SEQ [CALL(Lf,[L1],S,S’,Lret), SEGM (L1,pi), LABEL Lret]),
simpRHS (SBRS) , [1)))))))))));

Figure 3.16: ML Implementation of mksubr, mkcall, and mkargcall
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Chapter 4

Modular Compiler Correctness

Chapters 4 and 5 present a case study in modular compiler verification for the language Src =
Exp+ Imp+ Block+ Bool + Control-flow. This chapter establishes the correctness relation between
the standard semantics, [—], and compilation semantics, C[—], for Src. Chapter 5 demonstrates a
correctness relation between C[—] and the monadic code generator compile for Src. All semantic
definitions of the Src language used in Chapters 4 and 5 are summarized in Appendix A beginning
on page 127.

Section 4.1 surveys the challenges involved in specifying and verifying modular compilers.

Broadly speaking, these challenges arise from two sources:

e Relating staged computation to unstaged computation requires demonstration that delaying
parts of a computation (i.e., staging) does not change the value which is eventually pro-
duced. In the context of modular compiler verification, this means relating the monad-valued
(unstaged) standard semantics, [—], to the metacomputation-valued (staged) compilation

semantics, C[—].

e Our language definitions are representationally-independent, due to structuring with monads
and monad transformers. These language definitions are meant to be interpreted in many
different contexts (and, hence, in many different monads). To maintain generality, reasoning
about these definitions requires representationally-independent correctness specifications that

make minimal assumptions about the monads underlying them.

Section 4.2 introduces a novel form of program specification called observational program specifi-

cation, which copes very well with this second challenge. Although observational program spec-
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ification is used here to specify and verify modular compilers, it is, in fact, a general technique
applicable to many monadic contexts. A novel proof technique for observational specifications is
presented in Section 4.2.1.

Verifying monadic specifications requires certain basic assumptions about the way that the
non-proper monadic combinators (i.e., rdEnv, update, callcc , etc.) interact, and these axioms
are listed in Section 4.3. Section 4.4 presents a change to the representation of store which allows
scoping of effects through the use of explicit allocation and deallocation of storage. To simplify the
task of specifying and proving a correctness relation between [—] and C[—], another denotational
definition of Src—the staged standard semantics S[—]— is introduced and both [—] and C[—]
are formally related to it. Section 4.5 defines the staged standard semantics, S[—], and proves
its equivalence with respect to the standard semantics [—] in Theorem 2. The staged standard
semantics is a means of coping with the first bullet above.

The heart of this case study in modular compiler verification is presented in Section 4.7. The
correctness of individual reusable compiler building blocks is specified and verified independently
of one another, and given certain requirements called linking conditions, correct compiler build-
ing blocks may be combined into correct compilers. This achieves a certain level of modularity
and reusability in the compiler proofs developed in this style. RCBB correctness specifications
involve relating S[—] and C[—], and the major challenge in this endeavor originates in the use of
implementation-level data (e.g., labels, code store, etc.) by C[—] which S[—] does not use. The
careful use of observational program specification here helps meet this challenge. Section 4.6 lists
supporting lemmas.

An overview of the correctness proof of the compiler for Src = Fxp + Imp + Block + Bool +
ControlFlow is shown in Figure 4.1. The first two links in Figure 4.1 between [—] and S[—] and
between S[—] and C[—] are established in Sections 4.5 and 4.7.
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Standard Semantics [t] : M(Value)

Equivalence Theorem 2

Staged Standard Semantics :9[[t]] : Static(Dynam( Value))

Observational Specifications (Exp-spec,...)

Compilation Semantics C[[t] : Static(Dynam( Value))

Equivalence of C[—] & compile Theorem 12

4

Monadic Code Generator compile(t) : Static(TargetLang))

Figure 4.1: Src Compiler Correctness

4.1 Modular Compiler Proofs and Linking Conditions

Chapter 2 presents an implementation of RCBBs as staged denotational definitions. Recall that

for each phrase type phrase, the compilation semantics of phrase

C[—] : phrase — Static(Dynam(Value))

was introduced. Each of these phrase types also has a standard semantics [—] : phrase = M(Value)
for an appropriate monad M which defines the usual meaning of a phrase as it is found in [47, 25, 10].
It would be tempting, then, to define the correctness of a RCBB as the equation C[t] = [t], but
this is clearly unacceptable as it fails to even typecheck. More to the point is that C[t] may use
implementation-level data (such as labels, code store, etc.), and the compilation ¢; : Dynam(Value)
produced by C[t] may update the store, make jumps, etc., while the standard meaning of [t]
generally “knows” nothing of this implementation-level data.

Because C[t] : Static(Dynam(Value)) is a metacomputation, it can be awkward to compare it
with [¢t] : M(Value). For example, the standard semantics for expressions can be interpreted within
Dynam, but when the expression language is extended with variables, access to the environment

is necessary. But the environment is part of the Static monad, and so it is not clear how to
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access environments within [—]. The solution is to stage the standard semantics (i.e., make it
metacomputation-valued rather than monad-valued). In Section 4.5, the staged standard semantics
for the source language is introduced. While the standard semantics of a term [t] : M(Value)
is monad-valued, its staged standard semantics S[¢] : Static(Dynam(Value)) is metacomputation-
valued. Theorem 2 proves the equivalence of S[—] with respect to [—].

As an example, the RCBB correctness assertion for an integer expression e will require that, if
@e is the compilation produced by C[e], then ¢, will equal [e] when executed in an appropriate
store. Just what is meant by “appropriate store” will be defined in Section 4.7.2, but intuitively it
means a store whose shape ¢, expects.

Although individual RCBBs may satisfy their individual correctness assertions, combining two
correct RCBBs does not necessarily yield a correct compiler. The reason for this is that two RCBBs
may update the same shared state and, therefore, may interfere with one another to produce
incorrect results. Basic rules specifying correct RCBB interaction, which we call linking conditions,
must be followed to ensure the “coherence” of the shared data. Consider the RCBBs for expressions,
Ezp, and imperative features, Imp, which are summarized in Figures 4.4 (on page 105) and 4.5 (on
page 106), respectively. In an assignment “x:=e” in the combined language Exp + I'mp, the target
code resulting from the compilation of e will read, write to the store and allocate and deallocate
memory cells in the store. So, it is possible that the code for e could affect the memory cell in
which z is kept, and so the resulting code for “z:=e” may not behave correctly.

For the code for “z:=e” to be correct, the Imp compiler block must require that the code for
e (1) only read from the store existing before it is run, and (2) deallocate any temporary memory
cells that are allocated by the code for e. Any expression RCBB which meets this requirement, and
also satisfies the correctness specification for expression RCBBs, will produce a correct compiler for
Ezp + Imp. Requirements (1) and (2) constitute an informal linking condition between the Ezp
and I'mp compiler blocks.

Generally speaking, linking conditions are fairly weak requirements about the way that indi-
vidual RCBBs interact. The linking condition outlined above would be familiar to any compiler
writer—it requires merely that code for expressions not update any storage existing when it receives

control and that it should pop the stack before it leaves. Furthermore, some linking conditions
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come essentially for free. For the language Ezp + Imp + Block + Bool + C'F, only the control
flow RCBB affects the label and code states (and it affects only those states), and so as a conse-
quence of lifting, any correct control-flow RCBB can be added to a correct modular compiler for

Exp+ Imp + Block + Bool to achieve a correct compiler for Exp + Imp + Block + Bool + CF.

4.2 Observations and Observational Program Specification

The principal advantage of monadic language specifications is that the underlying denotation of
a term can be made arbitrarily complex without unnecessarily complicating its denotational def-

[

inition. This property was referred to in Section 1.2.3 as the “representational independence” of
monadic language specifications, and it, in part, makes modular compilation possible. A similar
property is required of program specifications (i.e., statements about program properties such as
correctness) for modular compilers and reusable compiler building blocks. The reason for this
is simple: because any RCBB may appear in many different modular compilers, its correctness
specification must be meaningful in each of these compiler contexts. This section introduces a
representationally independent style of program specification called observational program speci-
fication. Although developed to specify and verify modular compilers and RCBBs, observational
program specification is really a general form of formal specification which applies to a general
monadic context.

As an example, consider the correctness of an imperative construct p! defined in a monad with
a state Sto. Generally, a correctness specification of an imperative feature like this would take the
form of a relation R between input and output states og and o1, so that oy R o1 means that the

state o1 may result from the execution of p! in og. If p! were defined in the single state monad

Sta = Sto — a x Sto, then the correctness of p! would be written:

Yog : Sto. og R (m2(p! 00)) (4.1)

where 7o is the second projection function A(—,z).x. However, if p were reinterpreted in the

“Environment+State” monad (cf. Figure 1.9) EnvSta = Env — Sto — a X Sto, then the above
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correctness specification would be rewritten as:

Vpo : Env. Yoq : Sto. og R (m2(p! po 00)) (4.2)

One can see from these two examples that every monad in which p! is interpreted requires a new
correctness specification.

Traditional “functional-style” denotational program specifications (like 4.1 and 4.2) lack modu-
larity in precisely the same manner and for identical reasons as traditional, functional-style denota-
tional language specifications (cf. Section 1.2.3). Because specifications 4.1 and 4.2 rely on the fixed
structure of St and EnvSt, respectively, there is no way of reusing them when p! is reinterpreted in
another monad; or in other words, they are representationally-dependent specifications. If one is
reasoning about a particular program defined in a fixed monad, then this representational depen-
dence presents no great obstacle. Nevertheless, it goes against the spirit of the monadic approach
to language design to carefully define a language in terms of a monad only to ignore the monad
when specifying and verifying programs.

However, the representational dependence of functional-style program specifications is a major
obstacle to verifying modular compilers. Because reusable compiler building blocks are meant to be
used in many different compilers, they must be interpreted in many different monads. The lack of
a single statement of correctness makes a functional-style specification and verification of reusable
compiler building blocks and modular compilers essentially intractable. Verifying modular compilers
constructed from reusable compiler building blocks requires a representationally-independent style
of program specification.

The key insight here is that, because the language definitions we use are parameterized by a
monad, it is necessary to develop a specification style that is also parameterized by a monad. The
first step is to add a new expressed value type prop, which plays the role of the traditional (i.e.,

non-control-flow) boolean type.

Definition 17 (prop) prop = true + false

The correctness condition (g Ro1) : prop may then be computed value for appropriate stores oy
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and o71:

getSto x Aoy.
p! x A p! x A
getSto x Aoj. unit(true)

unit(og R oy : prop)

What does this equation mean? Examining the left-hand side of Equation 4.3, the execution
of p! is couched between two calls to getSto, of which the first call returns the input store oy and
the second call returns the output store o; resulting from executing p!. Note that o1 will reflect
any updates to the store made by p!. Finally, the truth-value of the prop expression (oo Ro1) is
returned. The right-hand side of Equation 4.3 executes p! and then always returns true. Observe
also that it was necessary to execute p! on the right-hand side so that identical store updates would
occur on both sides of the equation. Equation 4.3 requires that (oo Ro1) be true for all input and
output stores oy and o1, respectively, which is precisely what we want.

Equation 4.3 is a representationally independent specification of p!. In the single store monad
St, it means precisely the same thing as 4.1, while in the monad EnvSt, 4.3 means exactly the same
thing as 4.2. In fact, equation 4.3 makes sense in any monad where p! makes sense. It is called
an observational specification because the left-hand side of 4.3 gathers certain data from different
stages in the computation (i.e., stores oy and o1) and “observes” whether or not (oo R o1) holds.

In observational specifications, a particular kind of computation of type Dynam(prop) called an
“observation” is often useful. An observation is a computation which reads (and only reads!) data
such as states and environments, and then observes a relation. Observations are utterly innocent
computations in that they never change states, fail, or call continuations. We can make this notion

of “innocent computations” formal with:

Definition 18 (Innocent Computations) A computation T : M(«) is innocent, if and only if

Vz:M(7). T x Alz=1z % M. T x A unit(v) =z
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Notice that stateful computation can easily lose innocence:

get # update[Al.l + 1] * _.get # get x Ao.update[Al.l + 1] * A_unit(o)

Continuation-manipulating computations can also lose innocence, because, for arbitrary rg:

unit(5) # unit(5) *x Av.(callcc Ak.kg7) * A_.unit(v)

If Q produces an error or is non-terminating, then it is not innocent:

unit(5) # unit(5) * Av.Q x A_unit(v) = Q,

Some computations are always innocent. For example, any computation constructed from an
environment monad’s “read” operators (e.g., rdEnv and rdAddr), an environment monad’s “in”
operators (e.g., inEnv and inAddr, assuming their arguments are innocent), or from the “get”
operators of a state monad (e.g., getSto and getCode) are always innocent. Unit computations
(i.e., unit(z), for any z) are also always innocent. Knowing that a computation is innocent is
useful in the proofs developed below, not only because an innocent computation commutes with

any other computation, but because it can be also be added to any computation without effect.

That is, for any arbitrary computations 1, ¢s and innocent computation T,

01 * AW.pa =T x Az.o1 * Av. (T * Ay.p2)

The values z and y computed by T can be used as snapshots to characterize the “before” and
“after” behavior of ¢; just as the states oy and o1 computed by getSto were used in Equation 4.3
on page 81.

Definition 19 (Observations) An observation is an innocent computation of type M(prop).

Definitions 20 and 21 introduces two observations which are used throughout the remainder of

this thesis. Definition 22 lists three operations on observations. The first of these, Obs, defines
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an observational version of if-then-else, while the last two, AND and =, create new observations

from existing ones.

Definition 20 (FreshLoc) The observation FreshLoc(a) means that every address above a is unused

in the current store.

FreshLoc(a) = getSto xp Ac.unitp(Vz > a.x ¢ dom(o))

Definition 21 (FreshLabel) The observation FreshLabel(L) : Dynam(prop) means that every label

greater than L is undefined in the current code store.

FreshLabel(L) = getCode *p Al.unitp(VL' > L.(L' & domlIl))

Definition 22 (Observe-def) We define a function Obs : Y7.M(prop) x M(1) x M(7) — M(71)
that encapsulates the notion of if-then-else for observations, and two functions AND,=: M(prop) x

M(prop) — M(prop) for combining observations:

Obs(@,u,v) = 0 x Atest.if test then u else v
01 AND 02 = 91 * Apl.gg * )\pg.unit(pl&pz)

01 =0y = 01 x Ap1.05 % )\pg.unit(pl Dpz)

where & and D are the ordinary propositional connectives with the usual truth table definitions.

Notational convention: The double arrow = combines observations, while the cup D is the
ordinary logical connective of type prop x prop — prop.
The following theorem gives inference rule-like equations for manipulating observations. Note

that in both of the rules below, the first arguments to Obs must always be observations (i.e.,
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innocent). The proof of Theorem 1 demonstrates the soundness of these rules.

Theorem 1 (Observation Introduction and Elimination) For observations 6, 61, 0s:

(Introduction) u = Obs(8, u,u)

(Elimination) 01 = 6, = unit(true) implies Obs(6;, Obs(f2,u,v), w) = Obs(0;,u, w)

‘Proof of Theorem 1 ‘

| Case: Observation Introduction |

Obs(f,u,u) = 6 * Atest. if test then u else u
= 0 x Aest. u (test is true or false)
= u (@ is innocent)

| Case: Observation Elimination |

Obs(0y, Obs(02, u,v),w)

= 61 x Aty. if t; then [f2 x Ato. if to then u else v] else w

= 61 x Aty. if t; then [0y * Ato. if t1 D o then u else v] else w (true Dz =1x)
= 61 x A1.02 x Ato. if t1 then [if ¢ D ¢y then u else v] else w (02 is innocent)
= 61 x A1.62 x Ao.unit(¢; D t2) x At. if ¢; then [if ¢ then u else v] else w

(unit(¢; D t2) is innocent)

= 61 x A1.02 x Ato.unit(true) * At. if ¢1 then [if ¢ then u else v] else w
(supposition)
= 01 % A1.02 % Ato. if ¢ then u else w (left unit)
= @; % Atj. if t; then u else w (62 is innocent)
= Obs(01,u,w)
OTheorem 1.
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Lemma 1 For observation 6, Obs(6,z,y) x f=0bs(0,z x f,y x f)

‘Proof of Lemma 1 ‘

Obs(0,z,y) * f
= (0 x Atest. if test then z else y) * f
= 6 % (Mest.(if test then z else y) x f)
= 0 % (Mtest. if test then z x f elsey * f)

= Obs(0,z x f,y % [)

OLemma 1.

4.2.1 Proof Technique for Observational Specifications

In this section, we outline a proof technique developed for observational specifications which is
used repeatedly throughout the remainder of this thesis. It allows for observational properties to
be propagated through sequential computations and has something of the flavor of programming
logics such as specification and Floyd-Hoare logics[42, 27].

Many of the observational specifications proved later in this chapter have the following form

(where C[—] is a closing context),

C[Obs(0, 01 * Avi.... * Avp_1.@n,v)] = C[Obs(0,01 *x Avi.... * Avp_1.0n,7)] (4.4)

The observational property 6 serves as a “precondition” (in the same sense as in specification and
Floyd-Hoare logics[42, 27]) which will be propagated through the sequence of computations ¢;,
converting them to J; along the way. Knowing that 6 returns true at the beginning of ¢; *
AVL.... * AUp_1-@n, €ach p; may be viewed as an “observation transformer” analogous to the
view of imperative statements as “predicate transformers” in some programming logics. As € is

propagated, it is transformed by the ¢; into intermediate observational properties: 61, ... ,8,. Using
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Observation Introduction, the computations ¢; may be guarded with these intermediate properties:

©1 * >\’U1.(p2 * A’Ug.... * A’l)nfl.(pn = Obs(91,<p1 * A’Ul.
Obs(02,<p2 * )\UQ.
(4.5)
Obs(ana(Pna(Pn)
)

Note that both sides of Equation 4.5 occur within the true branch of the “Obs(f,...,—)” on the
left-hand side of Equation 4.4.
Under the following conditions, the right-hand side of Equation 4.5 may be equated to the

right-hand side of Equation 4.4.
1. Obs(#;, p; * Av;.0Obs(0;11,x,...),...) = Obs(6;, p; * Av;.z,...)
2. Obs(0;,; * Avj....,...) = Obs(6;,8; * Avj....,...)
3. 8 = 601 = unit(true)

Condition 1 allows for later observational properties to be discharged, Condition 2 converts the ¢;
into §;, and finally, if Condition 3, then the initial condition #; may be discharged. Thus, given
Conditions (1)-(3), Equation 4.4 holds.

4.3 The Monadic Interface and Its Properties

The use of monad transformers does not simply create a new monad from an existing one by adding
new computational material, but it also defines additional so-called “non-proper” combinators for
manipulating data internal to the monad (the “proper” combinators of a monad are just unit and
*). Before the compiler building blocks can be verified, it must be understood how these combinators
interact with one another. In this case study, the non-proper combinators involved are the various
“update” and “get” operators added by the state monad transformer, the “read” and “in” operators

added by the environment monad transformer, and the “call with current continuation” operator
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callcc added by the CPS monad transformer. This section introduces axioms characterizing
the behavior of these non-proper monadic combinators, as well as the well-known monad laws[25,
10, 30, 47]. No claim is made that these axioms for the non-proper combinators are complete
characterizations, but only that they specify what is needed to prove the correctness of the Src
compiler and are clearly correct.

The following laws specify the behavior of x and unit in a monad.

Axiom 1 (Monad Laws) For a monad M, the bind * and unit unit operations have the follow-

ing properties:
1. (left unit): (unita) x k=Fka
2. (right unit): x x unit = x
3. (associativity): x x (Aa.(ka x h))=(x x k) *x h

4. (associativity): © * (Aa.y x Ab.0) = (x x Aa.y) * Ab.o, if a does not occur free in o.

The update/get laws characterize the behavior of the update and get operators added by a

state monad transformer.

Axiom 2 (update/get interactions) Assume that update and get are defined in M by the state

monad transformer Tsy T in the following:
1. (update f) * A_.(update g) = update f;g
2. update[l — v] * A_.get x Ao.unit(o!) = update[l — v] * A_.unit(v)
3. get x Mo.get x \o'.F(o,0') =get x Ao.get *x \o'.F(o,0) where F: 7 x 7 — Ma.
4. updateA * A_.get = get * Ao.updateA x A_unit(Ao)

5. For F: 7 x 1 — Ma,

get x Ao.updateA x A_.get x \o'.F(0,0') = get *x Ao.updateA x A_.F(o,Ac)
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Rule 2.1 shows how updating by f and then updating by g is the same as just updating by their
composition f;g. Rule 2.2 states that updating a location [ by a value v and then reading from [
is that same as updating [ by v and just returning v. Rule 2.3 requires that performing two get

operations in succession retrieves precisely the same value.

Axiom 3 (Callec Interactions) The following specify the interactions between callcc and the

other combinators in M = Static + Dynam:

1. callcc Ak.x * Av:a.F(v,k) =x *x Av.callcc Ak.F(v,k) where F :a X (a — Mb) — Mb.

2. For idempotent I : M(void) (i.e., I =1 x A_I):

(callcc Ak.xz x k) x A =[callcc (Ak.z x AT x K)] * AT

3. ¢ * (Av. callcc (Ak.kV)) =z

4. £ =-callcc Ak.T * K

Note that Axiom 3.2 follows directly from Axiom 3.4 by the following proof:

[callcec Ak.z x K| x AT

(Ax34) = =z % Al
(idem.) = z % AT x A1
(Ax 3.4) = [callcc Az * A * K] x A1

Axiom 4 (update Interactions) Assume that update is added by the state monad transformer
Tt 7, update’/get’ are added by the (different) state monad transformer Ty 7', and rd/in are

defined by a monad transformer Ten, 7".
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1. unit(z) * Av.(update A) * A_Fv = (updateA) x A_unit(z) x F for any z : a and

F:a— Mb,
2. rd x Ap.(update A) * A\_.(f p) = (update A) x A_.rd * f for any z:a and F: 7" — Ma,

3. For any x : Ma, p: 7", and F : a — Mb,

x * Av.(update A) x A_.(Fv) = (updateA) x Az x F —
(inpzx) * Av.(update A) * A_.(Fv) = (updateA) * A_.(inpz) » F
4. updateA * A_update’Z = update’=Z x A_updateA
5. (in p ) x Av.updateA = in p (x * Av.updateA)

Axiom 5 (get Interactions) Assume that get is added by the state monad transformer Ts; T,

update’/get’ are added by the (different) state monad transformer Toy 7', and rd/in are defined by

a monad transformer Ten, T".

1. unit(z) * lv.get * Ao.F(v,0) = get x Ao.unit(z) * Iv.F(v,0) for any z : a and

F:ax 71— Mb,
2. rd * Ap.get * Ao.F(p,0) =get x Ao.rd x A\p.F(p,0) for any F: 7' x 7 — Mb

3. For any x : Ma, p: 7", and F : a X T — Mb,

T *x Av.get x Ao.F(v,0) =get x Az x \w.F(v,0) =
(inpz) * Av.get x A\o.F(v,0) =get x Ao.(inpz) * \v.F(v,0)
4. get x Ao.update’A x A\_.fo =update’A x A_get x f for any F : 7 — Ma.

5. get x Ao.get’ x A\d'.F(o,0') = get’ x A\o'.get x A\o.F(o,0') for any F : 7 X 7" — Ma.
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6. (in p z) * Av.updateA = in p (z * Av.updateA)

Axiom 6 (Environment Axioms) The following azioms (due to Liang [26, 24]) characterize
the environment combinators rdEnv, rdAddr, inEnv, and inAddr. Although these laws are stated

only for rdEnv and inEnv, the corresponding Addr operation may be substituted below.
1. (inEnv p) o unit = unit
2. inEnv p (¢; * Av.ca) = (inEnv p ¢1) * Av.(inEnv p c9)
3. inEnv p rdEnv = unitp

. inEnv p (inEnv o' €) = inEnv o' e
p p p

4.4 Scoping of Effects with Explicit Allocation and Deallocation

In this section, a new representation of the Sto state is introduced which allows restrictions to be
placed on the scope of side-effects. In previous chapters, Sto has been represented as a function of
type Addr — int. While this suffices for the generation of code in Chapter 2, it complicates the
statement and verification of modular compiler correctness because it is difficult to limit the scope
of effects with that representation of Sto.

Why? Consider the dynamic part of the definition of C[—%] in Figure 2.1 on page 25:

Yt *pD .
Thread(i,a) *p Av.

unitp(—v)

After the execution of Thread(i,a), the contents of address a will be 7 in the global Sto state (unless
a is reused in the compilation of some other part of the program being compiled). As will be seen
in Section 4.7.2, the correctness specification for C[— : Ezp] requires something like, given certain

preconditions on the Sto state, the above dynamic term equals [—t]. Clearly then, some limit must
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be placed on the scope of effects from the use of temporary storage for such an equality to hold
because [—t] has no side-effects on Sto.
One way to limit the scope of effects is to explicitly allocate and deallocate temporary storage,

as in:

Q0 *D M.

Alloc(a) *p A-.

Thread(i,a) xp Av.

deAlloc(a) *p A

unitp(—v)

The representation of store is changed to be a set of address/value pairs Sto C {(a,v) : a €
Addr & v € int} defining a partial function from Addr to int. If Alloc(a) adds (a,0) to the
current store and deAlloc(a) removes any (a,v) from the current store, then as long as a is not
in the domain of the current store before the execution of the above dynamic computation, then
it will appear to have no affect on the global store at all. This method of restricting the scope of
effects is not new—it is inspired by the Algol functor category semantics of Reynolds[41].

The compilation semantics C[— : Src] used in the compiler correctness result (displayed in
Figures 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9) uses this new representation of Sto, as do all of the other

semantic definitions presented in Chapters 4 and 5. They are repeated in full in Appendix A.

Definition 23 (Storage Operators) The following operators are used to store, read, allocate,
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and deallocate to and from addresses in the new representation of Sto.

store(a,i) = getSto xp Ao.
if (a,—) € o then
updateSto(Ao.(o\(a,—)) U (a,1))
else Lpynam(void)
read(a) = getSto xp Ao.[if (a,v) € o then unitp(v) else Lpynam(voia)]
Alloc(a) = getSto xp Ao. if a € o then Lpynam(voia) €lse updateSto[o™ = o* U {(a,0)}]

deAlloc(a) = getSto xp Ao. if a € 0 then Lpynam(voia) €lse updateSto[o™ — o* \ {{(a,—)}]

4.5 The Staged Standard Semantics

Because C[t] : Static(Dynam( Value)) is a metacomputation, it can be awkward to compare it with
[t] : M(Value). For example, the standard semantics for expressions can be interpreted within
Dynam, but when the expression language is extended with variables, access to the environment
is necessary. But the environment is part of the Static monad, and so it is not clear how to
access environments within [—]. The solution is to stage the standard semantics; that is, make it
metacomputation-valued rather than monad-valued. In this section, the staged standard semantics
for the source language (displayed in Figure 4.2) is introduced. While the standard semantics of a
term [t] : M( Value) is monad-valued, its staged standard semantics S[[t] : Static(Dynam(Value)) is
metacomputation-valued. The standard semantics of the source language is displayed in Figure 4.3.
Theorem 2 proves the equivalence of S[—] with respect to [—].

A combinator unquote is introduced in the following definition. unquote is used to “run” a

metacomputation by first evaluating the static part and then evaluating the dynamic part.

Definition 24 (unquote) For M = Static + Dynam, the function unquote : M(M(a)) — M(a) is
defined as:

unquote(z : M(M(a))) =z * Ai.i
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S[-] : Src — Static(Dynam(void + int + bool))

S[i] = unitg(unitp (7))

S[—€] = S[e] *s Ape : Dynam(int). units(pe *p Ai.unitp(—1))
S[z] = rdEnv x5 Ap.(px) *s Aa: Addr. unitg(read(a))

S[e1 5 2] = S[e1] xs Ap1.S[ca] *s Apz. units(p1 *xp A_p2)

S[z:=e] = rdEnv xg Ap.
(px) x5 Aa: Addr.
S[e] *s Ape : Dynam(int). units(pe, xp Ai:int.store(a,i))

S[new z in c] =
rdAddr xg Aa.

inAddr (a + 1) ( rdEnv %5 Ap.

inEnv (p[z — unitg(a)]) S[c] ) *s A
unitg(Alloc(a) *p A_.p. xp A_.deAlloc(a))

S[e1 leq e2] = S[ei] *s Agi : Dynam(int).
S[ez] *s Apz : Dynam(int).
P1 *p )\1)1 1 int.
unitg | @2 *p Ave :int.
unitD()\<I€T,I€F>.(’U1 < vy — HT,HF))

S[if b then ¢] = S[b] *xs Ags : Dynam(bool).
S[c] *xs Agc : Dynam(void).
pp units(fThen(pp, ¢c))
where IfThen : Dynam(bool) x Dynam(void) — Dynam(void) is defined by:
IfThen(pp, vc) = ©» *p AB :bool.callcc Ak.B{(p. *p K,K®)

S[while bdo ¢] = S[b] xs AB : Dynam(bool).
S[c] *s Apc : Dynam(void).
unitg (dynwhile(B, ¢.))
where:
dynwhile : Dynam(bool) x Dynam(void) — Dynam(void) is defined:
dynwhile(B, ) = B xp AB :bool.callcc Ak.B{p *xp A_dynwhile(B, ), K e)

Figure 4.2: Src Staged Standard Semantics
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[—] : Src — Static + Dynam(void + int + bool)
[:] = unit(s)
[—e] = [e] * Ai.unit(—7)
[z] = rdEnv x Ap.(pz) * Aa: Addr. read(a)
[e1; e2] = [e1] * A-fez2]
[x:=€] = rdEnv * Ap.(pz) * Aa: Addr.[e] x Ai:int. store(a,i)
[new z in ¢] = rdAddr * Aa.

rdEnv * Ap.

inAddr (a + 1) | inEnv (p[z — unit(a)])
Alloc(a) *x A_.Je] * A_.deAlloc(a)

[e1 leq e2] = [e1] * Avi.[e2] * Avo.unit(MNkr, kp).(v1 < vy = K1, KF))

[if b then ¢] = fThen([b], [<])

[while b do ¢] = dynwhile([b], [])

Figure 4.3: Src Standard Semantics

94



Intuitively, unquote(z) runs the static and dynamic phases of z in order:

unquote(z) = “first stage of 7 * Ai.“second stage of z”

The effect of (unquote p) is to evaluate the static part of a metacomputation, thereby producing
the dynamic part, which is then evaluated. N.b., unquote is the same as monadic join.
Two useful, straightforward consequences of the definition of S[—] and Axiom 6.2 are that, for

any t,t' : Src and F : Statica — Staticb — Staticc,

S[t] * Apr-S[t'] * App.(Forppr) = S['T * App.S[t] * Xpr-(F o1 op) (4.6)

S[t] * Aps.S[t] *x Apt.(F o @) = S[t] * Ape(F o1 1) (4.7)

Intuitively, Axiom 6.2 guarantees that S[t] and S[t'] receive the same Env and Addr environments
as “input.” This, combined with the fact that S[t] and S[t'] are innocent, implies that they
commute.

The relationship between the standard semantics [—] and the staged standard semantics S[—]
is given in Theorem 2. This theorem states intuitively that running the static and dynamic parts
of S[t] as distinct phases is equivalent to running [¢t] without distinguishing static from dynamic.
Note that this theorem is proved in the monad M = Static 4+ Dynam, which is created by applying

all of the monad transformers from Static and Dynam.

Theorem 2 (Equivalence of Staged Standard Semantics) In the monad M = Static+Dynam,

[t] = unquote S[t]

Theorem 2 is proved in Appendix B beginning on page 137.
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4.6 Various Lemmas

There are a number of lemmas used in the correctness proof of the source language Ezp + Imp +
Control Flow+ Boolean + Block (specifically in the proofs of Theorems 3, 4, 5, 6, 7, 8, and 9 later
in this chapter). They are gathered into this section and their proofs are found in Appendix B. On
first reading, it may be helpful to skip this section.

The following lemma follows directly from Axiom 4.

Lemma 2 (Alloc/deAlloc commutes) It expresses how Alloc(a) and deAlloc(a) commute with
other combinators. The lemma is stated for Alloc only, although the following are true for deAlloc

as well.

1. unit(z) * Av.Alloc(a) x A_.(fv) = Alloc(a) * A_unit(z) * f

2. rdEnv * Ap.Alloc(a) x A_.(f p) = Alloc(a) * A_rdEnv * f

3. = x Av.Alloc(a) x A_.(fv) =Alloc(a) x Az x [ =
(inEnv pz) * Av.Alloc(a) x A.(fv) = Alloc(a) * A_.(inEnvpz) x f

4. rdAddr x Aa.Alloc(a) * A_.(f @) = Alloc(a) x A_.rdAddr * f

5. x x Av.Alloc(a) x A_.(fv) =Alloc(a) x Az x f =
(inAddr az) * Av.Alloc(a) * A_.(fv) =Alloc(a) x A_.(inAddraz) * f

The following lemma states that a fresh address may be allocated, stored to, and discarded

without effect.

Lemma 3 For F :int —> Mb,

Obs(FreshLoc(a),Alloc(a) * A_.Thread(i,a) x Av.deAlloc(a) * A_.Fv,)

= Obs(FreshLoc(a), F i,7)
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Lemma 3 is proved in Appendix B beginning on page 147.
Lemma 4 states that, if a is a fresh location in the store, then a 4+ 1 will be fresh after a is

allocated.

Lemma 4 (Discharging FreshLoc After Alloc) FreshLoc(a) discharges FreshLoc(a+1) after

Alloc(a):

Obs(FreshLoc(a),Alloc(a) *p A_.Obs(FreshLoc(a + 1),z,y) xp Av.z,7)

= Obs(FreshLoc(a),Alloc(a) xp Az *p Av.z,7)

Lemma 4 is proved in Appendix B beginning on page 152.

Lemma 5 (FreshLoc and updateCode Interactions)

Obs(FreshLoc(a),updateCode(f) *p A_.Obs(FreshLoc(a),z,y) *p Av.z,7)

= Obs(FreshLoc(a),updateCode(f) *p A_.z *p Av.z,7)

Lemma 5 is proved in Appendix B beginning on page 156.

Lemma 6 (FreshLabel and updateCode Interactions) If L < L', then

1. Obs(FreshLabel(L'),updateCode[L — 7] xp A_.Obs(FreshLabel(L'),z,y),)

= Obs(FreshLabel(L'),updateCode[L +— 7| *xp A_.z,7)

2. Obs(FreshLabel(L),updateCode[L +— 7] xp A_.Obs(FreshLabel(L + 1), z,y),)

= Obs(FreshLabel(L),updateCode[L — 7| xp A_z,7)

Lemma 7 Observations commute with callcc :

callcc \x.Obs(0, Fr, F'k) = Obs(f, (callcc A\s.Fk), (callcc Ak.F'k))
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‘Proof of Lemma 7: ‘

callcc Ak.Obs(0, Fr, F'k)
= callcc k.0 x Mtest. if test then Frk else F'x
= 0 x Mest.callcc k. if test then Fk else F'x ~ (Axiom 3.1)
= 60 *x Mest. if test then (callcc A\x.Fk) else (callcc As.F'k)

= Obs(f, (callcc \s.Fk), (callcc Ak.F'k))

0 Lemma 7
Lemma 8 shows that the domain of the value store (i.e., the store shape [41]) is not changed by

the dynamic part of C[c : comm].

Lemma 8 (Commands Preserve Store Shape) Commands preserve store shape:

S[c : comm] xg Ad..

getSto *xp A0yp.
S[ec : comm] xg Ad..
(50 *D A =

unitg unitg(d. xp A_unitp(true))

getSto xp Aoy

unitp(dom(og) = dom(o1))

Clc: comm] x5 Ape.

getSto xp Aoyp.
Clc: comm] xg Ag,.
. Ve *D A =

unitg unitgs(y. *p A_unitp(true))

getSto xp Ao

unitp(dom(og) = dom(oq))
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Lemma 8 is proved in Appendix B beginning on page 167.
Lemma 9 specifies how the compilation ¢; affects the part of the code store within the range of

the allocated labels.
Lemma 9 (Discharging Label Freshness)

getLabel %xg AL.
C[t] *s Ae:.
getLabel xs AL’
Yt *p Av.

unitg(Obs(FreshLabel(L), ,2))
Obs(FreshLabel (L), z,y)

= getLabel xg AL.
C|It]] *g )\(pt
getLabel g AL’

unitg(Obs(FreshLabel(L), o1 *p Av.z,z))

Proof of Lemma 9 is included in Appendix B beginning on page 171.
Lemma 10 specifies the least labels, L and L', that can satisfy FreshLabel before and after the
compilation of ¢, ¢;. Most Src phrase types (e.g., Ezp) have no affect on the code store, and proving

this lemma, for those cases is typically elementary. It follows from Lemma 9.
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Lemma 10 (Compilations Preserve Label Freshness)

C[t] *s Ap:.
getLabel *xg AL’
unitg(Obs(FreshLabel(L'), ¢; xp Av.Obs(FreshLabel(L'), z,y), —)
= C[t] *s Ap;.
getLabel g AL’

unitg(Obs(FreshLabel(L'), o; *xp Av.z,—)

Lemma 10 is proved in Appendix B beginning on page 191.

4.7 Observational Correctness of Src

This section presents the compiler correctness specification relating the standard staged semantics
for Src, S[—], to a compiler for the source language constructed from reusable compiler building
blocks for each sublanguage. This relationship is entitled observational correctness in part to dis-
tinguish it from the issue of overall modular compiler correctness. Individual RCBBs are given
observation-style specifications characterizing their correctness independently of the other sublan-
guages. It is demonstrated that each building block in the compilation semantics with explicit
allocation from Section 4.4 satisfies these specifications. All of the proofs from this section are
included in Appendix B. This constitutes the middle link in the “road map” of modular compiler
verification case study outlined in Figure 4.1.

Figures 4.4, 4.5, 4.7, 4.8, and 4.9 contain the reusable compiler building blocks for the source
language Src. These differ from the RCBBs developed in Chapter 2 in exactly two respects. Firstly,
we assume now that the value store Sto has the representation described in Section 4.4, because the
scoping of side-effects provided by that representation makes reasoning about RCBB correctness
simpler. Secondly, we remove addition from the Fxzp RCBB to simplify the presentation here,

but the correctness of addition is handled analogously to negation. The semantic definitions for
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Src are summarized in Appendix A, and in particular, the official compilation semantics for Src is
summarized in Appendix A.3 on page 132.

Also included here is a new RCBB CF[e : Exp] : Static(Dynam(int)) for expressions which
performs constant-folding[1, 2], which is a code optimization that evaluates constant expressions
(i.e., those without variables) at compile-time. CF[—] is shown to fulfill the same specification as
the Ezp block (called Exp-spec). Because the proofs of the specifications for I'mp, Control Flow,
Boolean, and Block only assume Exp-spec, we get immediately that the compiler using the
constant-folding CF[—] instead of the Exp block defined in Chapter 2 is also correct. It will
be seen that the structuring of both compilers for Src affords some modularity in the compiler

correctness proofs.

4.7.1 Monad Expressions

A notational convention for monads constructed from monad transformers allows more general
RCBB specifications to be expressed easily and clearly. A monad M = T a; (... T, a, Id) may be
abbreviated as a sum of its component parts (called hereafter a monad expression): a1 + ... + ay.

This convention applies when

1. a; is always used in this thesis as part of a particular monad transformer (e.g., Label has

always appeared with 7s;)
2. liftings exist to combine the 7; a; so that the axioms in Section 4.3 hold.

To avoid confusion, the above a; will be annotated with a subscript denoting the kind of monad

transformer with which it is associated, so for example, Addrgn., + Labels; stands for both:

Tenv Addr (Tsy Label Id) and sy Label (Teny Addr 1d)

because Addr and Label have always appeared heretofore with Jg,, and 7Ts;, respectively. Because
well-known liftings exist such that updateLabel, getLabel, rdAddr, and inAddr behave as the
relevant axioms from Section 4.3 dictate (see Section 1.2.4 and Liang, et al.,[25] for further details),

the order of monad transformer application in this example is irrelevant. In those cases where the
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order of monad transformer applications does matter, a; + ... + a, stands for only those monads
for which appropriate liftings exist. So in the case of Tgn a and Tcps void for example, a + CPS
stands for only Tgny a (Tcps voidld) and not Tcps void (Tgny ald).

Furthermore, monad expressions can be ordered such that:

a1 +...+a, 2d\+...+a, & {a,...,a,} C{dl,...,a,}

We say that a computation ¢ is in the monad M, if, and only if, M = a1 + ... + a,, is the least
monad according to <X such that ¢ is written in terms of the combinators defined by the monad
transformers associated with aq,...,a,. For example, the computation rdAddr is in the monad
M = Tgny Addr |d = Addrg,y, but not in the monad T, Addr (75 Label Id) = Addrg,, + Labelsy. A
metacomputation y is in the monads S and D if its static part is in S and its dynamic part is in D.

We say that a monadic language specification {Mng[t1] = e1, ..., Mng[t,] = en} is in the monad
M if, and only if, M is the least upper bound according to < of the monads M;, where e; is in M;.

This generalizes to metacomputation-based language specifications similarly.

4.7.2 Expressions

The correctness specification for expressions will compare the integer value computed ultimately
by the staged standard semantics S[e] : Static(Dynam(int)) with the value produced by C[e] :
Static(Dynam(int)). Correctness for the expressions block means that these computations should,
under certain conditions, produce the same integer. Yet, it is too strong to simply require that
Cle] = S[e] since the dynamic computation produced by C[e] (the compilation ¢.) involves al-
locating and deallocating memory cells and reading and writing from the store and is, therefore,
a different kind of computation from the dynamic computation produced by S[e] (i.e., the inter-
pretation d.). For example, ¢, may fail (i.e., return Lpynam(voia)) if it is executed in a store for
which it was not compiled. Consider if ¢, were produced by (inAddr 0 C[e]) but is executed in the
store {(0,99)}. ¢, may allocate the memory cell 0, which would cause it to fail. In contrast, de
will always produce the same integer, no matter what store it is executed in, because it does not

depend on the store. Therefore, care must be taken to ensure that ¢, and J, are only compared
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when ¢, in executed in an “appropriate” store. Observation-based specification allows us to do
this easily.

So, what is an “appropriate” store for ¢.? If e is compiled when ¢ is the first free address, then
e may use as temporaries any address a’ > a, and so @, should execute correctly in a store o where
none of p,’s temporaries are allocated. That is, if Va' > a.(a’, —) ¢ o, then o is an appropriate store
to execute .. This requirement was encapsulated as the observation FreshLoc(a) in Definition 20.
The correctness requirement for expressions will require that, if ¢, is executed in an appropriate
store, then ¢, will be identical to §.. Why identical? Because ¢, takes pains to deallocate every
memory cell that it allocates, and so it should return the same store in which it was executed. This

specification can be written in observation-style as:

e = Obs(FreshLoc(a), de, @e) (4.8)

But this is still incomplete as it has free variables (namely, @e, de, and a).

To achieve the general form of the correctness specification, first observe that:

Cle] = rdAddr 5 Aa. (4.9)
S[e] xs Ade.
Cle] *s Age.
unitg(Obs(FreshLoc(a), pe, e))

by the “innocence” of rdAddr and S[e], observation introduction, and the right unit law. What

Equation 4.8 requires is that:

Obs(FreshLoc(a), @e, we) = Obs(FreshLoc(a), de, @)

103



or, in other words, that the right-hand side of Equation 4.9 be equal to:

rdAddr *g Aa. (4.10)
Sle] *s Ade.
Cle] *xs Age-

unitg(Obs(FreshLoc(a), d¢, @e))

Hence, the correct requirement for expressions is that C[e] be equal to (4.10). This correctness

statement, Exp-spec, is summarized in Specification 1.

Specification 1 (Exp-spec) Let £[—] : Exp — S(D(int)) where Addr < S and Sto < D. £[—]

is a correct RCBB for expressions, if

Ele] = rdAddr *s Aa.
S[e] *s Ade-
Ele] *s Age.
unitg(Obs(FreshLoc(a), de, @e))

Theorem 3 C[— : Exp] satisfies Exp-spec.

Proof of Theorem 3 is included in Appendix B beginning on page 198.

4.7.3 Imperative

The assignment lemma is used in the proof of the the imperative block specification 2.

Lemma 11 (Assignment Lemma) Under appropriate conditions, the compilation produced for

an assignment, @, is identical to the dynamic part of S[x:=e€]:
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Sto < Dynam Addr < Static

C[[Z]] = unitg(unitD (’L))

C[—t] : Static(Dynam(int)) = Negate(yr,a) = @ *p Ad.
rdAddr xg Aa. Alloc(a) *p A-.
inAddr (a + 1) Thread(i,a) *p Av.
(C[t] xs Apy : Dynam(int). deAlloc(a) *p A
unitg(Negate (¢, a)) unitp(—v)

Figure 4.4: Compilation Semantics for the Expression Block of Src with explicit (de)allocation

Clz:=e] = rdAddr xs Aa.
S[z:=e] *xg Ad.
Clz:=e€] *s Ap.

unitg(Obs(FreshLoc(a), d, ¢))

Lemma 11 is proved in Appendix B on page 195.

Imp-spec states that, under the right circumstances, the compilation produced for an I'mp
term ¢ behaves just like the dynamic part of S[c], if the code store is ignored. The right circum-
stances here are when both FreshLoc(a) and FreshLabel(L) produce true. Ignoring the code store

is accomplished by initializing it at the end of the dynamic phase with initcg.

Specification 2 (Imp-spec) Let Env + Addr + Label XS, CPS + Sto+ Code X D, and Z[—] :
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Env < Static  Sto < Dynam

Clerica] : Static(Dynam void) — C[z:=e] : Static(Dynamvoid) =

rdEnv g Ap.
Cle] *s Apey- () *SS)\a.p
Clea] *s Age,. Cle] *s Age.

it A . oo .
units(pe *p A-pes) unitg(pe *xp Ai:int.store(a,i))

Figure 4.5: Compilation Semantics for Imperative Features

Imp — S(D(void)), then Z[—] is a correct RCBB for imperative features, if

Z[c] *s Apc-units(p. xp A_.initcg)
= rdAddr *g Aa.
getLabel %xg AL.
S[c] *s Ade.
Z[c] *s Ape-

unitg(Obs(FreshLoc(a) AND FreshLabel(L), ., ¢.) *p A_.initcg)

Specification 3 (Linking Condition for Exp+Imp) Imp-spec assumes that the Exp com-

piler building block it uses satisfies Exp-spec.

Theorem 4 C[— : Imp] satisfies Imp-spec.

Theorem 4 is proved in Appendix B beginning on page 204.

4.7.4 The Constant Folding Expression Block

In this section, a new RCBB CF[—] for expressions which performs constant-folding is introduced.
Constant-folding is a standard code optimization[l, 2], which evaluates constant expressions at
compile-time. Figure 4.6 has the constant-folding compiler block for expressions. What CF[—]
does is simple: if e contains no variables, then it can be evaluated at compile-time. To evaluate e

at compile-time, simply apply the the standard semantics for constant expressions (i.e., the usual
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Addr < Static Sto < Dynam

constexp(—) : Ezp + Var — {true,false}

constexp(e) = case e of i = true
e1 +e2 = constexp(e;) & constexp(es)
—e —> constexp(e)
T — false

CF[—e] = case constexp(e) of
true = [—e] *s Ai.unitg(unitp(z))

false =— rdAddr *s Aa.inAddr (a + 1)
(CF[e] *s Awe.-unitg(Negate(pe,a))

Figure 4.6: Constant-Folding Compilation Semantics for Exp

monadic semantics for expressions: [—e] = [e] * Ai.unit(—:)) in the Static monad and boost the
resulting integer v to the dynamic phase with unitg(unitp(v)). If e is not constant, then do the
same thing you would have in the RCBB in Figure 4.4.

The following lemma states that “boosting” the standard semantics for a constant expression
gives the same result as the standard staged semantics. Let boost : Static(7) — Static(Dynam(7))
be defined as:

boost(z : Static(7)) =z *s Av : 7. unitg(unitp(v))

The boost operation is similar to the 1ift operation associated with a monad transformer, but
it differs in that boost is metacomputation-valued. The name boost has been chosen to avoid

confusion with 1ift.

Lemma 12 (boost-lemma) For any constant integer expression e:

boost [e] = S[e]

Proof of boost-lemma is included in the Appendix B beginning on page 213.
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Env + Addr < Static Sto < Dynam
C[new z in ¢] = rdEnv xg Ap.
rdAddr xg Aa.

[inEnv (p[z — unitgs(a)]) (inAddr (a + 1) C[c])] *s Ag. : Dynam(void).
unitg(Alloc(a) *p A_.@. *p A_.deAlloc(a))

Clzryai] = rdEnv *s Ap.(px) *s Aa. unitg(read(a))

Figure 4.7: Compilation Semantics for Block Structure

Theorem 5 CF[—] satisfies Exp-spec.

4.7.5 Block Structure
As in Imp-spec, masking out the code store is accomplished by initializing it at the end of the
dynamic phase with initcg.
Specification 4 (Block-spec) Let Env + Addr + Label X S, CPS + Sto + Code < D, and

N[-] : Block — S(D(void)), then N[—] is a correct RCBB for block structure, if

N[new z in c] x5 Ap.unitg(¢ *xp A_.initcg)
= rdAddr *g Aa.
getLabel %xg AL.
S[new z in c] *g Ad.
N[new z in c] *s Ap.

unitg(Obs(FreshLoc(a) AND FreshLabel(L),d,¢) xp A_.initcg)

Theorem 6 C[— : Block] satisfies Block-spec.

Theorem 6 is proved in Appendix B beginning on page 214.
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Addr + Label < Static Code 4+ Sto < Dynam

Cle1 < e2] : Static(Dynam(bool)) = Lteq(goi, <’02)i a) -
rdAddr xg Aa. ¥1 *D Al
P2 *p AJ.

inAddr (a + 2)
(Cle1] *s A1 : Dynam(int).
(Cle2] *s Apa : Dynam(int).
unitg(Lteq(p1, po,a))

Alloc(a) *p A-.
Alloc(a+1) *p A
Thread(i,a) *p Avi.
Thread(i,a + 1) *p Avs.
deAlloc(a) *p A
deAlloc(a + 1) *p A
unitp (AN, kp).(v1 <ve — K, kp))

if (b1 or b2) then ¢ Esyn_ sugar if b1 then c else (if b2 then C)
if (b1 orby) then c; else co =gyn. sugar if b1 then c; else (if by then ¢; else ;)

Figure 4.8: Compilation Semantics for the Boolean Block of Src

4.7.6 Booleans

Specification 5 (Bool-spec) Let Addr+ Label XS, CPS+ Sto+Code < D, and B[] : Bool —

S(D(void)), then B[—] is a correct RCBB for booleans, if

B[b] = rdAddr xg Aa.
getLabel %xg AL.
S[b] *s Adp.
B[b] *s Awp.

unitg(Obs(FreshLoc(a) AND FreshLabel(L), 8y, ¢p)

Theorem 7 C[— : Bool] satisfies Bool-spec.

Theorem 7 is proved in Appendix B beginning on page 219.
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Label < Static Code + CPS < Dynam

C[if b then ¢] = fThenPS(py, @, Le, L) =
newlabel xg AL. wp *D AB.
newlabel xg AL,. callcc k.
C[b] *s Awe. updateCode[L, +—> ko] *xp A_.
Cle] *s Ape. updateCode[L. — ¢, *xp A_.jump L,] *p A
unitS(If—rhenPS((pba(pCaLcaLn)) ﬁ(Jump Lc,jump LKZ)
C[while b do c] = WhilePS (b, 0cy Ltest, Ley L) =
newlabel xg AL,. callcc k.
newlabel *g ALe. updateCode[L, — ko] *p A_.
newlabel *g ALest. updateCode[L, — ¢, *p (jump Liest)] *p Ao
CIb] *s Age. updateCode[Liesi — @b *p AB-B{Lc, Liest)] *p A
Cle] *s Age. jump Lyeqt

units(WhilePS(pp, e, Ltest, Le, Li))

Figure 4.9: Compilation Semantics of the Control-Flow Block of Src

4.7.7 The Simple Control-Flow Language

Specification 6 (Linking Condition for Bool4+CF) The booleans produced by boolean RCBB

B[—] are parametric. That is, for f: Voa.a x a = a: B{a,b) = a or B{a,b) = b.

Theorem 8 C[— : Bool] satisfies Specification 6.

Please note that Theorem 8 holds by inspection. That is, for any two integers v1, v2, the boolean

Mk, kp).(v1 < vy — Kr,kp) is always parametric.

Specification 7 (Control-Flow-spec) Let Addr + Label < S, CPS + Sto + Code < D, and
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K[-] : ControlFlow — S(D(void)). Then K[—] is a correct RCBB for the control-flow block, if

Klef] *s Ap.unitg(p xp A_.initcg)
= rdAddr x5 \a.
getLabel %xg AL.
S[ef] *s Ad.
Klcf] *s Ae.

unitg(Obs(FreshLoc(a) AND FreshLabel(L),d,p) *xp A_.initcg)

Theorem 9 C[— : Control Flow] satisfies Control-Flow-spec.

Theorem 9 is proved in Appendix B beginning on page 220.

4.7.8 Observational Correctness Relation

Specification 8 formalizes the correctness relation between the standard staged semantics S[— :
Src] and reusable compiler building blocks for the sublanguages. This relation is referred to as
observational correctness. The observational correctness of C[— : Src] (Theorem 10) corresponds
to the middle link of Figure 4.1. Theorem 11 demonstrates that the compiler formed by expression
block C[— : Imp+ Block + Bool + Control Flow] with the constant-folding expression block CF[—]
is also observationally correct.

Specification 8 (Observational Correctness for Src Compiler)

E[—] satisfies Exp-spec and linking condition (Spec. 3)
Z[—] satisfies Imp-spec

N[-] satisfies Block-spec

B[—] satisfies Bool-spec and linking condition (Spec. 6)

K[-] satisfies Control-Flow-spec

E[-1+Z[-]1+N[-]+ B[] + K[-] is an observationally correct compiler for Src
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Theorem 10 follows from Theorems 3, 4, 6, 7, and 9.

Theorem 10 C[— : Src] is a correct compiler for Src.

Theorem 11 follows from Theorems 5, 4, 6, 7, and 9.

Theorem 11 CF[—: Ezp] + C[— : Imp + Block + Bool + Control Flow] is a correct compiler for

Src.

4.8 Conclusions

The structure of the proof of the Src compiler involved three parts:

1. The individual compiler building block-level specifications and verifications: Exp-spec (Spec-
ification 1), Imp-spec (Specification 2), Block-spec (Specification 4), Bool-spec (Specifi-

cation 5), and Control-Flow-spec (Specification 7).

2. Linking Conditions. There were two linking conditions—Imp-spec assumed that Exp-spec
held of Ezp and Control-Flow-spec required that the booleans produced by Bool are para-

metric. Neither of these was difficult to prove.

The specifications in (1) relate the meanings of a term ¢ : Src according to the staged standard
semantics S[—] and the compilation semantics C[—]. The main idea in these specifications is to
require the value or effect produced by the compiled code (i.e., the compilation ¢; produced by C[t])
to be identical to that produced by d; (the dynamic computation produced by S[t]). The main
challenge here was to “mask out” the effects on the implementation-level data used exclusively by
C[t]- Observational program specification was used in this endeavor.

While this method of compiler verification does provide some level of modularity and reusability
in compiler proofs, it does not provide unrestrained reusability. One can not combine arbitrary,
correct compiler building blocks together into a correct compiler. For example, Imp-spec must
mask out the code store with initcg because in the Src language, while-do and if-then are also

commands. While in modular compiler and interpreter construction, adding language building
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blocks together is quite elementary[14, 13, 25, 10], compiler specifications and verifications are far
more delicate’.

However, this methodology provides a certain level of modularity in compiler proofs. To prove
Theorem 11, it was clear what (small) part of the overall proof had to be reproved. It was necessary
to show only that CF satisfies Exp-spec. This experiment shows that the modularization of the
language semantics using monads, monad transformers, and metacomputations provides a useful
guide for organizing a compiler proof. This is a substantial benefit compared with previous efforts

in this area[32, 46, 48].

1Of course, combining arbitrary language building blocks does not necessarily produce a sensible compiler or
interpreter, even if combining the language building blocks is a simple matter. This fact is often ignored in the
literature.
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Chapter 5

Equivalence of C[—| and compile

Two implementations of reusable compiler building blocks have been presented so far in the thesis.
In Chapter 2, compiler building blocks were implemented as metacomputation-valued definitional
interpreters. Using a standard technique from semantics-directed compilation [5, 8, 13, 14, 16,
18, 19, 38], code generation is accomplished through type-directed partial evaluation[7, 8] of the
definitional interpreter. The second RCBB implementation—monadic code generators—can be
viewed as code-valued interpreters. Monadic code generators produce target language code directly
without the intermediate step of partial evaluation.

An overview of the correctness proof of the compiler for Src = Exp + Imp + Block + Bool +
Control Flow is shown in Figure 5.1. The first two links between [—] and S[—] and between S[—]
and C[—] were established in Chapter 4. This chapter concerns the last correspondence between
C[—] and compile (defined in Figures 5.4 and 5.5). First, a formal semantics M[—] for the target
language TargetlLang is given in Section 5.1. Next, Section 5.3 demonstrates a few lemmas helpful
to the proof of the main result. Finally, the main theorem establishing the equivalence of C[—] and
compile is shown.

Is there some reason for relating the metacomputation-based RCBB implementations of Chap-
ter 2 to the monadic code generator RCBB implementations of Chapter 3 other than academic

rigor? There are three principal reasons:

e The strength of the correctness relation between C[—], compile, and M[—] demonstrates how

well the metacomputation idea models staging.

e Doing so avoids the “pretty-printing” problem in semantics-directed compilation based on
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Standard Semantics [t] : M(Value)

Equivalence Theorem 2

Staged Standard Semantics :9[[t]] : Static(Dynam(Value))

Observational Specifications (Exp-spec,...)

Compilation Semantics C[[t] : Static(Dynam(V alue))

Equivalence of C[—] & compile Theorem 12

4

Monadic Code Generator compile(t) : Static(TargetLang))

Figure 5.1: Src Compiler Correctness

partial evaluation. Until now, it has been tacitly assumed that the output from the type-

directed partial evaluator resembles machine code, but how can one be sure of this?

¢ It helps to clarify the implicit run-time model—that is, how does one know that combining

two RCBBs produces a sensible compiler?

Traditional semantics-directed compilation based on partial evaluation[5, 8, 14, 16, 17, 18, 19,
23, 38] applies a partial evaluator to a semantic language definition to generate code. The residual-
ized term is purported to resemble machine language code so closely that it may be pretty-printed
as machine code. This begs the question of whether the residualized term is guaranteed to resemble
machine code, and hence, calls into question the viability of partial evaluation-based semantics-
directed compilation. The metacomputation-based RCBB implementations of Chapter 2 are sus-
ceptible to this argument as well, because it was implicitly assumed that the terms residualized by
type-directed partial evaluation resemble TargetLang code.

Formally relating C[—] to compile establishes that partial evaluation is not essential to the ap-
proach to compiler construction advocated in this thesis, because the pretty-printing problem may
be completely side-stepped. The monadic code generator RCBB implementations (i.e., compile)
may be seen as “the” definitive compiler building blocks, and the metacomputation-based compila-

tion semantics can be then viewed as an intermediate step in their verification. It may be possible
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MachlLang: :=
NOP|
S := Rhs|
MachLang; MachLang]|
JUMP L |
ALLOC Addr |
DEALLOC Addr |
ENDLABEL L. MachLang]
SEGM (L,MachLang) |
BRLEQ Addr Addr |
MachLang ¢ MachlLang x MachlLang |

Rhs ::= SRhs | -SRhs | SRhs+SRhs
SRhs ::=a € Addr | #c for integer ¢

IntProducer = MachLang x Rhs x Set(Addr)

TargetLang= MachLang+ IntProducer

Figure 5.2: BNF for the Target Language

to solve the pretty-printing problem with the kind of type-based analysis that is found in languages
with explicit staging like MetaML[45], but this is left for future research.

Another reason to relate C[—] and compile is that it helps clarify which compiler building blocks
may be combined sensibly. A monadic code generator RCBB implementation is necessarily strongly
wedded to a particular machine language, which is, in turn, wedded to a particular run-time model.
The target language in Chapter 3 used a stack organized into stack frames, while the the target
language in the present Chapter uses a stack of integers. One could imagine monadic code generator
RCBBs which use heap-based allocation, and the target language for such an RCBB would contain
a malloc-like operator. It is a necessary (although not sufficient) condition for two RCBBs to

combine sensibly that combining their target languages makes sense as well.
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Definition 25 The semantics of the target language:
M(NOP] = unitp(e)
Mla:=rhs] = M[rhs] *p Xi:int.store(a,1)

store(a,i) = getSto xp Ao.
if (a, —) € o then
updateSto(Ao.(o\(a,—)) U (a,1))
else

L bynam(voia)
Mmy 5 .o 5w = M[mi] xp Ao *xp Ao M[m,]
M[SEGM(L, )] = updateCode[L > M[r]]
M[JIUMP L] = jump L
M[ENDLABEL L 7] = callcc (Ak.updateCode|L — ko] xp A_.M][n])

MI[ALLOC(a)] = getSto *p Ao.
if (a,—) € o then

J—Dynam(vo id)
else
updateSto(Ao. o U (a,0))

M([DEALLOC(a)] = getSto xp Ao.
if (a, —) € o then
updateSto(Ao. o\(a, —))
else

LDynam(void)
M((m, rhs, tmps)] = M[r] *p A-. M[rhs] *p Xi :int. M[(pop tmps)] *p A_.unitp(7)

MI[BRLEQ a '] = read(a) *p Av.
read(a') xp .
DEALLOC(a) *p A_.
DEALLOC(a') *p A-.
unitp(Xz,y).v <v' — z,y)

read(a) = getSto xp Aa.[if (a,v) € o then unitp(v) else L pynam(voia)]

Mo mp (mp,mp)] = M[mp] *p Ab: Dynam(void) x Dynam(void) — Dynam(void).
b(Mrr], M[mr])

Figure 5.3: Formal Semantics of the Target Language
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5.1 The Target Language and Its Semantics

Figure 5.3 presents the formal semantics M[—] of the target language TargetLang. The type of
M[—] is:

Mt : TargetLang] : Dynam(int + void + Dynam(void) x Dynam(void) — Dynam(void))

The meanings of NOP, a:=rhs, and 71 ; o are just what they are in the standard semantics for
skip, assignment, and sequencing, except that a:=rhs assigns directly to an address, so no envi-
ronment look-up is necessary. M[SEGM(L, )] updates the code store at label L with the meaning
of the stored code M[r]. JUMP L retrieves the code store and executes the segment stored at L.
(ENDLABEL L ) gets the current continuation, stores it in the code store, and then executes w. Any
jumps to L inside of 7 will have the effect of jumping out of 7. The meaning of ALLOC(a) looks to see
if a is a free address, and if so, adds it to the current store. Otherwise, ALLOC(a) fails. DEALLOC(a)
is similar. The meanings of ALLOC(a) and DEALLOC(a) are identical to the combinators Alloc(a)
and deAlloc(a) defined in Chapter 4. The meaning of an IntProducer (m, rhs, tmps) is (1) execute
the code M[x], (2) evaluate the right-hand side M[rhs] producing an integer 7, (3) deallocate all
of the temporaries used in 7, and (4) return i. The branch on less-than-or-equal M[BRLEQ a a']
gets the current values at addresses a and o’ (call them v and v', respectively), deallocates a and
a', then returns the function which chooses = or y from (z,y) based on whether v < v'. Finally,
the meaning of the “code apply” operator ¢ is to evaluate its first argument, producing a choice

function b, and then to apply b to the pair of meanings of the true and false branches.

5.2 The Correctness Relation between C[—], compile, and M[—]

Before beginning with the details of the chapter, it may be helpful to examine at a high level the

equivalence theorem:

Theorem 12 (Relating C[—], compile, and M[—]) For any well-typed term t in the source lan-

118



compile : Src — M(TargetLang)
M = Static

(pop {}) = NOP
(pop {a1,...,a,}) =DEALLOCay ; ... ; DEALLOCay,

compile(z) = unit(NOP, #i, { })

compile(—e) =

rdAddr % Ma.inAddr (a + 1) ( (compilee) % A(re, rhse, tmps.). )

unit(m, ; ALLOCa ; a:=rhs, ; (pop tmps,.), —a, {a})
compile(z:=e) = rdEnv * Ap.

(pz) * Aag.

compile(e) * A(me, rhse, tmps,).

unit(m, ; az:=rhse ; (pop tmps,))
compile(cy;ca) = compile(cy) * Amp.compile(cz) * Amg.unit(m; ; mo)
compile(newz inc) = rdAddr * Aa.rdEnv x Ap.

[inAddr (a+1) (inEnv p[z +— (unit a)] (compilec))] x Am.
unit(ALLOC(a) ; 7. ; DEALLOC(a))

compile(z) = rdEnv x Ap.(p ) * Aa.unit(NOP,qa, {})

Figure 5.4: Monadic Code Generator for Src (part 1)
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compile(e; leq e2) =

rdAddr * Aa.
inAddr (a + 2)

compile(e1) * (w1, rhs1, tmps,).

compile(eg) x A(mg, rhsg, tmpss).

. 71 3 ALLOC(a) ; a:=rhsy ; mo ; ALLOC(a + 1) ;
unit
(a+1):=rhss ; (pop tmps;) ; (pop tmpsy) ; BRLEQa (a+1))

compile(if b then c) =
newlabel * ALeyit-
newlabel x AL..
compile(b) * Amy.
compile(c) * Ame.
unit(ENDLABEL Leyi; (SEGM[Le, e 5 JUMP Leyit] 5 (5 © (JUMP L, JUMP Leyit))))

compile(while b do ¢) =

newlabel % /\Ltest-

newlabel x AL,.

newlabel x ALggit.

(compileb) * Amy.

(compilec) * Am.
SEGM[L,, . ; JUMP Lycsy] ;

unit(ENDLABEL Legs | SEGM[Lyess, 7 ¢ (JUMPL,, JUMPLozir)] 5 |)

JUMP L sy

Figure 5.5: Monadic Code Generator for Src (part 2)
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guage Src = Exp + Imp + Control Flow + Block + Bool,

C[t] = compile(t) xs Am.unitg(M][m])

The theorem states that the formal meaning of the code produced for well-typed ¢t by compile,
M(m], is identical to the compilation ¢; : Dynam(Value). Theorem 12 is an extremely strong

relation, which demonstrates how well the metacomputation idea characterizes staging semantically.

5.3 Technical Lemmas

Lemma 13 specifies the interactions between the combinators store, read, Alloc, and deAlloc.

This lemma is used in the proof of Lemma 14. It follows directly from Axiom 2.

Lemma 13 Given a,a’ : Addr such that a # a':
i. store(a,v) xp A_deAlloc(a’) = deAlloc(a’) *xp A_.store(a,v)
ii. Alloc(a) xp A_.deAlloc(a’) = deAlloc(a’) *p A_.Alloc(a)

iii. Alloc(a) *xp A_read(a') *xp Av.(fv) =read(a’) *xp Av.Alloc(a) *p A_.(fv)

In the meaning of an expression according to the compilation semantics C[e], temporary ad-
dresses are deallocated as soon as they are used. Consider the definition of compilation Negate (the
dynamic part C[—e]):

Negate(pe,a) = @e *p Ai.
Alloc(a) *p A-.
Thread(i,a) *p Av.
deAlloc(a) *p A

unitp(—v)

Here, deAlloc(a) occurs right after the value 7 is stored at a. Consider an IntProducer for a negation:

(e ; ALLOC a ; a:=rhs, ; (pop tmps,), —a, {a})
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The temporary address a is not deallocated until the right-hand side —a is used. This has the effect
that deallocations in IntProducers can occur later than in corresponding compilations produced by

C[—]- Lemma 14 shows that this has no effect on the value produced.
Lemma 14 (Separability)

rdAddr xg Aa.
(inAddr (a + 1) compile(e)) *s A(me, rhse, tmps,).
unitg(M][(m ; ALLOC(a) ; a:=rhs. ; pop(tmps,), —a,{a})])
= rdAddr x5 Aa.
(inAddr (a + 1) compile(e)) *s A(me, rhse, tmps,).
unitg(Negate(M[(me, Thse, tmps,)], a))
Proof of Lemma 14 is included in Appendix C beginning on page 246.

Lemma 15 relates the compilation produced for an if statement with the corresponding TargetLang

code produced by compile.

Lemma 15 For all my, 7. : MachLang (where my is produced by compile(b : boolexp)), and L., Leg

Label :

IfThen(M[B], M[nc], L¢, Legit) =

M[(ENDLABEL Leyit (SEGM(Lc, 7 5 JUMP Legit) 5 mp © (JUMP L., JUMP Legit)))]

Proof of Lemma 15 is included in Appendix C beginning on page 254.

5.4 Proof of Main Theorem

This section presents the equivalence between C[—] and compile in Theorem 12.

Definition 26 For a set of variables V and an environment p : env, define V N p to be the
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environment:

Az.if z € V then (pz) else L

Definition 27 For address a : Addr and environment p : env, define p < a if and only if, for

every variable z, if (px) = unit(a’) for some address o' : Addr, then o' < a.

Definition 28 (Relation R) Define relation R(a* : Addr, p* : env,t : Src) as:

(FreeVars(t) N p*) < a* =

inEnv p* (inAddr a* C[t]) = inEnv p* (inAddr a* (compile(t) *s Amp.unitg(M[m])))

Lemma 16 (R-lemma) Va* : Addr, p* : env,t : Src. R(a*, p*,t).

The proof of R-lemma is included in Appendix C beginning on page 256.
Theorem 12 (Relating C[—] and M[—]) For any well-typed term t in the source language
Src = Exzp + Imp + Control Flow + Block + Bool,

C[t] = compile(t) xs Am.unitg(M][m])

| Proof of Theorem 12|

Let p* be the empty environment (Az. 1) and a* be the address 0. It is clear that: FreeVars(t)N

*) < a*. By Lemma 16, it is also known that R(a*, p*,t). Therefore:
p

inEnv p* (inAddr o C[t]) = inEnv p* (inAddr a* (compile(t) *s Am.unitg(M[m])))

Because t is well-typed, it contains no free variables, and so the inEnv and inAddr can be dropped

from both sides. Thus:

C[t] = compile(t) *xs Am.unitg(M][m])
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Chapter 6

Conclusions

The author’s central research objective is to develop methods of structuring software that make
large-scale software systems more maintainable, modifiable, and reliable. This dissertation focuses
on building modular compilers for high-level programming languages and proving them correct.
Compilers have traditionally been factored into phases (e.g., parsing, code generation, etc.), while
compilers constructed according to the method developed here are also structured by source lan-
guage feature (e.g., expressions, procedures, etc.), yielding a “mix and match” approach to compiler
construction. It is quite easy to modify or extend an existing compiler which has been constructed
according to this method, and it is also a simple matter to reuse existing work.

The main contributions of the present work are:

e Modular Compilation. This dissertation concerns the construction of modular compilers
for high-level programming languages from reusable compiler building blocks. With this
approach, compilers for a language with many features (e.g., expressions, procedures, etc.)
are built using compiler building blocks for each specific feature. Each compiler building block
compiles a specific feature and can be easily combined with compiler building blocks for other
features to provide compilers for non-trivial languages with many features. Furthermore,
each compiler building block is reusable and may be used in the construction of compilers
for many different languages. Compilers constructed according to this method are modular
in that source language features may be added or deleted with ease, allowing the compiler
writer to develop compilers at a very high level of abstraction. This approach to structuring
compilers is completely new in compiler design and was motivated by the insight that the same

advantages provided by using the categorical concepts of monads and monad transformers
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in structuring interpreters carry over to compilers. To date, compiler building blocks have
been developed for such features as expressions, call-by-value and call-by-name procedures,
recursive bindings, dynamic binding, control flow, and block structure, and a number of

compilers have been constructed using these building blocks.

Metacomputation-style Staging. A metacomputation is a formal semantic model of
staged computation. Metacomputation-style language specifications factor the compile-time
and run-time parts of a specification into separate monads. Metacomputation-style specifica-
tions retain the modularity, extensibility, and reusability of monadic specifications and closely
resemble semantic versions of the translation schemas found in traditional hand-written com-
pilers, while remaining close to the usual intended semantics of the language. In a sense,
metacomputation-style reconciles the informal approach to code generation taken in tradi-

tional hand-written compilers with semantics-based compilation.

Metacomputations provide a new modular and extensible style of staging denotational specifi-
cations. Staging in language specifications, or distinguishing compile-time parts of a specifica-
tion from run-time parts, is important in semantics-based compilation because it substantially
reduces the need for a sophisticated partial evaluator. In the context of modular compilation,

staging also makes the construction and combination of compiler building blocks simpler.

Two Implementations of Reusable Compiler Building Blocks. Reusable compiler
building blocks for language features such as expressions, imperative, control-flow, block
structure, booleans, open/closed procedures, call-by-name, call-by-value, dynamic binding,

recursion were implemented in both metacomputation-style and as monadic code generators.

Novel Approach to Compiler Correctness. Given certain preconditions, correct com-
piler building blocks may be combined into correct compilers, thereby attaining a level of
reusability in compiler correctness proofs. While this method of compiler verification does
provide some level of modularity and reusability in compiler proofs, it does not provide unre-
strained reusability. That is, one can not combine arbitrary, correct compiler building blocks

together into a correct compiler.

However, this methodology provided a certain level of modularity in compiler proofs. This
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case study in compiler verification shows that the modularization of the language semantics
using monads, monad transformers, and metacomputations does provide a useful guide for
organizing a compiler proof. This is a substantial benefit compared with previous efforts in

this area[32, 46, 48].

Observational Program Specification. This is a form of monadic program specification
which makes minimal assumptions about the monad in which its specifications are interpreted.
It was particularly valuable in the specification and verification of modular compilers, whose

building blocks are intended to be interpreted in many different monadic contexts.
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Appendix A

Semantic Definitions of Src

The following definitions are used throughout this Appendix.

‘ Operations on the store:

store(a,i) = getSto xp Ao.
if (a,—) € o then
updateSto(Ao.(o\(a,—)) U (a,1))
else
L bynam(voia)
read(a) = getSto xp Ao.[if (a,v) € o then unitp(v) else Lpynam(voia)l
Alloc(a) = getSto *p Ao. if a € 0 then |pynam(voia) else updateSto[o™ — o* U {(a,0)}]

deAlloc(a) = getSto xp Ao. if a € o then Lpynam(voia) else updateSto[o™ — o™ \ {{a, —)}]

Control-flow operations: ‘

dynwhile : Dynam(bool) x Dynam(void) — Dynam(void) is defined:

dynwhile(B, ¢) = fix(Addw.B *p AB :bool.callcc As.B{p *p A_.dw(B,p),kKe))

IfThen : Dynam(bool) x Dynam(void) — Dynam(void) is defined by:
IfThen(pp, pc) = ©p *p AB :bool.callcc Ak.B{p. *p K,k ®)

jump L = getCode xp All.callcc k. if (L, 7) € dom(II) then 7 else Lpynam(voia)

127



In the following definitions of IfThenPS and WhilePS, the “PS” refers to these definitions being

pass-separated in the sense of Jgrring and Scherlis[20].

If'l'henPS(gob,(pc,Lc,L,i) = @b *D AIB
callcc As.

updateCode[L, > ko] xp A_.
updateCode[L. — @, xp A_.jump L] xp A_.

B(jump L, jump L)

WhilePS (@, @c, Liest, Le, L) =

callcc Ak.
updateCode[L, — ko] *p A_.
updateCode[L. — ¢, xp (jump Liest)] *p A
updateCode[Lyest — @p *p AB.L{jump L., jump L) xp A

jump Ltest
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A.1 Standard Semantics [—] for Src

[—] : Src — Static + Dynam(void + int + bool)
[:] = unit(3)
[—e] =[e] * Ai.unit(—7)
[z] = rdEnv x Ap.(pz) * Aa: Addr. read(a)
[er 5 e2] = [er] * A-[e2]
[x:=€] = rdEnv x Ap.(pz) * Aa: Addr.[e] = Ai:int. store(a,i)
[new z in ¢] = rdAddr x Aa.

rdEnv * Ap.

inAddr (a+1) | inEnv (p[z — unit(a)])
Alloc(a) * A_.[c] * A_.deAlloc(a)

[er leq ex] =[er] * Avi.[e2] * Ave.unit(Nkr, kp).(v1 < ve = kp,KR))
[if b then c] = fThen([b], [c])
[while b do c] = dynwhile([b], [c])
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A.2 Staged Standard Semantics S[—] for Src

S[—] : Src — Static(Dynam(void + int + bool))

S[i] = unitg(unitp (7))

S[—e] = S[e] *s Ape : Dynam(int). unitg(p. xp Ai.unitp(—1))
S[z] = rdEnv *g Ap.(px) *s Aa: Addr. unitg(read(a))

S[[q ; CQ]] :S[[cl]] *g )\(,01.8[02]] *g )\(,02. unitg(gol *D >\_.(,02)
S[z:=e] = rdEnv xg Ap.
(px) *xs Aa: Addr.

S[e] *s Ape : Dynam(int). units(pe xp Ai:int.store(a,i))

S[new z in ] =
rdAddr xs Aa.
rdEnv *g Ap.
inAddr (a + 1) *S AQe.
inEnv (p[z — units(a)]) S[c]

unitg(Alloc(a) *p A_.¢. *p A_.deAlloc(a))
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S[e1 leq e2] = S[ei] *s Agi : Dynam(int).
S[ez2] *xs Apa : Dynam(int).

©1 *p Avp :int.

units | oy xp Avg :int.

unitp(A(kr, kr).(v1 < ve = Kr,KF))

S[if b then ¢] = S[b] *s Agp : Dynam(bool).
S[c] *s Apc : Dynam(void).

unitg(IfThen(pp, ¢c))
S[while bdo ¢] = S[b] xs AB : Dynam(bool).

S[c] *s Apc : Dynam(void).

unitg(dynwhile(B, ¢.))
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A.3 Compilation Semantics C[—] for Src

C[—] : Src — Static(Dynam(void + int + bool))
C[i] = units(unitp(7))
C[—e] = rdAddr xs Aa.
(inAddr (a + 1) C[e]) *s Age : Dynam(int).
unitg(Negate(ype, a))
where: Negate(pe,a) = @e *p Ai.
Alloc(a) *p A-.
Thread(i,a) xp Av.
deAlloc(a) *p A_.
unitp(—v)
Clz:=e€] = rdEnv xs Ap.(pz) x5 Aa.Cle] *s Ape.unitg(pe xp Ai:int.store(a,i))
Cler;e2] = Clei] *s Ape, Clea] *s Ape,-units(ve, *p Ae,)
C[new z in ¢] = rdEnv *xg Ap.
rdAddr xg Aa.
[inEnv (p[z — unitg(a)]) (inAddr (a + 1) C[c])] *s Agc : Dynam(void).
unitg(Alloc(a) xp A_.@. xp A_.deAlloc(a))
C[Tryal] = TdEnv xg Ap.(px) *s Aa. unitg(read(a))
Cleileqez] = rdAddr *s Aa.inAddr (a +2) (Clei] *s ApiClea] *s Apz.unitg(Lteq(p1, 2,a)))
where: Lteq(p1,p2,a) = @1 *p \i.
Y2 *D AJ.
Alloc(a) *p A-.
Alloc(a+1) *p A
Thread(i,a) xp Avj.
Thread(i,a + 1) xp Ave.
deAlloc(a) *p A
deAlloc(a+ 1) *p A

unitp(NEr, kp).(v1 <ve = Kp,kp))
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C[if b then c¢] = newlabel xg ALy.
newlabel xg AL..
C[b] *s Awp-
Clc] *s Ape-
unitg(IfThenPS(wp, 9¢, Le, L))
C[while b do ¢] = newlabel *xg ALy.
newlabel xg AL,.
newlabel x5 ALeg;.
C[b] *s Awp.
Cle] *s Ape.
units(WhilePS(y, ©c, Liesty Le, L))
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A.4 Code Generator compile for Src

compile : Src — Static(TargetLang)
compile(i) = unit(NOP, #i,{ })
compile(—e) =
rdAddr * Aa.inAddr (a + 1) (compilee) % Afme, rhse, tmps..).
unit (7, ; ALLOCa; a:=rhs. ; (pop tmps,), —a, {a})
compile(z:=e) = rdEnv x Ap.
(pz) * Aag.
compile(e) *x A(me, rhse, tmps,).
unit (7, ; az:=rhse ; (pop tmps,))
compile(cy;c2) = compile(c1) *x Ami.compile(cy) x Amg.unit(m ; 7o)
compile(newz inc) = rdAddr x Aa.rdEnv x Ap.
[inAddr (a+1) (inEnv p[z +— (unit a)] (compilec))] x An.
unit(ALLOC(a) ; 7. ; DEALLOC(a))
compile(z) = rdEnv * Ap.(p ) * Aa.unit(NOP,a,{})
compile(e; leq e2) = rdAddr * Aa.
inAddr (a + 2)
compile(e1) x (w1, rhs1, tmps,).
compile(eg) x A(mg, rhsg, tmps,).
71 3 ALLOC(a) ; a:=rhsy ; w9 ; ALLOC(a + 1) ;

unit
(a+1):=rhso ; (pop tmps;) ; (pop tmpsy) ; BRLEQa (a+1))
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compile(if b then c) =
newlabel * ALeyit-
newlabel x AL..
compile(b) * Amp.
compile(c) * Ame.

unit(ENDLABEL Leyi; (SEGM[L,, 7 3 JUMP Leyit] ; (mp © (JUMP Ly, JUMP Leyis))))

compile(while b do ¢) =
newlabel x ALyt
newlabel x AL,
newlabel x ALgyi;.
(compileb) * Amy.
(compilec) * Ame.
SEGM[L,, 7. ; JUMP Lycs] ;
unit(ENDLABEL Legit | SEGM[Lyess, mp © (JUMPL,, JUMPLzir)] 5 |)

JUMPL ;s
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A.5 Semantics M[—] for Target Language TargetLang

M[—] : TargetLang — Dynam(void + int + bool)
M[NOP] = unitp(e)
Mla:=rhs] = M[rhs] *p Xi:int.store(a,i)
M[ry; oo 5] =M[mi] *p Ao *p A M[m,]
MJALLOC(a)] = Alloc(a)
M[DEALLOC(a)] = deAlloc(a)
M([(m, ths, tmps)] = M[r] xp A-. M[rhs] *p Xi :int. M[(pop tmps)] *p A_.unitp(7)
M([SEGM(L, )] = updateCode[L — M[x]]
M[IUMP L] = jump L
MIENDLABEL L 7] = callcc (As.updateCode[L — ke| xp A_.M][n])
M[BRLEQ a o] = read(a) *xp Av.

read(a’) xp \v'.

deAlloc(a) *p A_.

deAlloc(a’) *xp A

unitp (MNz,y).v <v' — z,y)

Mo my (mp,mp)] = M[mp] *p Ab.b (M[rr], M[mr])
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Appendix B

Proofs from Chapter 4

B.1 Proof of Theorem 2

Theorem 2 (Equivalence of Standard Staged Semantics) In the monad M = Static+Dynam,
[t] = unquote S[t]

where unquotez =z *ps id.

‘Proof of Theorem 2 ‘

By induction on t.

| Case: t is constant i

unquote S[i] = (unity(unity,(2))) *ar 1d =ieq wnie UNitar(2)

‘ Case: t is negation —e‘

unquote S[—e] = (S[—e€]) *ur id

= (S[e] *m Ape- unitps(pe *pr Aicunityr(—i))) *pr id

By associativity: ‘

= Sle] *m Ape- [unitar(pe *pr Aicunitpr(—i)) *pr id]
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By left unit:

= Sle] *m Ape- [pe *m Ai.unitp(—1)]

‘ By associativity: ‘

= [S[e] *m Ape- @e] *nmr Ai.unitp(—1)

‘ By induction hypothesis: ‘

= [e] *ar Ai.unitp(—i) = [—€]

‘ Case: t is variable z ‘

unquote S[z] = [rdEnv *p; Ap.(px) *p Aa : Addr.unitys(read(a))] *pr id

‘ By associativity: ‘

=rdEnv xp Ap.(pz) *pr Aa.[unitys(read(a)) *ur id]

=rdEnv x); Ap.(pz) *pr Aa.read(a) = [z]

‘ Case: t is the command ¢ ; ¢y ‘

unquote(S[c ; co])

‘Unfolding definitions of unquote and S[c; ; ¢2]: ‘

= [S[Cl]] *M )\(pl.S[CQ]] *M )\(pg. unitM(<p1 *xD )\_.(pg)] *M id

‘ By associativity: ‘

:S[cl]] *M )\(,Ol.SIICQ]] *M )\QOQ. [unitM(<p1 *D )\_.(pg) * M ’Ld]

:S[[Cl]] *M Ag01.8|[62]] *M A(,OQ. Y1 *D A_.(,OQ

138



‘Because S[e2] is innocent: ‘

= S[a] *m Apr.p1 xp A_S[e2] *m Ap2.p2

‘ By associativity: ‘

= (SI[Cl]] *M )\(,01.(,01) *D )\_.(Sl[CQ]] *M >\(,02.g02)

‘ By induction hypothesis: ‘

= [e1] *p A-Je2] = [e1 5 2]

| Case: ¢ is the command z:=¢|

unquote S[z:=¢] =

[rdEnv xps Ap-(pz) *pr Aa: Addr. S[e] *xpr Ape. unit (e *pr Ai.store(a,i))] xpr id

‘ By associativity: ‘

= rdEnv xy Ap.(pz) *mr Aa. [Se] *mr Ape. unityr(pe *1r Ai.store(a,i))] xu id

‘ By associativity: ‘

]

=rdEnv xys Ap.(pz) *pr Aa. S[e] *amr Ape. [unitar(pe *ar Ai.store(a,i)) *pr id]

=rdEnv xp; Ap.(pz) *pr Aa. S[e] *amr A@e. [pe *mr Mi.store(a,i)]

e

‘ By associativity: ‘

=rdEnv xpr Ap.(pz) *pr Aa. [Se] *m Ape. @e] xm Ai.store(a,i)

‘ By inductive hypothesis: ‘

=rdEnv xy Ap.(pz) *p Aa. [e] *a Ai.store(a,i)

= [z:=¢€]

Case: t is e leq e
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unquote S[e; leq es]

Unfolding the definitions of unquote and S[e; leq es]: ‘

= S[ey leq es] * id

Sle1] * Ap1 : M(int).
Sfez] * Aps : M(int).
= ©1 * Avy :int. * id

unit [ @, % vy : int.

unit(Mkr, kp).(v1 < vy = K1, KF))

By associativity: ‘

= Sfei] * Ap1-
Slea] * M.
1 * Avi.
unit | oy % Avs. * id

unit(A(:‘%T,lﬂ‘,F>.(’l)1 < vy — K)T,K,F))

By left unit:

= Sfe1] * Ap1.S[ea] * Apa.01 * Avi.pa * Ave.unit( Mk, kp)-(v1 < va = K1, KF))

‘Because S[e2] is innocent: ‘

= Sfez] * Ap2.S[e1] * Ap1-p1 * Avi.pa * Ave.unit( Mk, kF).-(v1 < va = K1, KF))

‘ By associativity: ‘

= Sfe2] * Ap2.(S[er] * Ap1.91) * Avi.pa * Avg.unit(M s, kp).(v1 < vy = K7, KF))

| By the induction hypothesis: |
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= Sfe2] * Apa.Je1] * Avi.pe x Avg.unit(A(kr, kr).(v1 < ve = Kk, KF))

‘Because [e1] is innocent: ‘

= [e1] * Avi.S[e2] * Ap2.p2 * Avg.unit(A(kr, kr).(v1 < ve = K, KF))

‘ By associativity: ‘

= [e1] * Avi.(S[e2] * Ap2.02) x Avg.unit(A k1, kr).(v1 < ve — K7, KF))

‘By the induction hypothesis: ‘

= [e1] * Avi.[e2] * Ave.unit(A(kr,kp).(v1 < vo = Kr,KF))

= |[€1 qu 62]]

‘ Case: 1 is the command: new z in ¢

unquote S[new z in ]

rdAddr ;s Aa.

rdEnv *p; Ap. *M A@e. .
= inAddr (a + 1) *nr id

inEnv (p[z — unitys(a)]) S|

unitys(Alloc(a) *pr A.pe *p A_.deAlloc(a))

By associativity: ‘

rdAddr xp; Aa.
= rdEnv %5 Ap. *M A@c.
inAddr (a + 1)
inEnv (p[z — unity(a)]) S[c]

[unity, (Alloc(a) *pr A—.@e *p A—.deAlloc(a)) *pr id]

rdAddr x; Aa.
= rdEnv %5 Ap. *M Ape.
inAddr (a + 1)
inEnv (p[z — unity(a)]) S[c]

Alloc(a) *ar A—.pe *pr A_.deAlloc(a)
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Observe that the computation ¢, produced by S[c] has no calls to rdEnv, rdAddr, inAddr, or inEnv,
so the scope of inAddr (¢ + 1) and inEnv (p[z — unity,(a)]) may be extended over Alloc(a) *ps
A_pe *m A_.deAlloc(a) by Axioms 5 and 6:
= rdAddr s Aa.inAddr (a + 1)
rdEnv *js Ap.inEnv (p[z — unitys(a)])

S[c] *m Ape-Alloc(a) *xpr A—pe *pr A—.deAlloc(a)

By Lemma 2:

= rdAddr xps Aa.inAddr (a + 1)
rdEnv *j; Ap.inEnv (p[z — unitys(a)])

Alloc(a) *p A_S[c] *m Apc-pec *m A-.deAlloc(a)

By associativity: ‘

= rdAddr xp Aa.inAddr (a + 1)
rdEnv *j; Ap.inEnv (p[z — unitys(a)])

Alloc(a) *m A[S[c] *m Ape-pe] *m A_.deAlloc(a)

By induction hypothesis: ‘

= rdAddr xp Aa.inAddr (a + 1) = [new z in (]
rdEnv *j; Ap.inEnv (p[z — unitys(a)])

Alloc(a) *am A_[c] *m A_.deAlloc(a)

| Case: t is the command: if b then c|

unquote(S[if b then ¢]) = S[b] *am Agp : M(bool).
Sle] *m Age : M(void). | *m Ap.p

unit s (IfThen(gp, ¢c))
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By associativity and right unit: ‘

= S[b] *m App : M(bool). = S[b] *m App : M(bool).
S[e]l *am Ape : M(void). S[e] *am Ape : M(void).
(unit s (IfThen(pp, ©c)) *mr Ap.p) IfThen(pp, ¢.)

‘Deﬁnition of fThen ‘

= S[b] *mr App. S[c] *m Ape- b *pr AB.callce Ak.B{pc *rm K, K ®)

Equation 4.6 on page 95: ‘

= S[c] *m Ape- S[O] *mr App- wp *m AB.callce Ak.B{pe *n K,k ®)
= S[c] *m Ape. [S[O] *mr App- wp] *ar AB.callcc Ak.B{pe *pr K, K o)
=1g S[c] *m Ape- [b] *m AB- callce Ak.B{p. *p K,k ®)

= [b] *am AB- S[c] *m Ape. callce Ak.B{(pc *m K, Ke)

Because f is parametric, either S{p. *np K,k ®) = @, *pr K, or B{p. *m K,K®) = Ke.

‘Case 1. B{pe *m K, K®) = @ *p1 KZ‘

[6] *ar AB : bool. = [b] *ar AB : bool.
S[e] *m Ape : M(void). S[e] *m Ape : M(void).
callcc Ak.B{pc *nm K,k ®) callcc A&.@c *pm K

From z = callcc Ak.z * k (Axiom 3.4) and the induction hypothesis: ‘

= [b] *a AB:bool.S[c] xm Apc-we = [b] *amr AB = bool.[c]
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= [b] *a AB : bool. = [b] *a AB : bool. = [if b then (]
callcc Ak.[c] *p K callcc Ak.

Blel *um r,r0)

‘Case 2. B{we *M K, K®) :mO‘

‘Because S[c] is innocent, and the first component of (¢. *a K,k ®) is ignored by f: ‘

[6] *ar AB : bool. = [b] *m AB : bool.
S[c] *m Ape : M(void). callcc A&.B([c] *m K,k )

callcc A&.B{pe *nr K,k ®)

‘Case: t is the command: while b do c‘

First, define the functional dynwhile,, as:

dynwhileg @p @ =L

dynwhile,, . 1 @p 9. = @y * AB.callcc Ak.B(p. * A_.(dynwhile, ¢y ©.), Ke)

Claim 1 dynwhile, ;1 (S[b] *ar A@p-9p) @c = S[b] *m Awp.dynwhile, 1 4 @,

Claim 2 The induction hypothesis implies the following:

dynwhile, .1 [0] [c] = S[b] * App.S[c] * Age.

vp * AB.callcc Ak.B{p. x A_.(dynwhile, vy ©c), k®)
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Given Claim 2, this case follows easily:

[while b do ¢] = dynwhile [b] []
= || dynwhile, . [b] [c]
new
= |€| S[b] * App.S[c] * Apc.dynwhile, (s, ©c)
ncw
= S[b] * Agp.S[c] * Agpc. dynwhile(pp, )

= unquote S[while b do (]

| Proof of Claim 1| Assume n > 0.

dynwhile,, | (S[b] * Ags-0p) ©c

= S[b] * App.p * AB.callcc Ak.B(p. * A_.(dynwhile, (S[b] * App-@p) @), Ke)
Assume WLOG that 8(z,y) = = (done otherwise):

= S[b] * App.p *x AB.callcc Ak.p. x A_.(dynwhile, (S[b] * Aw}.¢}) @c)
Inductive hypothesis:

= S[b] * App.p x AB.callcc Ak.p. x A_S[b] * Agj.(dynwhile, ¢} ¢.)
Innocence of S[b]:

= S[b] * App.S[b] * Agph.p * AB.callcc Ak.¢. * A_.(dynwhile, ¢} ¢.)
Because S[b] depends only on the Addr and Env environments, by Axiom 6.2:

= S[b] * App-wp * AB.callcc Ak.. *x A_.(dynwhile, v ©.)

= S[b] * App.dynwhile, 1 ¢y @

OClaim 1.
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‘Proof of Claim 2 ‘ Assume n > 0.

dynwhile, ; [b] [c]
=i dynwhile, ., (S[b] * id) (S[c] * id)
= (S[b] * App.p) *x AB.callcc Ak.

B{(S[c] * id) x A_.(dynwhile, (S[b] * A@p.0p) (S[c] * id)), ke)
= S[b] * App.pp * AB.callcc As.

B{(S[c] * id) x A_.(dynwhile, (S[b] * A@p.0p) (S[c] * id)), ke)
By Claim 1:
= S[b] * App.p x AB.callcc k.

B{(S[c] * id) x A_S[b] * A@p.(dynwhile,, &y (S[c] * id)), ke)
Because S[b] is innocent, § is parametric, and Axiom 3.4:
= S[b] * App.S[b] * A@p.p * AB.callcc Ak.

B{(S[c] * id) x A_.(dynwhile, @y (S[c] * id)), ke)
From Equation 4.7 on page 95:
= S[b] * App.pp * AB.callcc As.

B{(S[c] * id) x A_.(dynwhile, @y (S[c] * id)), ke)
As with the case of S[b] above:
= S[b] * App-S[c] * Ape.S[e] * Ape.wp * AB.callcc Ak.

Blpec * A_.(dynwhile, @y @c), Ke)
From Equation 4.7 on page 95:

= S[b] * App-S[c] * Apc.op * AB.callcc Ak.B{p. * A_.(dynwhile, @y ©.), ke)

OTheorem 2 (Equivalence of Standard Staged Semantics).
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B.2 Proof of Lemma 3

Lemma 3 For F:int — Mb,

Obs(FreshLoc(a),Alloc(a) * A_.Thread(i,a) x Av.deAlloc(a) * A_.Fv,7)

= Obs(FreshLoc(a), F i,7)

‘Proof of Lemma 3: ‘

Obs(FreshLoc(a),Alloc(a) * A_Thread(i,a) * Av.deAlloc(a) * A_.Fv,7)
= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
Alloc(a) * A_Thread(i,a) x Av.deAlloc(a) * A_Fuv

else vy

Definition of Alloc(a): ‘

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
getSto x Ao;.(if @ € dom(o;) then L else updateSto[o* — o* U {(a,0)}]) * A_.
Thread(i,a) x Av.deAlloc(a) * A_Fv

else

Consequence of Axiom 2.3: ‘

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
(if a € dom(o) then L else updateSto[o™ — o* U {(a,0)}]) * A
Thread(i,a) x Av.deAlloc(a) * A_Fv

else vy
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= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateSto[o* — " U {(a,0)}] * A
Thread(i,a) x Av.deAlloc(a) * A_Fv

else

Definition of Thread(:, a): ‘

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateSto[o* — o* U {(a,0)}] * A
store(a,i) * A
read(a) * Av.deAlloc(a) x A_Fuv

else

Definition of store(a,1): ‘

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateSto[o* — o* U {(a,0)}] * A_.
getSto xp Aoa.
(if (a, —) € o2 then updateSto[c™* — (c* \ (a, —)) U (a,7)] else L) x A_.
read(a) * Av.deAlloc(a) * A_Fv

else vy

Letting Ay = [0* — 0* U {{(a,0)}] and by Axiom 2.5:

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateStoA; x A_.
(if (a, —) € (A102) then updateSto[c* — (o* \ (a,—)) U (a,4)] else L) % A_.
read(a) * Av.deAlloc(a) x A_.F v

else vy
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Va* > a.a* ¢ dom(o) implies (a, —) € [0* — ¢* U {(a,0)}]o, so simplifying:

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateStoA; *x A
updateSto[o* — (o*\ (a,—)) U (a,3)] * A
read(a) * Av.deAlloc(a) x A_.F v

else

Letting Ay = [0* + (0* \ (a,—)) U (a, )], then by Axiom 2.1:

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateSto(A; ; Ag) x A
read(a) * Av.deAlloc(a) x A_.F v

else

Definition of read(a): ‘

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateSto(A; ; Ag) x A
getSto x Aos.(if (a,v) € o3 then unit(v) else L) x Av.
deAlloc(a) * A_.Fuv

else

Definition of read(a): ‘

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateSto(Aq ; Ag) x A
getSto x Aos.(if (a,v) € o3 then unit(v) else L) x Av.
deAlloc(a) * A_.F v

else
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By Axiom 2.5: ‘

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateSto(Aq;Ag) x AL
(if (a,v) € (A1;Ag)o then unit(v) else L) x Awv.
deAlloc(a) * A_.Fv
else vy
= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateSto(Aq; Ag) x A
unit(z) x Av.
deAlloc(a) * A\.Fuv

else

By left unit:

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateSto(Aq;Ag) x A_.deAlloc(a) x A\_.Fi

else vy

Letting A3 = [0* +— ¢* \ {(a, —)}], then by Axiom 2.5: : ‘

= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateSto(Aq;Ag) x A
(if a ¢ (A1;Ag)o then Lpynam(voia) €lse updateStoAz) x A_Fi

else vy

Simplifying and by Axiom 2.1: ‘
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= getSto x Ao.
if Va* > a.a* ¢ dom(o) then
updateStO(A1;A2;A3) * Al x AF1i

else

Because A1; Ag; Ag = id: ‘

= getSto x Ao.
if Ya* > a.a* ¢ dom(o) then
Fi

else
= Obs(FreshLoc(a), F i,7)

OLemma 3
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B.3 Proof of Lemma 4

Lemma 4 (Discharging FreshLoc After Alloc) If FreshLoc(a), then FreshLoc(a + 1) after

Alloc(a):

Obs(FreshLoc(a), (A1loc(a) xp A_.Obs(FreshLoc(a + 1), z,y) *p Av.z),7)
= Obs(FreshLoc(a), (A1loc(a) *xp Az *p Av.z),7)

‘Proof of Lemma 4 ‘

Obs(FreshLoc(a), (Alloc(a) *p A_.Obs(FreshLoc(a + 1),z,y) *p Av.z),7)

‘Unfolding the definitions of the leftmost Obs and FreshLoc: ‘

etSto xp Ao.
= 8 b *xp Afresh.
unitp(Va' > a.a’ ¢ dom(o))
if fresh then
Alloc(a) xp A_.Obs(FreshLoc(a + 1),z,y) *p Av.z

else -~y

Associativity and left unit:

= getSto *xp Ao.
if Va' > a.a’ ¢ dom(o) then
Alloc(a) xp A_.Obs(FreshLoc(a +1),z,y) *p Av.z

else -~y
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Associativity, left unit, and unfolding the definition of Alloc:

= getSto xp Ao.
if Va' > a.d’ ¢ dom(o) then
getSto xp Ao*.

if a € dom(c*) then
*p A_.Obs(FreshLoc(a + 1), z,y) *p Av.z

J—Dynam(void)
else updateSto[og — o9 U {({a,0)}]

else v

Because getSto xp Aog.getSto *p Aoi.unitp(op = 01) = unitp(true): ‘

= getSto *xp Ao.
if Va' > a.a’ ¢ dom(o) then
if a € dom(o) then
L pynam(voia) *p A_.Obs(FreshLoc(a + 1), z,y) *p Av.z

else updateSto[og — oo U {(a,0)]}

else v

Because Va' > a.a' ¢ dom(o) = a & dom(o):

= getSto xp Ao.
if Va' > a.a’ ¢ dom(c) then
updateSto[og > oo U {(a,0)}] *p A_.Obs(FreshLoc(a + 1), z,y) *p Av.z

else
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Unfolding the definitions of the remaining Obs and FreshlLoc:

= getSto xp Ao.
if Va' > a.a’ ¢ dom(o) then
updateSto[oy — oo U {(a,0)}] *p A_.
getSto xp Ad’. b Afresh.
unitp(Va' > a + 1.0’ € dom(c'))
(if fresh’ then z else y) *p Av.z

else -y

Because getSto * Ao.updateStoA % A_.getSto x f = getSto x Ao.updateStoA * )\_.f(Aa):‘

= getSto xp Ao.
if Va' > a.a’ ¢ dom(o) then
updateSto[og — oo U {(a,0)}] xp A
unitp(Va' > a+ 1.a’ ¢ dom(o U {(a,0)})) xp Afresh’.
(if fresh' then z else y) *xp Av.z

else vy

= getSto xp Ao.
if Va' > a.d’ ¢ dom(o) then
updateSto[og — oo U {(a,0)}] *p A_.
(if Va' > a+ 1.a’ ¢ dom(o U {(a,0)}) then z else y) xp Av.z

else ~y
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Because Va' > a.a’ ¢ dom(c) = Vad' > a + 1.a’ & dom(o U {{a,0)}):

= getSto xp Ao.
if Va' > a.a’ ¢ dom(o) then
updateSto[og — op U {(a,0)}] *p Az xp Av.z

else -y

Working backwards: ‘

= Obs(FreshLoc(a), (Alloc(a) xp A_.z *p Av.z),7)

155



B.4 Proof of Lemma 5

Lemma 5 (FreshLoc and updateCode Interactions)

Obs(FreshLoc(a),updateCode(f) *p A_.Obs(FreshLoc(a),z,y) *p Av.z,7)

= Obs(FreshLoc(a),updateCode(f) xp A_.z *p Av.z,7)

‘Proof of Lemma 5: ‘

Obs(FreshLoc(a),updateCode(f) *p A_.Obs(FreshLoc(a),z,y) *p Av.z,7)

‘ Unfolding definition of Obs: ‘

FreshLoc(a),
updateCode(f) *p A_.
= Obs FreshLoc(a) *p Atest. | *p Av.z,

if test then z else y

v

Unfolding definition of FreshLoc: ‘

FreshLoc(a),
updateCode(f) xp A
etSto xp Ao.
= Obs g P *p Av.zZ,
unitp(Vz > a.x ¢ Dom(o)) xp Atest.

if test then x else y
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By Axiom 5.4: |

= Obs

FreshLoc(a),
getSto *xp Ao.

updateCode(f) xp A

unitp(Vz > a.x ¢ Dom(o)) xp Atest.

if test then z else y

v

By Axiom 4.1: ‘

= Obs

FreshLoc(a),

getSto xp Ao.

unitp(Vz > a.x ¢ Dom(o)) *p Atest.

updateCode(f) *p A_.

if test then z else y

v

Folding definition of FreshLoc(a): ‘

= Obs

FreshLoc(a),
FreshLoc(a) *p Atest.
updateCode(f) xp A_. | *D Av.z,

if test then z else y

v

Case analysis of test: ‘

= Obs

FreshLoc(a),

FreshLoc(a) *xp Atest.

if test then updateCode(f) *p A_.z else updateCode(f) xp A_y
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Folding definition of Obs: ‘

FreshLoc(a),
FreshLoc(a),
= Obs Obs updateCode(f) xp Az, | *D Av.z,

updateCode(f) *p A_y

v

‘ Observation Elimination: ‘

= Obs(FreshLoc(a),updateCode(f) *xp Az *p Av.z,7)

O Lemma 5
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B.5 Proof of Lemma 6
Lemma 6 (FreshLabel and updateCode Interactions) If L < L', then

1. Obs(FreshLabel(L'),updateCode[L — 7] xp A_.Obs(FreshLabel(L'),z,y),~)

= Obs(FreshLabel(L'),updateCode[L + 7| xp A_.x,7)

2. Obs(FreshLabel(L),updateCode[L — 7] xp A_.Obs(FreshLabel(L + 1), z,y),~)

= Obs(FreshLabel(L),updateCode[L > 7| *p A_.z,7)

‘Proof of Lemma 6.1: ‘

Obs(FreshLabel(L'),updateCode[L + 7] xp A_.Obs(FreshLabel(L), z,v),7)

| Unfolding definition of Obs: |

=  FreshLabel(L') xp Atest.
if test then
updateCode[L > 7] *p A_.
FreshLabel(L') xp Atest*.
(if test® then z else y)

elsey

Unfolding definition of FreshLabel(L'):

getCode xp AlL

= *xp Atest.
unitp (VL* > L'.L* ¢ dom(II))
if test then
updateCode[L — 7] *xp A_.
etCode xp AII*.
& *xp Atest®.

unitp(VL* > L'.L* ¢ dom(IT*))
(if test* then z else y)

elsey
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From Associativity (Axiom 1.3): ‘

= getCode xp AlL
unitp (VL* > L'.L* ¢ dom(I1)) xp Atest.
if test then
updateCode[L > 7] *p A_.
getCode xp AII*.
unitp (VL* > L'.L* ¢ dom(I1*)) *p Atest*.
(if test™ then z else y)

elsery

From Axiom 2.4 and because L < L', VL* > L'.L* ¢ dom(IT*) < VL* > L'.L* ¢ dom([L — =]II*): ‘

= getCode xp AlL
unitp (VL* > L'.L* ¢ dom(I1)) xp Atest.
if test then
getCode xp AII*.
updateCode[L +— 7| *p A_.
unitp(VL* > L'.L* & dom([L — w|I1*)) *p Atest*.
(if test® then z else y)

elsey

From the innocence of getCode: ‘

= getCode xp AIL
unitp (VL* > L'.L* ¢ dom(I)) xp Atest.
getCode xp AIl*.
if test then
updateCode[L +— 7| *p A_.
unitp(VL* > L'.L* & dom([L — «|IT1*)) *p Atest*.
(if test* then z else y)

elsery
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From Axiom 5.1, getCode commutes with unitp(VL* > L'.L* ¢ dom(II)):

= getCode xp AlL
getCode xp AIl*.
unitp (VL* > L'.L* ¢ dom(I1)) xp Atest.
if test then
updateCode[L > 7] *p A_.
unitp(VL* > L'.L* & dom([L — «|I1*)) *p Atest*.
(if test™ then z else y)

elsery

From Axiom 2.3, IT* can be replaced by II: ‘

= getCode xp AlL
getCode xp AIl*.
unitp (VL* > L'.L* ¢ dom(I)) xp Atest.
if test then
updateCode[L +— 7| *p A_.
unitp(VL* > L'.L* & dom([L — 7II)) *p Atest*.
(if test® then z else y)

elsery

Guarded by test, VL* > L'.L* ¢ dom(Il) is true:

= getCode xp AlL
getCode xp AIl*.
unitp(VL* > L'.L* ¢ dom(IT)) xp Atest.
if test then
updateCode[L — 7| *p A_.
unitp(true)) *xp Atest™.
(if test* then z else y)

elsery
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Left unit law and innocence of getCode: ‘

= getCode xp AlL
unitp (VL* > L'.L* ¢ dom(I1)) xp Atest.
if test then
updateCode[L — 7] *p A_.x

elsey

Folding back definitions of FreshLabel(L’) and Obs:

= Obs(FreshLabel(L'),updateCode[L + 7] xp A_.z,7)

O Lemma 6.1
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‘Proof of Lemma 6.2: ‘

Obs(FreshLabel(L), updateCode[L — w] xp A_.Obs(FreshLabel(L + 1), z,y),7)

‘Unfolding definition of Obs: ‘

=  FreshLabel(L) xp Atest.
if test then
updateCode[L — 7| *xp A_.
FreshLabel(L + 1) xp Atest™.
(if test* then z else y)

elsery

Unfolding definition of FreshLabel(L'):

getCode xp AlL
= *p Atest.
unitp(VL* > L.L* ¢ dom(11))
if test then
updateCode[L — 7| xp A_.

etCode xp AII*.

8 P *xp Atest*.
unitp(VL* > L+ 1.L* ¢ dom(I1*))

(if test™ then z else y)

elsey

From Associativity (Axiom 1.3): ‘
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= getCode xp AIL
unitp(VL* > L.L* ¢ dom(II)) xp Atest.
if test then
updateCode[L — 7| xp A_.
getCode xp AIl*.
unitp(VL* > L + 1.L* ¢ dom(IT*)) *p Atest*.
(if test™ then z else y)

elsey

From Axiom 2.4 and because L < L+ 1, VL* > L.L* ¢ dom(II*) & VL* > L+ 1.L* ¢ dom(|L

7|IT*), we can change the second observation:

= getCode *xp AlL
unitp (VL* > L'.L* ¢ dom(I1)) *p Atest.
if test then
getCode xp AII*.
updateCode[L — 7| *xp A_.
unitp(VL* > L+ 1.L* & dom([L — 7|II*)) *xp Atest™.
(if test* then z else y)

elsey

From the innocence of getCode: ‘
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= getCode xp AllL
unitp (VL* > L.L* ¢ dom(II)) xp Atest.
getCode xp AIl*.
if test then
updateCode[L — 7] *xp A_.
unitp(VL* > L+ 1.L* ¢ dom([L — =|II*)) xp Atest*.
(if test* then z else y)

elsey

From Axiom 5.1, getCode commutes with unitp(VL* > L.L* ¢ dom(II)): ‘

= getCode %xp AIL
getCode xp AIl*.
unitp(VL* > L.L* ¢ dom(Il)) xp Mest.
if test then
updateCode[L +— 7| xp A_.
unitp(VL* > L + 1.L* ¢ dom([L — 7]I*)) %p Mest™.
(if test™ then z else y)

elsery

From Axiom 2.3, IT* can be replaced by II: ‘

= getCode *xp AlL
getCode xp AII*.
unitp(VL* > L.L* ¢ dom(Il)) p Atest.
if test then
updateCode[L — 7] *xp A_.
unitp(VL* > L+ 1.L* ¢ dom([L — =]II)) *p Atest*.
(if test* then z else y)

elsery

Note that (VL* > L.L* ¢ dom(I)) D (VL* > L+ 1.L* ¢ dom([L - ]IT)): |
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= getCode xp AllL
getCode xp AII*.
unitp(VL* > L'.L* ¢ dom(I1)) *p Atest.
if test then
updateCode[L — 7] *xp A_.
unitp(true)) *xp Atest™.
(if test™ then z else y)

elsey

Left unit law and innocence of getCode: ‘

= getCode %xp AIL
unitp (VL* > L'.L* ¢ dom(I1)) xp Atest.
if test then
updateCode[L — 7| xp Az

elsery

Folding back definitions of FreshLabel(L’) and Obs:

= Obs(FreshLabel(L'),updateCode[L — 7] xp A_.z,7)

O Lemma 5
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B.6 Proof of Lemma 8

Lemma 8 (Commands Preserve Store Shape)

S[c: comm] xg Ad..

getSto xp Aoy.
S[c : comm] xg Ad..
] ¢ *D A =
unitg unitg(d, *p A_.unitp(true))
getSto xp Aoy

unit p(dom(oy) = dom(oy))

Clc: comm] xg Ag.

getSto xp Aog.
Clc : comm] xg Ag.
. Pc *D A =
unitg units(p. *p A_.unitp(true))
getSto xp Aoy

unit p(dom(og) = dom(a))

‘Proof of Lemma 8 ‘

This proof proceeds by induction on terms. The only case which is not obvious by inspection is
that of “new z in ¢”—all other commands do no allocation or deallocation of memory cells, and

so do not change the store shape.
S[new z in ] *g Ad.
getSto xp Aoy.
unitg O A

getSto *p AO1.

unitp(dom(oy) = dom(oy))
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Unfolding definition of S[new z in c]: ‘

rdAddr xg Aa.
rdEnv %5 Ap.
= inAddr (a + 1) *s Ade. | *s A6
inEnv (p[z — unitg(a)]) S[c]
unitg(Alloc(a) *p A_.0. *p A_.deAlloc(a))
getSto xp Aoy.
. 1) *D A
unitg

getSto *xp Ao1.

unitp(dom(op) = dom(oy))

By left unit:

= rdAddr xs Aa.
rdEnv *xg Ap.
inAddr (a + 1) *S Adg.
inEnv (p[z — unitg(a)]) S[c]
getSto xp Aop.
(Alloc(a) *p A_.6c xp A_.deAlloc(a)) *p A-.
unitg
getSto xp Ao

unit p(dom(og) = dom (o))
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By innocence of unitp(true): ‘

= rdAddr *g Aa.
rdEnv *xg Ap.
inAddr (a + 1) *s Adc.
inEnv (p[z — unitg(a)]) S]]
getSto xp Aoyg.
¢ (Alloc(a) *p A-.(6c xp A_.unitp(true)) *p A_.deAlloc(a)) *p A..
unitg

getSto xp Aoi.

unit p(dom(cg) = dom(o1))

By the inductive hypothesis for c: ‘

= rdAddr *xs Aa.

rdEnv %5 Ap.
inAddr (a + 1) *S M.

inEnv (p[z — unitg(a)]) S[c]

getSto xp A0yp.

getSto *p Aoy.

(Sc *xD A
(Alloc(a) *p A *p AdeAlloc(a)) *p A

unitg getSto xp Aoi.

unitp(dom(aj) = dom(c?}))

getSto xp Aoj.

unitp(dom(oy) = dom(oy))

Case 1: a € 0¢. In this case, the dynamic result on both sides of the equation in the lemma (i.e.,
the terms within unitg(...)) are Lpynam(void).
Case 2: a ¢ oy = o) =09U{(a,0)} = o}

= o1 =01\{{a,—)} =00

=—> dom(op) = dom(o1)
Observe that the proof for C[—] is completely analogous to the proof for the staged semantics
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B.7 Proof of Lemma 9

Lemma 9 (Discharging Label Freshness)

getLabel %xg AL.
Clt] *s Ag:.
getLabel xs AL’
Yt *p Av.

unitg(Obs(FreshLabel(L), ,2))
Obs(FreshLabel(L'), z,y)

= getLabel xg AL.
C[[t]] *s )\Qot
getLabel xg AL’

unitg(Obs(FreshLabel(L), p; *p Av.z,z))

where getLabel : Static(Label) is the get operator added by the 75y Label monad transformer.

‘Proof of Lemma 9. ‘

This proof proceeds by induction on terms. The cases which do not involve control-flow (and

hence labels and code store) follow easily.

Caset =c1 ;¢

getLabel %xg AL.
Cler 5 e2] *s Ay
getLabel xg AL’
QY *p Av.

unitg(Obs(FreshLabel(L), ,2))
Obs(FreshLabel(L'), z,y)
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By definition of C[¢; ; ¢2] and the innocence of getLabel:

= getLabel %5 AL.
Cler] *s Agi.
getlLabel xg ALj.
Clea] *s Apa.
getLabel xg AL’

unitg(Obs(FreshLabel(L), o1 *p Ay *p A_.Obs(FreshLabel(L'), z,y), z))

By Observation Introduction: ‘

= getLabel %xg AL.
Cler] *s Aegr.
getLabel xg ALj.
Cle2] *s Apo.
getLabel xg AL’
FreshLabel(L,),
unitg(Obs(FreshLabel(L), p1 xp A_.Obs wo *p A_.Obs(FreshLabel(L'),z,y), |,2))
w2 *xp A_.Obs(FreshLabel(L'), z,y)
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By Observation Introduction:

= getLabel xg AL.
Clea] *s Apr-
getLabel xg ALj.
Clea] *s Ao
getLabel *xg AL’
FreshLabel(L),
FreshLabel(L),
FreshLabel(L1),
o1 *p A-.Obs 02 xp A_.Obs(FreshLabel(L'), z,y),
unitg(Obs Obs w2 *p A_.Obs(FreshLabel(L'), z,y)
FreshLabel(L1),
@1 *p A_.Obs @9 *p A_.Obs(FreshLabel(L'),z,y),

w2 *p A_.Obs(FreshLabel(L'), z,y)
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By Induction Hypothesis for co:

= getLlabel xg AL.
Cler] *s Agr.
getLabel %xg ALj.
Clea] *s Apa.
getLabel xg AL
FreshLabel(L),
FreshLabel(L),
FreshLabel(L1),
w1 *p A_.Obs 2 *D A,
unitg(Obs Obs w2 *p A_.Obs(FreshLabel(L'), z,y)
FreshLabel(L1),
@1 *p A-.Obs @2 *p A_.Obs(FreshLabel(L'), z,y),

w2 *p A_.Obs(FreshLabel(L'), z,y)
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By Induction Hypothesis for ¢;:

= getLabel xg AL.

Clei] *s Ao

getLabel xg ALj.

Clea] *s M.

getLabel *xg AL’

FreshLabel(L),

FreshLabel(L),

o1 *D A.p2 *p Az,

unitg(Obs Obs FreshLabel(L;),

o1 *p A_.Obs @2 *p A_.Obs(FreshLabel(L'),z,y),

w2 *xp A_.Obs(FreshLabel(L’),z,y)

By Observation Elimination:

getLabel xg AL.
Clea] *s A1
getLabel %xg ALj.
Clea] *s Ao
getLabel xg AL’

unitg(Obs(FreshLabel(L), p1 *p Ao *p Az, z))

= getLabel x5 AL.
C[[Cl H CQ]] *g )\(Pt-
getLabel xg AL’

unitg(Obs(FreshLabel(L), oy xp A_.z,z))
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| Case t = if b then c|

getLabel xg AL.
C[if b then c] *xs Ap;.
getLabel xg AL'.
@ *p Av.

unitg(Obs(FreshLabel(L), ,2))
Obs(FreshLabel(L'), z,y)

By the definition of C[if b then c]: ‘

= getLabel xg AL.

newlabel xg AL,.

newlabel *g AL,.

C[b] *s App-

Cle] *s Age.

getLabel g AL’

FreshLabel(L),
units(Obs IfThenPS(wp, pc, Le, L) *p A |
Obs(FreshLabel(L'), z,y)

z
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By the innocence of C[b]: ‘

= getLabel xg AL.

C[b] *s App-

newlabel *xg AL.

newlabel xg AL,.

Clc] *s Ape.

getLabel g AL’

FreshLabel(L),
units(Obs IfThenPS(@p, Yy Le, L) *p A )
Obs(FreshLabel(L'), z,y)

z

By the innocence of getLabel:

= getLabel xg AL.
C[b] *s App-
getLabel xs ALjg.
newlabel xg AL,.
newlabel xg AL,.
getLabel xs ALj.
Clc] *s Ape.
getLabel xg AL
FreshLabel(L),
snits(Obs ThenPS (s, e Les L) #0 A= | |
Obs(FreshLabel(L'), z,y)

z

We note here that by construction: L < Lo(= L) < Le(= Lo+ 1) < Li(= Lo+ 2) < L.
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¢-.” for the remainder of

For the sake of clarity, the following context will be abbreviated by °
this proof:

contert[o] = getLabel %xg AL.
C[b] *s Awe.
getLabel xs ALjg.
newlabel *xg AL.
newlabel xg AL.
getLabel xg ALj.
Cle] *s Ape.
getLabel %xg AL’

unitg(o)

Unfolding HThenPS(¢y, ¢c, Le, Li): |

Yy *p AB.
callcc As.
updateCode[L, > ko] xp A_.

Obs(FreshLabel(L), ,2)
updateCode[L. — ¢, xp A_.jump L] xp A_.

B(jump L, jump L)
*p A_.Obs(FreshLabel(L'), z,y)

Focusing now on jump L. and jump L, within the above expression, they may be “unrolled”

using Axioms 2.1 and 2.2.
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“Unrolling” jump L. and jump L, using Axioms 2.1 and 2.2:

Obs(FreshLabel(L),

Yy *p AB.
callcc Ak.

updateCode[L, +—> ko] *p A_.

updateCode[L. > @, xp A_.jump L] xp A_.

:8<(100 *D )\—-H.a’k"’.>
*p A_.Obs(FreshLabel(L'), z,v)

‘Subcase: B{pe *p A_.K®,K®) = Y. *p A_.no:‘

Obs(FreshLabel(L),

Yy *p AB.
callcc Ak.

updateCode[L, > ko] xp A_.

updateCode[L. > @, xp A_.jump L] xp A_.

Ve *D A_Ke®

*p A_.Obs(FreshLabel(L'), z,y)

By Axiom 3.2 where kg = A_.Obs(FreshLabel(L'), z,y) *xp &:

Obs(FreshLabel(L),

Yp *p AB.
callcc As.

updateCode[L, > Kkge] *p A_.

updateCode[L. — ¢, xp A_.jump L] xp A_.

©e *p A_.Obs(FreshLabel(L'),z,y) xp &
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By Observation Introduction:

©b *D AB.
callcc Ak.
updateCode[L, — Ko®] *p A_.
Obs(FreshLabel(L), updateCode[L, 5 ¢, *p A_jumpL,] xp A_. %)
FreshLabel(L),
Obs ©e xp A_.Obs(FreshLabel(L'), z,y) *p &,

@e *p A_.Obs(FreshLabel(L'), z,y) xp &

Let bady = ¢ *p A_.Obs(FreshLabel(L'), z,y) xp k, then by the induction hypothesis for c:

b *D AB.
callcc k.
Obs(FreshLabel(L), updateCode[L, — Kge] *p A-. ) Z)

updateCode[L. — @, xp A_.jump L] xp A

Obs(FreshLabel(L1), 9. *xp Az *p K,bady)
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‘ Observation Introduction: ‘

Obs

FreshLabel(L),

Obs

Yy *D AP-
callcc k.

updateCode[L, — Kkge] *xp A_.

FreshLabel(L.),
updateCode[L. — ¢, *xp A_.jump L] *p A
Obs(FreshLabel(L1), . *p A_.xz *p K,bady)
updateCode[L. — ¢, *xp A_.jump L,] *p A_.
Obs(FreshLabel(L1), p. *p A_.x *xp K,badp)

Since L, = Lo+ 1 and L; = Ly + 2, by Lemma 6.2

Obs

FreshLabel(L),

Obs

Yy *p AB.
callcc k.

updateCode[L, — Kkge] *xp A_.

FreshLabel(L.),
updateCode[L, — ¢, xp A_.jump L] *p A_.
Qe *D AL *p K
updateCode[L. — ¢, xp A_.jump L,] *p A
Obs(FreshLabel(L1), . *xp Az *p K,bad))
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For the sake of readability, use the following abbreviations:

updateCode[L, — ¢, xp A_.jump L] *xp A_.

good;
e *D AT *p K

updateCode[L. — ¢, xp A_.jump L] *p A_.
bad1 =

Obs(FreshLabel(L1), p. *xp Az *xp K, bady)

FreshLabel(L),

©p *D AB.

callcc As.
Obs ,

updateCode[L, +— ko] *p A_.

Obs(FreshLabel(L,), good , bad; )

Since L, = Ly and L. = Ly + 1, by Lemma 6.2

FreshLabel(L),
Oy *D )\,3
Obs callcc Ak. 5

Obs(FreshLabel(L,), goods, bads)
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where:

goods

bad2

updateCode[L, — Kge] *p A-.

updateCode[L. — @, xp A_.jump L] xp A
Qe *D AT *p K

updateCode[L, — Kkoe] *xp A_.

Obs(FreshLabel(L.), goody, bad;)

From Lemma 7, callcc commutes with Obs: ‘

where:

Yy *D A

Obs(FreshLabel(L),

goods

bad3

Obs(FreshLabel(L,), goods, bads)

callcc Ak.
updateCode[L, — Ko®] *p A-.
updateCode[L, — @, xp A_.jump Ls] *p A_.

e *D AL *p K

callcc Ak.
updateCode[L, — Kge] *p A-.

Obs(FreshLabel(L.), goody, bad;)
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‘ Observation Introduction: ‘

Obs(FreshLabel(L), Obs

By the induction hypothesis for b:

Obs(FreshLabel(L), Obs

By Observation Elimination:

FreshLabel(L),
©b *xD AB.
Obs(FreshLabel(L,), goods, bads)

@b *xp AB.
Obs(FreshLabel(Ly), goods, bads)

FreshLabel(L),
@b *p AB.goods,
b *D AB.

Obs(FreshLabel(Ly), goods, bads)

Obs(FreshLabel(L), vy xp AB.goods, z)

Therefore, done with subcase 5(¢, *xp A_.ke,Kke) = @, xp A_Ke.
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‘Subcase: B{pe *p A_.Kke®, Ke) = KOI‘

0y *D AB.
callcc k.

updateCode[L, —> xeo| xp A_.
Obs(FreshLabel(L), P [ = o]

Kre

*p A_.Obs(FreshLabel(L'), z,y)

By Axiom 3.2 where kg = A\_.Obs(FreshLabel(L'), z,y) *p :

Yy *D AB-
callcc As.

Obs(FreshLabel(L), updateCode[L, > Kko®] *p A_.

Obs(FreshLabel(L'), z,y) xp A_.ke
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By Observation Introduction:

Obs(FreshLabel(L),

b *D AB.
callcc Ak.
updateCode|L, — Kkge®| xp A_.
updateCode[L, — ¢, *p A_.jump L] *p A_
FreshLabel(L1),
Obs Obs(FreshLabel(L'), z,y) *p A_.ke,
Obs(FreshLabel(L'),z,y) xp A_.ke

Recall that, by construction, L1 < L', and so

FreshLabel(L;) = FreshLabel(L') = unitp(true)

By Observation Elimination: ‘

Obs(FreshLabel(L),

b *D AB.
callcc Ak.
updateCode[L, — Koe| xp A_.
updateCode[L. > ¢, xp A_.jump L] xp A
FreshLabel(L1),
Obs T *xp A_.Ke,

Obs(FreshLabel(L'),z,y) *p A_ke

This subcase now proceeds precisely as the previous subcase.
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| Case t = while b do c|

getLabel %xg AL.
C[while b do c] *s Ap;.
getLabel g AL’

unitg(Obs(FreshLabel(L), [¢; *p Av.Obs(FreshLabel(L'), z,y)], 2))

By the definition of C[while b do ] and the right unit law: ‘

= getLabel %xg AL.

newlabel xg AL.

newlabel xg AL.

newlabel *g ALjegt.

C[b] *s App.

Clc] *s Ape-

getLabel xg AL’

FreshLabel(L),
unit(Obs WhilePS (s, @c, Ltest, Le, L) *p M- ,
Obs(FreshLabel (L), z, y)

z
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By the innocence of getLabel:

= getLabel %xg AL.
newlabel *xg AL,.
newlabel xg AL,.
newlabel *g ALjegs-
getLabel xg ALj.
C[b] *s App.
getLabel %xg ALs.
Cle] *s Ape-
getLabel g AL’
FreshLabel(L),
units(Obs WhilePS (s, ¢c, Ltest, Le, L) *p A- 1
Obs(FreshLabel (L"), z, y)

z

For the sake of clarity, the following context will be abbreviated by “ *.” for the remainder of
this proof:

contert[o] = getLabel *g AL.
newlabel xg AL,.
newlabel xg AL..
newlabel xg ALgeg:.
getLabel xg ALj.
C[b] *s Awp.
getLabel xs ALs.
Cle] *s Ape.
getLabel g AL’

unitg(o)
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By the definition of WhilePS(y, ¢, Ltest; Le, Li): \

FreshLabel(L),

callcc k.
updateCode[L, > ko] *p A_.
updateCode[L. — ¢, *p (jump Lies;)] *p A *p A

Obs ,
updateCode[Ltest = ©p *D )\B-6<LC,Ltest>] *p A

jump Ltest

Obs(FreshLabel (L), z,y)

Focusing now on jump L;es; within the above expression, it may be “unrolled” into one of the

following (using Axioms 2.1 and 2.2):

Yy *D A_Ke
Oy *D )\_.(pc *D A—-‘Pb *xD A_.Ke®
b *D A-Pc *D A-Pph *D A-Pc *D A-pp *D A_.Ke

©p *D /\_.(pc *D )\_.Qob *xD /\_.(pc *D A_.(pb *xD )\_.(pc *xD )\_.(pb *D A_.Ke

which may be neatly summarized (with a slight abuse of language) as the regular expression:

[(pb *D )\—-ro]* *D )\_.(pb *D A_Ke®
The “smallest” case, ¢, *p A_.xe, is handled in precisely the same manner as the 8 = w9 case for

the if-then term, the other cases are handled analogously to the 8 = w1 case. But what if the loop

does not terminate? In this case, jump Liest =Lpynam(void) -
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If jump Lyest :J—Dynam(void):

FreshLabel(L),
callcc Ak.
updateCode[L, > ko] *p A_.
updateCode[L. — @, xp A_.(jump Liest)] *p A

Obs
updateCode[Liest — @y *p AB.B(Lc, Liest)] *p A

1 Dynam(void)

Obs(FreshLabel(L'), z,y)

Obs(FreshLabel(L), | pynam(voia) *D A--Obs(FreshLabel(L’)

Because Lpynam(void) *D A--Obs(FreshLabel(L'), x,y) =1 pynam(voia) *D A--7:

Obs(FreshLabel(L), Lpynam(voia) *D AT, 2)

OLemma 9
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B.8 Proof of Lemma 10

Lemma 10 (Compilations Preserve Label Freshness)

C[t] *s Aeq.
getLabel xg AL’
unitg(Obs(FreshLabel(L'), ¢; xp Av.Obs(FreshLabel(L'), z,y), —)
= C[t] *s Ayy-
getLabel *xg AL’

unitg(Obs(FreshLabel(L'), ¢ xp Av.z,—)

‘Proof of Lemma 10‘

First we note that, for any L : Label, the following equivalence holds:

FreshLabel(L) = unitp(true) < VL* : Label. (unitp(L < L*) = FreshLabel(L"))

VL* : Label. unitp(L < L*) = FreshLabel(L")
< VL*: Label.
unitp(L < L*) xp Ap.
getCode xp AlL
unitp(p D VL' > L*.I' ¢ domlIl)
& VL*: Label.
getCode xp AlL
unitp (L < L* D VL' > L*.I' ¢ domll)
& VL*: Label.
getCode *p AlL

unitp (VL' > L.L' ¢ domll)
< VL*: Label.FreshLabel(L)
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< FreshLabel(L)

Restating Lemma 9:

getLabel %xg AL.
C[t] *s Ag:.
getLabel g AL’
pr *p Av.

unitg(Obs(FreshLabel(L), ,2))
Obs(FreshLabel(L'), z,y)

= getLabel s AL.
C[[t]] *xS )\(pt
getLabel g AL’

unitg(Obs(FreshLabel(L), pr *p Av.z,z))

Using the above equivalence:

VL* : Label.
getLabel xg AL.
Clt] *s Ag:.
getLabel xg AL’
Yt *p Av.

unit(Obs(unitp(L* > L) = FreshLabel(L*), 1))
Obs(FreshLabel (L), z, y)

= getLabel xg AL.
C[t] xs Aey.
getLabel g AL’

unitg(Obs(unitp (L* > L) = FreshLabel(L*), ¢y *p Av.z,z))
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Picking a particular L* at which the previous equality holds (namely, L* = L'):

getLabel %xg AL.
C[t] *s At
getLabel *xg AL
VYt *p Av.

unitg(Obs(unitp (L' > L) = FreshLabel(L'), ,2))
Obs(FreshLabel(L'), z,y)

= getLabel xg AL.
C[[t]] xS )\(pt
getLabel xg AL'.

unitgs(Obs(unitp(L' > L) = FreshLabel(L'), o; xp Av.z,2))

By construction, L' > L, and hence: ‘

getLabel xg AL.
C[t] *s At
getLabel %xg AL’
Y *p Av.

units(Obs(unit p(true) = FreshLabel(L’), ,2))
Obs(FreshLabel(L'), z,y)

= getLabel xg AL.
C[t]] *S )\(pt
getLabel xg AL’

unitg(Obs(unitp(true) = FreshLabel(L'), o1 xp Av.z, 2))
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getLabel *xg AL.
C[t] *s Ae:.
getLabel xg AL’
VYt *p Av.

unitg(Obs(FreshLabel(L'), ,2))
Obs(FreshLabel(L'), z,y)

= getLabel xg AL.
C[[t]] xS )\(pt
getLabel g AL’

unitg(Obs(unit p(FreshLabel(L'), o1 xp Av.z,2))

Because getLabel is innocent and L has been eliminated from the rest of the term: ‘

C[t]] *s A‘Pt
getLabel *xg AL’

*xp A.
units (Obs(FreshLabel (L), [ ¥ 7" 2))

Obs(FreshLabel(L'), z,y)

= C[[t]] *S A(pt
getLabel xg AL’

units(Obs(unit p(FreshLabel(L'), o1 xp Av.z,2))

OLemma 10.
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B.9 Proof of Lemma 11

Lemma 11 (Assignment Lemma) Under appropriate conditions, the compilation produced for

an assignment, @, is identical to the dynamic part of S[x:=e€]:

Cl[z:=e] = rdAddr xs Aa.

S[z:=e] xg Ad.

Clz:=e] *s .
unitg(Obs(FreshLoc(a), d, ¢))

‘Proof of Lemma 11 ‘

Cl[z:=e] = rdEnv g Ap.
(px) x5 Aag : Addr.
C[[e]] *g A(pe.

unitg(pe *s Ai.store(ay,i))

‘By the innocence of rdAddr and S[z:=e], and observation introduction:

= rdAddr %5 Aa.
S[z:=e] x5 Ad.
rdEnv *g Ap.
(px) *s Aag : Addr.
Cle] *s Age.

unitg(Obs(FreshLoc(a), pe *s Ai.store(as,i),pe *s Ai.store(az,i)))
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By the innocence of S[z:=e], it commutes with (pz) and rdEnv:

— rdAddr g Ma.
rdEnv *g Ap.
(px) *s Aag : Addr.
S[e] xs Ade.
Cle] *s Age.

units(Obs(FreshLoc(a), pe *s Ai.store(as,i),pe *s Ai.store(az,1)))

‘By Lemma 1 on page 85: ‘

= rdAddr *g Aa.
rdEnv *g Ap.
(px) *xs Aay : Addr.
S[e] xs Ade.
Cle] *s Age.

unitg(Obs(FreshLoc(a), ve, we) *s Ai.store(az,i))

‘ Assuming Exp-spec: ‘

— rdAddr %5 \a.
rdEnv *g Ap.
(pz) *s Aag : Addr.
S[e] xs Ade.
Cle] *s Age.
unitg(Obs(FreshLoc(a), de, pe) *s Ai.store(ag,i))
= rdAddr *s Aa.
rdEnv *g Ap.
(pz) *s Aag : Addr.
S[e] *s Ade.
Cle] *s Age.

unitg(Obs(FreshLoc(a),de *s Ai.store(ag,i),pe. *s Ai.store(az,i)))

‘Folding back with the definitions of S[z:=e] and C[z:=e]: ‘
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= rdAddr *s Aa.
rdEnv x5 Ap.
(px) *s Aagy : Addr.
S[z:=€] x5 Ad.
Clz:=e€] *xs Apc.

units(Obs(FreshLoc(a), d¢, ©.))
OLemma 11
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B.10 Proof of Theorem 3

Theorem 3 Exp-spec holds for the expression block C[— : Exp]

Cle] = rdAddr *s Aa.
S[e] *s Ade.-
Cle] *s Age.
unitg(Obs(FreshLoc(a), de, ©e))

| Proof of Theorem 3: |

By induction on terms.

Because C[i] = S[i] for integer constant i, the theorem holds trivially.

Case: e is a negation:

‘By the right unit law, and then, by the innocence of rdAddr and observation introduction:

C[—e] = C[—e€] *s Ap. = rdAddr xg Aa.
unitg(p) Cl[—e€] *s Aep.
unitg(Obs(FreshLoc(a), ¢, ¢))

Unfolding the definition of C[—e]: ‘

= rdAddr *g Aa.
(inAddr (a + 1) Cle]) *s Ape.
*g )\(p.
unitg(Negate(pe, a))

units(Obs(FreshLoc(a), p, ¢))
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By the induction hypothesis and simplification:

= rdAddr *gs Aa.
S[[e]] *g )\(56.
(inAddr (a + 1) Cle] *s My ) xS APe.
*S )\(p.
unitg(Obs(FreshLoc(a + 1), de, 7))
unitg(Negate(ype, a))

units(Obs(FreshLoc(a), ¢, ¢))

‘Using (inAddr a ) * Ay.unit(z) = inAddr a (x * Ay.unit(z)) and associativity :

= rdAddr *s Aa.
inAddr (a + 1)
S[e] *s Ade-
Cle] *s Av.
unitg(Obs(FreshLoc(a + 1), 6c,7)) *s A@e.
unitg(Negate(pe, a)) *xs Ap.
unitg(Obs(FreshLoc(a), ¢, ¢))

Using the left unit law twice: ‘

= rdAddr xs Aa.
inAddr (a + 1)
S[e] *s Ade-
Cle] *s Av.
FreshLoc(a),
units(Obs Negate(Obs(FreshLoc(a + 1), 8¢, ), a), )
Negate(Obs(FreshLoc(a + 1), d¢,7), a)
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Unfolding definition of Negate:

= rdAddr xs Aa.
inAddr (a + 1)
S[e] *s Ade-
Cle] *s A\v.

unitg(Obs

By observation elimination:

— rdAddr g \a.
inAddr (a + 1)
S[e] *s Ade.
Cle] *s Av.

unitg(Obs(FreshLoc(a),

FreshLoc(a),

Obs(FreshLoc(a + 1), de,7y) *p Ai.
Alloc(a) *p A-.

Thread(i,a) *p Av. ) )

deAlloc(a) *p A

unitp(—v)

Negate(Obs(FreshLoc(a + 1), d¢,7), a)

(Se *D Ai.
Alloc(a) xp A
Thread(i,a) xp Av. |,Negate(Obs(FreshLoc(a+ 1),de,7),a)))

deAlloc(a) *p A_.

unitp(—v)
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By the innocence of ,:

— rdAddr g \a.
inAddr (a + 1)

Sle] *s Ade.

Cle] xs M\v.
FreshLoc(a),

Alloc(a) xp A
units (8, *p Mi.(Obs Thread(i,a) *p Av. | ]
deAlloc(a) *p A_.

unitp(—v)

Negate(Obs(FreshLoc(a + 1), d¢,7), a)

By Lemma 3, a new memory cell may be used and discarded without effect: ‘

= rdAddr *g Aa.

inAddr (a + 1)

S[e] *s Ade.
Cle] *s Av.
FreshLoc(a),
unitg(d, xp Ai.(Obs unit(—i), )

Negate(Obs(FreshLoc(a + 1), d¢,7), a)
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Because of the innocence of §,:

= rdAddr xgs Aa.
inAddr (a + 1)
S[e] xs Ade.-
Cle] *xs A\v.
unitg(Obs(FreshLoc(a),de *p Ai.unitp(—i), Negate(Obs(FreshLoc(a + 1), 6e,7),a)))

Innocence of S[e]: ‘

= rdAddr *xs Aa.
S[e] *s Ade-
inAddr (a + 1)
Cle] *s My.
FreshLoc(a),
unitg(Obs de *p Ai.unitp(—i), )

Negate(Obs(FreshLoc(a + 1),0, xp Ai.unitp(—i),v),a)

= rdAddr *g Aa.
S[e] xs Ade-
inAddr (a + 1)
Cle] *s Av. *s Ap.
unit p(Negate(Obs(FreshLoc(a + 1),d. *p Ai.unitp(—i),~),a))
unitg(Obs(FreshLoc(a),de xp Ai.unitp(—i),))
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Working backwards from inductive hypothesis, definition of Negate, and left unit:

= rdAddr *g Aa. = rdAddr *g Aa.

S[e] *s Ade- S[—e] *s Ad.

Cl—e] *s Aop. Cl—e] *s M.
unitg(Obs(FreshLoc(a),d. *p Ai.unitp(—i),p)) unitg(Obs(FreshLoc(a), d, ¢))
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B.11 Proof of Theorem 4

Theorem 4 For terms ¢ of the I'mp block:

Clc] *s Apc.unitg(p. xp A_initcg)
= rdAddr *5 \a.
getLabel xg AL.
S[c] *s Ade.
Cle] *s Ape-
unitg(Obs(FreshLoc(a) AND FreshLabel(L), é., ¢.) *p A_.initcg)

‘Proof of Theorem 4‘

By induction on terms.

Let Pre(a, L) stand for the observation FreshLoc(a) AND FreshLabel(L).

| Case 1: cis z:=e. |

Clz:=€] *xs Apc.units(p. xp A_.initgg) = rdEnv *g Ap.
(px) x5 Aay : Addr.
C[[e]] *S )\(pe.

unitgs(pe xg Ai.store(az,i) *p A_.initcg)

By the innocence of rdAddr, getLabel and S[z:=e], and observation introduction: ‘

= rdAddr *g Aa.
getLabel xg AL.
S[z:=€] x5 Ad.
rdEnv *xg Ap.
(px) x5 Aagy : Addr.
Cle] *s Age.

units(Obs(Pre(a, L), pe xs Ai.store(ay,i),pe *s Ai.store(az,i)) xp A_.initcg)
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By the innocence of S[e], it commutes with (pz) and rdEnv:

= rdAddr *g \a.
getLabel %xg AL.
rdEnv *xg Ap.

(px) *xs Aagy : Addr.
S[e] *s Ade.
Cle] *s Age.

unitg(Obs(Pre(a, L), pe x5 Ai.store(ay,i),pe *s Ai.store(ay,i)) xp A_initcg)

‘By Lemma 1 on page 85: ‘

= rdAddr *g \a.
getLabel xg AL.
rdEnv *g Ap.

(px) *xs Aagy : Addr.
S[e] *s Ade.
Cle] *s Age.

unitg(Obs(Pre(a, L), pe, pe) *xs Ai.store(az,i) *xp A_.initcgg)

‘Assuming Exp-spec: ‘

= rdAddr x5 Aa.
getLabel xg AL.
rdEnv *g Ap.
(px) x5 Aagy : Addr.
S[e] *s Ade.
Cle] *s Age.

unitg(Obs(Pre(a, L), de, pe) *s Ai.store(ag,i) *p A_.initcg)
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= rdAddr *g Aa.
getLabel xg AL.
rdEnv *g Ap.
(px) *s Aag : Addr.
S[e] *s Ade.
Cle] *s Age.

unitg(Obs(Pre(a, L), de *s Mi.store(ay,i),pe *s Ai.store(ag,i)) *p A_.initcg)

‘Folding back with the definitions of S[z:=e] and C[z:=e]: ‘

= rdAddr *xg Aa.
getLabel *xg AL.
rdEnv *g Ap.
(px) *s Aag : Addr.
S[z:=e] x5 Ad.
Clz:=€] *s M.

unitg(Obs(Pre(a, L), d¢, ¢c) *p A_.initcg)

‘ Case 2: cis ¢1 ;02.‘

Cler 5 e2] *s Apeunitg(pe. *p Ainiteg) = Cler] *s Ar.
Clea] *s Apz.

unit5(<p1 *D A_.(pg *xD A_.initcs)

By the innocence of rdAddr, getLabel and S[c;], and observation introduction: ‘

= rdAddr *xg Aa.
getLabel %xg AL.
S[e1] *xs Aéy.
Cled] *s Agr.
S[ea] *xs Ado.
Clea] *s Ao
units(Obs(Pre(a, L), o1 *xp A2, 1 *p A_.p2) *p A_.initcg)
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‘By the innocence of rdAddr, getLabel and S[¢;]], and observation introduction:

= Sa] *s Adi.
S[e2] *s Ada.
rdAddr xg Aa.
getLabel xg AL.
Clea] *s Aer.
getLabel *xg AL’
Cle2] *s Apa.
unitg(Obs(Pre(a, L), 1 *p A_.p2,01 *p A_.2) *p A_.initgg)
= Sfec1] *s M.
S[ea] *s Ado.
rdAddr xg Aa.
getLabel xg AL.
Cle1] *s Agr.
getLabel xg AL’
Clea] *s Ao
units(Obs(Pre(a, L), o1 xp A2 *p A_initcs, @1 *p A2 *p A_initcg))
= Sfec1] *s M.
S[ea] x5 Ado.
rdAddr xg Aa.
getLabel xg AL.
Cle1] *s Agr.
getLabel xg AL’
Clea] *s Ao
Pre(a, L),
units(Obs @1 *xp A_.Obs(Pre(a, L"), 2, p2) *p A_initcs, |)

1 *pD A2 *p A_initcg

Inductive hypothesis for co:
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= Sfe1] *s Aéi.

S[ea] *s Ado.

rdAddr x5 \a.

getLabel *xg AL.

Cle1] *s Agr.

getLabel *xg AL’

Clea] *s Ao

Pre(a, L),
unitg(Obs @1 *p A_.(Obs(Pre(a, L"), 85, 03) *p A_initcg), |)

©1 *D A2 *p A_initgg

‘Lemmas 8 and 9: ‘

= Sfe1] *s Aéi.

S[e2] *s Ada.

rdAddr xgs Aa.

getLabel xg AL.

Cle] *s Agr.

getLabel xg AL’

Cle2] *s Apo.

Pre(a, L),
unitg(Obs 01 *p A0y xp A_initcg, )

Y1 *p /\_.(p2 *p A_initgg

From Axiom 3.1, Axiom 3.2, Axiom 4, and Axiom 5, and J3 contains no updateCode/ getCode:‘
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= Sfe1] *s Aéi.

S[ea] *s Ado.

rdAddr xs \a.

getLabel *xg AL.

Cle1] *s .

getLabel *xg AL’

Clea] *s Apa.

Pre(a, L),
units(Obs (p1 *p A_initcg) *p A0,

©1 *D A2 *p A_initgg

‘Inductive hypothesis for ¢;: ‘

= Sfe1] *s Aéi.

S[e2] *s Ada.

rdAddr xgs Aa.

getLabel xg AL.

Cler] *s Agr.

getLabel xg AL’

Clea] *s Apo.

Pre(a, L),
unitg(Obs (61 *p A_initeg) *p A-.02,

Y1 *p A_.(pz *p A_initgg

Lemma 1 on page 1:‘
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= Sfe1] *s Aéi.
S[ea] *s Ado.
rdAddr xs \a.
getLabel *xg AL.
Cle1] *s Agr.
getLabel *xg AL’
Clea] *s Ao

unitg(Obs(Pre(a, L), 01 xp A_.02,01 *p A_p2) *p A_initcg)

= rdAddr xgs Aa.
getLabel %xg AL.
S[er 5 2] x5 Ade-
Cler 5 c2] *s A

unitg(Obs(Pre(a, L), d¢, ¢c) *p A_.initcg)
OProof of Theorem 4
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B.12 Proof of Theorem 5

Theorem 5 Exp-spec also holds for the constant-folding expression block:

CFle] = rdAddr *s Aa.
S[e] xs Ade.-
CFle] *s Age.
unitg(Obs(FreshLoc(a), de, ¢e))

| Proof of Theorem 5. |

By induction on terms.

Case e is n.

CF[n] = rdAddr *s Aa.
Sle] *s Ade.
CFle] xs Age-
unit g (Obs(FreshLoc(a), e, ©¥e))

Observe that CF[n] = unitg(unitp(n)) = S[n]: ‘

= rdAddr *s Aa.

CF[e] *s Ade-

CFle] xs Awe-
unitg(Obs(FreshLoc(a), de, ©¢))

Case e is —e.
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CF[—e] = rdAddr *s Aa.
S[—e] *s Ad.
CF[—¢] *s Ap.
unitg(Obs(FreshLoc(a), ¢, ¢))

Assuming constexp(—e).

By Lemma 12, CF[—e] = boost([—e]) = S[—e]. As for the case of constants:

CF[—€] = rdAddr xg Aa.
S[—e] *s Aé.
CF[—e] *s Ap.
unitg(Obs(FreshLoc(a), d, ¢))

Assuming not constexp(—e).

CF[—e] = rdAddr *g Aa.
S[—e] xs Aé.
inAddr (a + 1)

CFe] *s Awe-

unitg(Obs(FreshLoc(a), Negate(p,, a), Negate(pe, a)))

As was shown in the proof of Exp-spec for negation: ‘

."unitS(Obs(FreshLoc(a), Negate (e, a), Negate(pe,a)))

= ."unitS(Obs(FreshLoc(a), 0, Negate (e, a)))

212



B.13 Proof of Lemma 12

Lemma 12 (boost-lemma) Let boost : Static(t) — Static(Dynam(7)) be defined as:

boost(z : Static(7)) = z *s Av : 7. unitg(unitp(v))

Then, for any constant integer expression e (i.e., an integer constant or the negation of a constant

integer expression):

boost [e] = S]e]

‘Proof of Lemma 12

By induction on terms.

Case e is n:

boost[n] = [n] xs Av.units(unitp(v)) (boost defn)
= unitg(n) xs Av.unitg(unitp(v)) ([~] defn)
= unitg(unitp(n)) (left unit)
= S[n]

Case e is —e:

boost[—e] =
= [[e] *s Ai.unitg(—i)] *xs Av.unitg(unitp(v))
= [e] *s Ai.unitg(unitp(—1))
= [e] *s Ai.unitg(unitp(i) *p Av.unitp(—v))
= [e] *s Ai.Junitg(unitp(i)) *s Ade.units(de *xp Av.unitp(—v))]
= [[e] *s Mi.unitg(unitp(i))] *s Ade.unitg(de *p Av.unitp(—v))
= boost[e] *s Ade.unitg(de *p Av.unitp(—v))
= S[e] *s Ade-unitg(de *p Av.unitp(—v))

= 5[]
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B.14 Proof of Theorem 6

Theorem 6 The correctness of the block structure RCBB:

C[new z in c] *s Ap.unitg(y *p A_initcgg)
= rdAddr xgs Aa.
getLabel %xg AL.
S[new z in ] *g Ad.
Clnew z in ] xg Agp.

unitg(Obs(FreshLoc(a) AND FreshLabel(L),d,¢) *p A_.initcg)

‘Proof of Theorem 6 ‘

‘By the innocence of rdAddr, getLabel, and S[new z in ¢]: ‘

C[new z in c] *s Ap.unitg(¢ *p A_.initcg) = rdAddr xg Aa.
getLabel xg AL.
S[new z in c] *g Ad.
Clnew z in c] *s Ap.

unit5(<p *D )\_.initcg)

= rdAddr *g Aa.
getLabel %xg AL.
rdEnv *xg Ap.
inAddr (a + 1)
inEnv p[z — a
S[ec] *s Ade.
Cle] *s Ape.

unitg(Alloc(a) xp A, xp A_deAlloc(a) xp A_initcg)

By Observation introduction (where ¢ = Alloc(a) *p A_.¢@. *p A_.deAlloc(a)): ‘
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= rdAddr *g Aa.
getLabel xg AL.
rdEnv *g Ap.
inAddr (a + 1)
inEnv p[z — d
S[e] *s Ade.
Cle] *s Ape-

unitg(Obs(Pre(a, L), p,¢) *p A_.initcg)

Distributing initcg over the branches of the observation: ‘

= rdAddr x5 Aa.
getLabel %xg AL.
rdEnv x5 Ap.
inAddr (a + 1)
inEnv p[z — a
S[e] *s Ade.
Cle] *s Ape.

unitg(Obs(Pre(a, L), *xp A_.initegs, ¢ *p A_.initeg))

Filling in definition of ¢: ‘

= rdAddr *s Aa.
getLabel xg AL.
rdEnv *g Ap.
inAddr (a + 1)
inEnv p[z — unitg(a)]
S[c] *s Ade.
Cle] *s Ape.

unitg(Obs(Pre(a, L),Alloc(a) *p A_.p. *p A_.deAlloc(a) *p A_initgg,...))

By Axiom 4.4, initcg commutes with deAlloc(a): ‘
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= rdAddr *g Aa.
getLabel xg AL.
rdEnv *g Ap.
inAddr (a + 1)
inEnv p[z — unitg(a)]
S[e] *s Ade.
Cle] *s Ape-

unitg(Obs(Pre(a, L),Alloc(a) *p A_.(¢. *p A_initcg) *p A_.deAlloc(a),...))

Innocence of rdAddr and getLabel: ‘

= rdAddr x5 Aa.

getLabel %xg AL.

rdEnv x5 Ap.

inAddr (a + 1)

inEnv p[z — unitg(a)]

rdAddr *g \a'.
getLabel g AL’
S[c] *s Ade.
Cle] *s Ape.

unitg(Obs(Pre(a, L),Alloc(a) xp A_.(¢. *p A_initcg) *p A_.deAlloc(a),...))

Inductive hypothesis for c: ‘
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= rdAddr *g Aa.
getLabel xg AL.
rdEnv *g Ap.
inAddr (a + 1)
inEnv p[z — unitg(a)]
rdAddr x5 Aa'.

getLabel xg AL’

S[ec] *s Ade.
Clc] *s Ape-
Pre(a, L),
Alloc(a) xp A
Obs(Pre(a’, L"),
unitg(Obs dc *p A_.initcg,

deAlloc(a)

By construction @’ =a + 1 and L' = L: ‘

Pre(a, L),
Alloc(a) *p A-.

Obs(Pre(a + 1, L),

unitg(Obs dc *p A_initcg,

deAlloc(a)

By Lemma 4, we can discharge the inner observation: ‘
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= rdAddr *g Aa.
getLabel xg AL.
rdEnv *g Ap.
inAddr (a + 1)
inEnv p[z — unitg(a)]
rdAddr x5 Aa'.

getLabel xg AL’

S[ec] *s Ade.
Cle] *s Ape.
Pre(a, L),
unitg(Obs Alloc(a) *p A0, *xp A_initcg *p A_.deAlloc(a),

Alloc(a) *p A_.@. *p A_initcg *p A_.deAlloc(a)
= rdAddr *g Aa.
getLabel xg AL.
rdEnv *g Ap.
inAddr (a + 1)
inEnv p[z — unitg(a)]
rdAddr %5 Aa'.
getLabel g AL’
S[ec] *s Ade.
Cle] *s Aepe.
unitg(Obs(Pre(a, L),Alloc(a) *p A_.d. *p A_.deAlloc(a),...) *p A_initcg)
= rdAddr xs Aa.
getLabel %xg AL.
S[new z in c] *s Ad.
C[new z in c] x5 Agp.

unitg(Obs(Pre(a, L),d, ) xp A_.initcg)
OTheorem 6
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B.15 Proof of Theorem 7

Theorem 7 The correctness of the Boolean RCBB:

C[b: Bool] = rdAddr *s Aa.
getLabel xg AL.
S[b] *s Adp.
C[b] *s Ape.
unitg(Obs(FreshLoc(a) AND FreshLabel(L), dy, ©p)

‘Proof of Theorem 7. ‘

Case b= ey leq e2.
Cle1 leq e2] = rdAddr *s Aa.
getLabel xg AL.
inAddr (a + 2)
Sfei1] *s Ad1.S[ea] *s Ada.Cler] *s Ap1.Clea] *s Aps.

unitg(Obs(Pre(a, L), Lteq(p1, @2, a), Lteq(y1, ¢2,a)))

By an argument analogous to the correctness of C[—e] in the proof of Exp-spec, it is clear

that, within the above context (and assuming Exp-spec):

Lteq(y1,p2,a) =

©1 *p Al.
Y2 *D AJ.
Alloc(a) xp A B 01 *xp Ai.
- b9 *p AJ.
deAlloc(a+1) *p A unitp (AMsr, kr).(i < j = K, EF))
unitp(A(kr, kp).(v1 <ve = KT,KF))

But this is simply the right-hand side of Bool-spec. [0 Theorem 7.
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B.16 Proof of Theorem 9

Theorem 9 For terms cf of the control-flow block:

Clef] *s Ap.unitg(p *p A_.initceg)
— rdAddr *5 \a.
getLabel %xg AL.
S[ecf] *s 6.
Clef] *s Aep.
unitg(Obs(FreshLoc(a) AND FreshLabel(L),d, ) xp A_.initcg)

‘Proof of Theorem 9 ‘

Let Pre(a, L) = FreshLoc(a) AND FreshLabel(L).

C[[lfb then C]] *g )\go.unitg(@ *D )\_.initcs)

‘Innocence of rdAddr, getLabel, and S[if b then cJ: ‘

= rdAddr x5 Aa.
getLabel %xg AL.
S[if b then ] *s Ad.
C[if b then c] *s Agp.

units(Obs(Pre(a, L), p,¢) xp A_.initcg)

‘Unfolding definitions of S[if b then c| and C[if b then c]: ‘
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= rdAddr *g Aa.
getLabel xg AL.
S[b] *s Adp.
S[c] *s Ade.
newlabel xg AL,.
newlabel xg AL,.
C[b] *s Ave.
Cle] *s Ape.
unitg(Obs(Pre(a, L), IfThenPS(pp, 0¢, Lk, L¢), .. .) *p A_.initgg)
= rdAddr *xg Aa.
getLabel %xg AL.
S[b] *s Adp.
S[ec] *s Ad.
newlabel xg ALy.
newlabel xg AL.
rdAddr %g Aa'.
getLabel xg AL’
C[b] *s App.
Cle] *s Ape.
unitg(Obs(Pre(a, L), IfThenPS(py, e, L, Le), - --) xp A_initcg)

By construction, Ly = L, L=L+1, L' =L+ 2, and a = a’: ‘
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= rdAddr *g Aa.

getLabel xg AL.

S[b] *s Adp.

S[c] *s Ade.

newlabel xg AL,.

newlabel xg AL,.
rdAddr xg Aa'.
getLabel xg AL’
C[b] *s Aps.
Clc] *s Ape.

unitg(Obs(Pre(a, L), IfThenPS(pp, ¢, L, L +1),...) xp A_.initcg)

Unfolding definition of HThenPS:|

Pre(a, L),

| ©p *p AB.
callcc Ak.
= ."(Obs updateCode[L — ko] *p A_. , |) *p A_inites
updateCode[L + 1 — ¢, *xp A_.(jump L)] *p A_.

B(jump (L + 1), jump L)

Inductive hypothesis for b: ‘

Pre(a, L),

[ dp *p AB.
callcc Ak.
= ."(Obs updateCode[L — ko] *p A_. , |) *p A_inites
updateCode[L + 1 — ¢, *p A_.(jump L)] *p A

B(jump (L + 1), jump L)
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Case 1: S(jump (L + 1), jump L) = jump (L + 1):

= ."(Obs

Pre(a, L),

“Unrolling” jump (L + 1): ‘

= ."(Obs

— (Obs

Pre(a, L),

Pre(a, L),

(Sb *D A,B

callcc As.

jump (L +1)

(Sb *D A,B

callcc As.

Y *D A_.K®

(Sb *D )\,B

callcc As.

Y *D A_.K®

updateCode[L — Ke] *p A_.

updateCode[L > Ke] *p A_.

updateCode[L + 1 — ¢, *p A_.(jump L)]

updateCode[L — ko] *p A_.
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updateCode[L + 1 — ¢, *xp A_.(jump L)] *p A-_.

A

updateCode[L + 1+ ¢, *p A_.(jump L)] xp A_.

) *p A_.initgg

) *p A_.initcog

*p A_.initgg, )




= ."(Obs

Pre(a, L),

(Sb *D )\ﬂ
callcc Ax.
updateCode[L — initcgs *p A_.ke] *xp A

updateCode[L + 1 — ¢, *xp A_.(jump L)] *p A_.

e *p A_.initog *p A_.Ke

‘ Observation introduction: ‘

= ."(Obs

Pre(a, L),

(51, *D )\,3
callcc k.
updateCode[L — initcs *p A_.ke] *xp A

updateCode[L + 1+ ¢, *p A.(jumpL)] xp A_.

Obs(Pre(a, L + 2), ¢, *p A_initcg, e *p A_.inites) *p A_.ke

By inductive hypothesis for c: ‘

= ."(Obs

Pre(a, L),

61, *D )\,3
callcc k.
updateCode[L — initcs *p A_.ke] *xp A

updateCode[L + 1+ @, *p A.(jumpL)] xp A_.

Obs(Pre(a, L +2),0. *p A_.initcg,...) *p A_.ke

By Observation Introduction: ‘
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Pre(a, L),

[ dp *p AB. ]
callcc Ak.
Obs(Pre(a, L),

= ."(Obs updateCode[L > initcg *p A_.ke] *p A_. s 1)

updateCode[L + 1+ ¢, *p A_.(jumpL)] *p A_.
Obs(Pre(a, L + 2),6, *p A_.initcgg,...) *p A_.ke,

)

By two applications of Lemma 6.2 and Observation Elimination:

Pre(a, L),

[ 5 *p AB.
callcc Ak.
Obs(Pre(a, L),

= '.'(Obs updateCode[L > initcgs *p A_.ke] *p A . )

updateCode[L + 1+ ¢, *p A_.(jumpL)] *p A_.
dc *p A_initcg *p A_.Ke,

)

From Axiom 3.1, Axiom 3.2, Axiom 4, and Axiom 5, and §, contains no updateCode/ getCode:‘
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Pre(a, L),
[ dp *p AB.
callcc Ak.
Obs(Pre(a, L),
= ."(Obs updateCode[L > initcg *p A_.ke] *p A_.
updateCode[L + 1+ ¢, *p A_.(jumpL)] *p A_.
initog *p Ade *xp A_Ke,

)

updateCodeA *p A_initgg = initgg: ‘

Pre(a, L),

| dp *p AB.
callcc Ak.

= '.'(ObS Obs(Pre(a, L), o 1)

initocg *p Adc *p A_Ke,

)

‘From Lemma T7: ‘

Pre(a, L),

i 0p %D AB.
Obs(Pre(a, L),

= ."(Obs callcc Ak. )

initgcgs *p Adc *D A_.Ke,

)

Because 8, = unitp(...), it is innocent: ‘
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= ."(Obs

Pre(a, L),

i Obs(Pre(a, L),
0p *p AS.
callcc Ak. )

initcs *p A0, *p )\_.HO,

)

‘ By Observation Elimination: ‘

= ."(Obs

= ."(Obs

= ."(Obs

= '.'(Obs

= ."(Obs

Pre(a, L),
0p *p AB.callcc Ak.initog *p A *p A_.ke, )
IfThenPS(pp, e, L, Le) *xp A_initcg

Pre(a, L),

dp *p AB.callcc Ak.6, xp A_initcg *p A_.ke, )

IfThenPS(wp, e, L, Le) *p A_.initcg
Pre(a, L),
(0p *p AB.callcc Ak.0;, *p A_.ke) *p A_initcg, )
IfThenPS(vp, e, L, Le) *p A_.initcg
Pre(a, L),
(6 *p AB.callcc Ak.6. xp A_ke), |) *p A-initcs
IfThenPS (v, @c, Lk, L)
Pre(a, L),
(6 *p AB.callcc Ak.B{6. xp A_ke,ke)), |) *p A.initcs
IfThenPS(py, pe, Ly, Le)
Pre(a, L),
IfThen(dp, d¢), ) *p A_initcg
IfThenPS(py, ¢c, Ly, Le)
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= rdAddr *g Aa.
getLabel xg AL.
S[b] *s Adp.
S[c] *s Ade.
newlabel xg AL,.
newlabel xg AL,.
rdAddr xg Aa'.
getLabel xg AL’
C[b] *s Aps.
Clc] *s Ape.
unitg(Obs(Pre(a, L), IfThen(dy, d.), IfThenPS(wp, 0¢, Ly, Le)) *p A—.initeg)
= rdAddr *g Aa.
getLabel %xg AL.
S[if b then ] x5 Ad.
C[if b then c] *s Ap.

unitg(Obs(Pre(a, L), d, ) *p A_.initcg)
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Case 2: S(jump (L + 1), jump L) = jump L:

= ."(Obs

Pre(a, L),

“Unrolling” jump L: ‘

— (Obs

Pre(a, L),

(Sb *D A,B

callcc As.

jump L

(Sb *D )\,6

callcc Ak.

Kre

updateCode[L — Ke] *p A_.

updateCode[L > Ke] xp A_.

updateCode[L + 1 — ¢, *p A_.(jump L)]

Lemma 1: Obs(0,z,y) x f =Obs(0,z * f,y * f):‘

— (Obs

Pre(a, L),

(Sb *D )\,6

callcc Ak.

Kre

updateCode[L > Ke] xp A_.
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updateCode[L + 1 — ¢, *xp A_.(jump L)] *p A-_.

A

updateCode[L + 1 — ¢, *p A_.(jump L)] *p A

) *xp A_.initgg

) *p A_initgg

*p A_.initgg, )




Pre(a, L),

i dp *p AB.
callcc Ak.
= ."(Obs updateCode[L — initcgs *p A_.ke] *xp A )

updateCode[L + 1 — ¢, *xp A_.(jump L)] *p A_.

initcg *p A_.ke

Since updateCodeA *p A_.initgg = initeg (from Axiom 2.1:

Pre(a, L),
(Sb *D )\ﬂ
= "(Obs callcc Ak. s 1)

initcg *p A_.ke

Pre(a, L),
(51, *D )\,3
= *(Obs callcc k. | *p A-initcg, |)

Ke

‘Lemma 1: Obs(8,z x f,y x f) = Obs(8,z,y) * f:‘

— Obs(Pre(a, L), 8 xp AB.callcc Ak.B{0. xp K, re)), FThenPS (9, 0o, L, Le)) *p Ainitos

‘Filling in the context and folding the definition of IfThen: ‘
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= rdAddr *g Aa.
getLabel xg AL.
S[b] *s Adp.
S[c] *s Ade.
newlabel xg AL,.
newlabel xg AL,.
rdAddr xg Aa'.
getLabel xg AL’
C[b] *s Aps.
Clc] *s Ape.
unitg(Obs(Pre(a, L), IfThen(dy, d.), IfThenPS(wp, 0¢, Ly, Le)) *p A—.initeg)
= rdAddr *g Aa.
getLabel %xg AL.
S[if b then ] x5 Ad.
C[if b then c] *s Ap.

unitg(Obs(Pre(a, L), d, ) *p A_.initcg)
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| Case ¢ is while b do c]

C[while b do ¢] *xs Ap.units(¢ *p A_.initcg)
= rdAddr *gs Aa.
getLabel xg AL.
S[while b do ] *s Ad.
C[while b do c] xs Ap.

unitS(Obs(Pre(a, L), (5, (p) *D )\_.initcg)

Unfolding definitions of S[while b do ¢] and C[while b do c]: ‘

= rdAddr %5 Aa.
getLabel xg AL.
S[b] *s Adp.
S[e] *s Ade.
newlabel xg AL,.
newlabel xg AL.

newlabel xg ALtest-

C[b] *s App.
Clc] *s Ape-
Pre(a, L),
units((Obs whilePS(gy, ¢, Ly, Le, Liest), ) *p A-initgs)

whilePS(y, 0c; Ly L, Liest)
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= rdAddr *g Aa.

getLabel xg AL.

S[b] *s Adp.

S[c] *s Ade.

newlabel xg AL,.

newlabel xg AL,.

newlabel xg ALjgg;.
rdAddr x5 Aa'.
getLabel xg AL’
C[b] *s App.
Cle] *s Ape.

unitg(Obs(Pre(a, L), whilePS(@y, @c, Ly, Ley Liest), - --) *p A_initcg)

By construction, Ly = L, Lo =L+ 1, Liess = L+ 2, L' = L+ 3, and a = o' (Axiom 6.2):

= rdAddr x5 Aa.

getLabel xg AL.

S[b] *s Adp.

S[e] *s Ade.

newlabel xg AL.

newlabel xg AL.

newlabel xg ALjeg.
rdAddr xg Aa'.
getLabel g AL’
C[b] *s Aps.
Cle] *s Ape.

units(Obs(Pre(a, L), whilePS(pp, ¢c, L, L +1,L + 2),...) xp A_initcg)

Lemma 1: Obs(0,z,y) x f =O0bs(0,z * f,y * f):‘
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= rdAddr *g Aa.

getLabel xg AL.

S[b] *s Adp.

S[c] *s Ade.

newlabel xg AL,.

newlabel xg AL,.

newlabel xg ALjgg;.
rdAddr x5 Aa'.
getLabel xg AL’
C[b] *s App.
Cle] *s Ape.

unitg(Obs(Pre(a, L), whilePS(gy, ¢c, L, L + 1, L + 2) *p A_initgg,...))

Rather than repeat this term over and over, we will define the following context W(—):
W(-) = rdAddr xg Aa.
getLabel %xg AL.
S[b] *s Adp.
S[c] *s Ad..
newlabel xg ALy.
newlabel xg AL..
newlabel xg ALjeg;.
rdAddr %5 A\d'.
getLabel xs AL’
C[b] *s Aps.
Cle] *s Ape.
unitg(Obs(Pre(a, L), —, whilePS(py, ¢, L, L + 1, L + 2) xp A_initcg))

‘Repeating the last term using W(—): ‘

W(whilePS (0, e, L, L+ 1,L 4+ 2) *p A_initcs)

| Unfolding whilePS(gy, @, L, L + 1, L + 2):
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callcc Ak.
updateCode[L — K o] *p A
W( updateCode[(L + 1) — ¢, xp A_.(jump (L + 2))] *p A *xp A-initcg)

updateCode[(L + 2) — ¢, *p AB.B{jump (L + 1), jump L)] xp A-_.

jump (L +2)

For the sake of readability, define the context Z(—) to be this inner context:

(-) = callcc Ak.

updateCode[L > K o] xp A_.
updateCode[(L + 1) — ¢, *p A_.(jump (L + 2))] *p A *p A_initcog
updateCode[(L + 2) — ¢p *p AB.B(jump (L + 1), jump L)] *p A_.

The rest of this proof has the following structure:

1. Prove with fixed point induction that:

W(Z(jump (L + 2))) = W(Z(dynwhile(¢p, ¢c)))

2. Then using fixed point induction and the induction hypothesis, demonstrate that:

WI(Z (dynwhile(gp, @) = W(Z(dynwhile(dp, d.)))

Assertions (1) and (2) demonstrate that, within the context W(Z(jump (L+2))), the jump jump (L+

2) behaves identically to the fixpoint dynwhile(dp,d.). Theorem 9 follows directly from this fact.
Part 1. To show: W(Z(jump (L + 2))) = W(Z(dynwhile(pp, ©¢)))
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Since, updateCode[L + ] x A_.jump L = updateCode[L — z] * A_.x : ‘

W(Z(jump (L +2))) = W(Z(ep *p AB.A(jump (L + 1), jump L)))
= W(Z(ep *p AB-B{pc *p A_.(jump (L +2)), jump L)))
= W(I(QO[, *D )\,3,3(900 *D )\--(ju-mP (L+2))7K’.)))

‘This process of “unrolling” jump (L + 2) can easily be continued: ‘
W(Z(jump (L +2))) = W(Z(pp *xp AB.-B{pc *xp A-.(jump (L +2)), re)))
= W(Z(pp *p AB.B{pc *p A(pp *n AB-B{pe *p A_.(jump (L + 2)), ke)), ke)))

| We can “unroll” dynwhile(p;, p.): |
W(Z(dynwhile(ps, oc)))
= W(Z(pp *p AB.B{(wc *p X.[dynwhile(ipp, pc)], Ke)))
=W(Z(py xp AB-B{pe *D Ay xp AB.B(pc *p A[dynwhile(pp, ¢c)], ko), ko))

‘By fixed point induction: ‘

W(Z(jump (L + 2))) = W(Z(dynwhile(¢s, ¢c)))

Part 2. To show: W(Z(dynwhile(pyp, ©.))) = W(Z(dynwhile(dp, 6.)))
W(Z(jump (L + 2)))

callcc Ak.
updateCode[L — ko] xp A_.
=W updateCode[(L + 1) — Q¢ *D )\_.(jump (L + 2))] *pD A *p A_.initgg

updateCode[(L + 2) > ¢p xp AB.B(jump (L + 1), jump L)] xp A_.

dynwhile(py, @c)
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Observe that one of the following alternatives holds:

(i) W(Z(dynwhile(ps, ¢c))) = W(Z(@p *p ABr-ge *D M- 9 *D ABn-pe))

e N-times

(i) W(Z(dynwhile(ps, ¢c))) = W(I(-LDynam(void)))

To show: in either case (i) or (ii) that W(Z(dynwhile(py, ©c))) = W(Z(dynwhile(dp, d¢)))

Case (i):
W(Z(pb *p AB1-¢pc *D e 0b *D ABn-c))
callcc Ak.

updateCode[L — K o] *p A_
=W( updateCode[(L + 1) — ¢, *p A_.(jump (L + 2))] xp A-. *p A_initcg)

updateCode[(L + 2) — ¢, *p AB.B{jump (L + 1), jump L)] xp A_.

Wy *D AB1.¢pec *p A_....@p *D ABp.c

Associativity:

callcc Ak.
updateCode[L — Kk o] *p A_
=W updateCode[(L + 1) — ¢, *p A_.(jump (L + 2))] *p A-.

updateCode[(L + 2) — ¢ *p AB.B{jump (L + 1), jump L)] *p A

©b *D A,BI-SOC *D A_....(pb *D )\ﬂn.(pc *p A_initcg

‘ Observation Introduction: ‘

callcc Ak.
updateCode[L — ko] *p A_
updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A
updateCode[(L + 2) — ¢, *p AB.B(jump (L + 1), jump L)] xp A

©p *D )\,Bl.goc *D )\_....(pb *D )\ﬂn

Obs(Pre(a,L+3),<pc *D )\_.initcg,(pc *D )\_.initcg)

Inductive hypothesis for c: ‘
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callcc Ak.
updateCode[L — ko] xp A
updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A_.
updateCode[(L + 2) — ¢ *p AB.B(jump (L + 1), jump L)] xp A
©p *D AB1-Pe *D A_....@p *D APn.

Obs(Pre(a,L+3),(5c *D A_.initcs,(pc *D )\_.initcs)

| Observation Introduction: |

callcc Ak.
updateCode[L — K o] *p A_
updateCode[(L + 1) — ¢, *p A_.(jump (L + 2))] *p A_.
updateCode[(L + 2) — ¢ *p AB.B(jump (L + 1), jump L)] xp A
©p *D AB1-@Ye *D A ...
Obs(FreshLoc(a), v, vb) *D ABn-

Obs(Pre(a,L+3),6c *D A_.initcg,(pc *D A_.initcs)

Induction hypothesis for b: ‘

callcc Ak.
updateCode[L — K o] *p A_
updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A
updateCode[(L + 2) — ¢ *p AB.A(jump (L + 1), jump L)] xp A
©b *D AB1.@e *D A ...
Obs(FreshLoc(a), &y, p) *D ABn.

Obs(Pre(a, L+ 3), 0c *D )\_.initcg, Ve *D A_.initcg)

| Observation Introduction: |
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callcc Ak.

updateCode[L — ko] xp A

updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A_.

updateCode[(L + 2) — ¢ *p AB.B(jump (L + 1), jump L)] xp A
=W 0y *D ABL-Pe *D A....
Obs(Pre(a, L + 3),

Obs(FreshLoc(a), dp, 05) *p ABn-
Obs(Pre(a, L + 3),6. *p A_initcs, . *p A_initcg)

)

‘ Pre(a, L + 3) discharges FreshLoc(a): ‘

callcc Ak.

updateCode[L — K o] *p A_

updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A

updateCode[(L + 2) — ¢ *p AB.B(jump (L + 1), jump L)] xp A-.
=W 0y *D ABL.Pe *D ...
Obs(Pre(a, L + 3),

Op *D ABn.
Obs(Pre(a, L +3),6. *p A_.initcgs, @ *p A_.initcg)

)

‘ Pre(a, L + 3) discharges Pre(a, L + 3): ‘

callcc Ak.
updateCode[L — Ke] xp A
updateCode[(L + 1) — ¢, *p A_.(jump (L + 2))] *p A-.
updateCode[(L + 2) — ¢ *p AB.B{jump (L + 1), jump L)] *p A
©b *D AB1.@Ye *D A ...
Obs(Pre(a, L +3),(6y *p ABn.0c *p A_initcg),...)

initcg commutes with &, and §, (Follows from Axiom 4): ‘
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callcc Ak.
updateCode[L — ko] xp A
updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A_.
updateCode[(L + 2) — ¢, *p AB.B{jump (L + 1), jump L)] xp A_.
©p *D AB1-pe *D A ...
Obs(Pre(a, L + 3), (initcs *p A0y *n ABn-0c),--.)

| Observation Introduction: |

callcc Ak.
updateCode[L — K o] *p A_
updateCode[(L + 1) — ¢, *p A_.(jump (L + 2))] *p A_.
updateCode[(L + 2) — ¢ *p AB.B(jump (L + 1), jump L)] xp A
Wb *p AB1.¢c *D A-.... *D @b *D ABp—1.
Obs(Pre(a, L + 3),
©we *p A_.Obs(Pre(a, L + 3), (initcgs *p A—.0p *p ABn-Oc),--.),

Lemmas 8 and 10 imply that ¢, preserves Pre(a, L + 3); discharging the inner observation: ‘

callcc Ak.
updateCode[L > Kk o] *p A_.
updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A-.
updateCode[(L + 2) — ¢, *p AB.B{(jump (L + 1), jump L)] xp A_.

Wb *D AB1-Pe *D A_.... *D b *D ABn_1.

Obs(Pre(a, L + 3), ¢, *p A_initcs *p A—.0p *p ABp.Oc,---)

7

This process of pushing Pre(a, L + 3) back through “@, *p AB1.90c xp A_....” continues until

all of the ¢, and ¢, are transformed to J, and ., respectively:
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callcc Ak.
updateCode[L > K o] *p A_.

=W updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A_.

‘ Observation Introduction: ‘

callcc Ak.
Obs(Pre(a, L),

updateCode[L — K o] xp A_.

=W updateCode[(L + 1) — ¢, *p A_.(jump (L + 2))] *p A_.

)

Three applications of Lemmas 5 and 6.2 to discharge Pre(a, L + 3): ‘

callcc Ak.

Obs(Pre(a, L),

Obs(Pre(a,L+3),initcs *p A0y *p AB1.... xp ABn.de,..

Obs(Pre(a, L + 3),initcs *p A_.0p *p AB1---.

updateCode[(L + 2) — ¢ *p AB.B(jump (L + 1), jump L)] xp A

)

updateCode[(L + 2) — ¢ *p AB.B(jump (L + 1), jump L)] xp A

*D Mn-bcs-..)

updateCode[L — Kk o] xp A_.

updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A

updateCode[(L + 2) — ¢ *p AB.B(jump (L + 1), jump L)] xp A-.
inites *p A_0p *p AB1.... *p ABp.0c

)

Because updateCode(f) * A_.initggs = initgg: ‘

callcc Ak.

Obs(Pre(a, L), inites *p A_0p *D AB1.--- *D ABn-Oc,-- )

| Observation Introduction: |
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Obs(Pre(a, L),
callcc k.
Obs(Pre(a, L), inites *p A0y *p ABi.... *p )\ﬂn.éc, .. )

callcc commutes with Pre(a, L) (Lemma 7): ‘

Obs(Pre(a, L),
Obs(Pre(a, L),
callcc Ak.initcg *p A_.0p *p AB1.... xp ABn.0c, callcc Ak....)

)

‘ Observation Elimination: ‘

Obs(Pre(a, L),

=W callcc k.

inites *p A_.0p *p ABi-... *p Aﬂn.éc, .. )

Recall that W(—) = rdAddr...Obs(Pre(a, L), —,...); Observation Elimination:

callcc As.

initog *p Adp *p ABi.... xp ABu.0¢

Commuting initcg with §; and d: ‘

callcc k.
=W
O *D AB1.... *D ABp.0¢ xp A_.initcg
callcc Ak.
= W( *D )\_.initcg)
5b *D )\,81 *D )\ﬂnéc
Since @y produced fi,...,Bn, we can assume without loss of generality that 3i,...,06,-1 are

all true (i.e., A{a, —).a), and that f, is false (i.e., A(—,b).b). So, the booleans produced by &, will

produce the same booleans, and hence:
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= W(dynwhile(dp,0.) *p A_.initcg) = rdAddr *g Aa.
getLabel xg AL.
S[while b do ¢] x5 .
C[while b do c] xs Ap.

units(Obs(Pre(a, L), d, QO) *pD )\_.initcs)
Done with Case (i).

Case (ii). To show that inside W(Z(—)):

dynwhile(is, ¢c) =1 Dynam(void) = dynwhile(dp, dc) =L Dynam(void)

Once this fact has been demonstrated, then the Specification 7 holds for “while b do ¢.”

Assume dynwhile(dp, dc)) #Lpynam(voia), then for some n,

W(I(dynwhlle(éb,éc))) = W(I((Sb *D )\’)’1.(50 *D 5,, *D A’)’n(sc))

where v1,...,v,—1 = true and vy, = false.

Consider “unrolling” (dynwhile(yp, @) n times:

W(Z(pp *p AB1-¢c *D ---9Pb *D ABn-[pc xp A_.(dynwhile(py, ©.))]))

It must be the case that 8; = true for all 1 < ¢ < n, or else the loop would have terminated and

danh“e(QOb, QOc) #LDynam(void) :

‘ So, by Observation Introduction: ‘

W(Z(dynwhile(ys, ¢c)))

=W(Z(pp *D AB1-@c *D --- @b *D ABn.[pc *p A.(dynwhile(pp, ¢c))]))

Obs(FreshLoc(a), @y, ¢p) *D AB1-9c *D
= W(Z : )

Obs(FreshLoc(a), @, vp) *p ABn-[¢c *p A_.(dynwhile(pp, ©c))]
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Expanding Z(—) yields: ‘

callcc Ak.

updateCode[L — K o] xp A

updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A
W( updateCode[(L + 2) — @, *p AB.B{jump (L + 1), jumpL)] *p A.. | *p A_initcg )

Obs(FreshLoc(a), vy, 0p) *p AB1-0c *D

Obs(FreshLoc(a), b, vs) *p ABn-[¢c *p A_.(dynwhile(pp, ©c))]

Induction hypothesis for b: ‘

callcc Ak.

updateCode[L — K o] *p A_.

updateCode[(L + 1) — ¢, *p A_.(jump (L +2))] *p A
W( updateCode[(L + 2) — @, *p AB.B{jump (L +1),jump L)] *p A.. | *p A_initcg )
Obs(FreshLoc(a), 0y, 0p) *p AB1-90c *D

Obs(FreshLoc(a),(Sb,cpb) *D )\/Bn[‘roc *D /\—(danhIIe((Pba(pC))]

Recall that W(¢) = rdAddr...Obs(Pre(a, L),©,...), and because neither reading the current
continuation nor updateCode(f) affect the value store, the first observation may be discharged.
Also, because command compilations do not affect store shape (Lemma 8), the other observations

may be discharged as well:

callcc Ax.

updateCode[L — ko] xp A

updateCode[(L + 1) — ¢, *p A_.(jump (L + 2))] *p A-.
W( updateCode[(L + 2) +— @p *p AB.B{jump (L + 1), jump L)] «p A_. | *p A.initcg )

0y *p AB1-pc *D

8 *D ABn-[pc *p A_.(dynwhile(y, @c))]
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Since B, = true and vy, = false, it must be the case that in

W(I( ipc *D Ao (pg *xD /\—517)) (Bl)

v. repeated n times

dp produces true, whereas in

W(I( (50 *D A.... (Sc *D A_(Sb))
~—_———

6. repeated n times

dp produces false.

Assuming b is “e; leq e2”, we may assume further without loss of generality that a different

integer is computed for e; in . than in ¢.. That is, in:

W(Z( ¢c *D Ao pc *D A-dey))
v repeated n times
W(I( 6C *xD )\_. . 5c *xD )\_.(561))

6. repeated n times

different integers are produced by de,. There must be assignments in ¢ for which . and ¢, have
different effects on the value store. That is, e; must depend on a program variable x for which é,
and ¢, assign different values. This is clearly impossible given the Assignment Lemma 11. So, in

(B.1), 6, produces false, and thus: dynwhile(ps, ¥c) #Lpynam(voia)- This is a contradiction, so by
reductio ad absurdum, QED.

OTheorem 9
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Appendix C

Proofs from Chapter 5

C.1 Proof of Lemma 14

Lemma 14 (Separability)

rdAddr xs Aa.
(inAddr (a + 1) compile(e)) xg A(me, rhse, tmps,).
unitg(M[(m, ; ALLOC(a) ; a:=rhs, ; pop(tmps,.), —a,{a})])
= rdAddr *g Aa.
(inAddr (a + 1) compile(e)) *s A(me, rhse, tmps,).

unitg(Negate(M[(me, rhse, tmps,)], a))

‘Proof of Lemma 14

By induction on terms.

Case e is “n”

Immediate.

[13

‘Case e is “—e”:

rdAddr *s Aa.
(inAddr (a + 1) compile(—e)) xg A(m, rhs, tmps).

unitg(M[(r ; ALLOC(a) ; a:=rhs ; (pop tmps), —a, {a})])
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= rdAddr xg Aa.
(inAddr (a + 1) compile(—e)) *s A(m, rhs, tmps).
Te ; ALLOC(a + 1) ; a + 1:=rhs. ; (pop tmps,) ;

units(M[K » —Q {a})]])
ALLOC(a) ; a:=—[a + 1] ; (pop {a + 1})

since, for (me, rhse, tmps,) resulting from the compilation of e,

T = e ; ALLOC(a + 1) ; a + l:i=rhs. ; (pop tmps,)
ths = —[a+1] (C.1)
tmps = {a+1}

By the definition of compile(—e): |

= rdAddr %5 Aa.
(inAddr (a + 1) compile(—e)) *g A(m, rhs, tmps).
M(re] *p A-.
M[ALLOC(a + 1)] *p A
Mla + 1:=rhse] *p A_.
M{(pop tmps,)] *xp .
MI[ALLOC(a)] *p A_.
Mla:=—[a+1]] *p A
M{[(pop{a+1})] *p A-.
M[-[d]] *p Mv.

deAlloc(a) *p A-.

unitg

unit p(v)

Unfolding several M[—]: ‘
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= rdAddr *g Aa.
(inAddr (a + 1) compile(—e)) xs A(m, rhs, tmps).
M[re] *p A
AMloc(a+1) *p A
M(rhs.] *p Ave.
store(a + 1,v.) *p A
M[(pop tmps,)] *p A
units [ Alloc(a) xp A
(rdLoc(a + 1) *p Avi.store(a,—vi)) *p
deAlloc(a+ 1) xp A
(rdLoc(a) xp Avg.unitp(—wv9)) *xp Av.

deAlloc(a) *p A-.

unit p(v)

Associativity:

= rdAddr %5 Aa.
(inAddr (a + 1) compile(—e)) *s A(m, rhs, tmps).
Mre] *p A
AMloc(a+1) *p A
M(rhs.] *p Ave.
store(a + 1,ve) *p A
M[(pop tmps,)] *p A
anits Alloc(a) *p A
rdloc(a + 1) xp Avj.
store(a, —v1) *p A
deAlloc(a +1) *p A
rdLoc(a) *xp Avs.

deAlloc(a) *p A

unitD (—222)
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Expanding the right-hand side of the lemma:

rdAddr xg Aa.

(inAddr (a + 1) compile(—e)) xs A(m, rhs, tmps).

unitg(Negate(M[(m, rhs, tmps)],a))

= rdAddr *s Aa.

(inAddr (a + 1) compile(—e)) xs A(m, rhs, tmps).

unitg

Definition of M[(m, rhs, tmps)]: ‘

M([(m, rhs, tmps)] *p Ai.
Alloc(a) *p A-.
Thread(i,a) xp Av.

deAlloc(a) *p A

unitp(—v)

= rdAddr *g Aa.

(inAddr (a + 1) compile(—e)) *g A(m, rhs, tmps).

unitg

MI[W]] *D A
M([rhs] *p Av. '
*xD .
M[(pop tmps)] *p A
unit p(v)
Alloc(a) *p A-.
Thread(i,a) xp Av.
deAlloc(a) *p A

unitp(—v)
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Using Equation C.1 on page 247:

—  rdAddr %5 Aa.
(inAddr (a + 1) compile(—e)) *g A(m, rhs, tmps).
M(re] *p A
MI[ALLOC(a + 1)] *p A_.
Ma + 1:=rhse] *p A
M[(pop tmps,)] *p A *p A
M[—[a+1]] *p Av.
unitg M(pop {a+1})] *p A-

unitp(v)
Alloc(a) xp A
Thread(i,a) *p Av.

deAlloc(a) *p A

unitp(—v)
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Unfolding M[a + 1:=rhs.] and M[—[a + 1]]: ‘

= rdAddr *g Aa.
(inAddr (a + 1) compile(—e)) *s A(m, rhs, tmps).
Mme] *p A
Alloc(a+1) xp A
M(rhse] *p Ave.
store(a + 1,v.) *p A
M[(pop tmps,)] *p A.. | *p N
rdLoc(a + 1) *p Av;.
unitg unitp(—v1) *p M.

deAlloc(a+ 1) *xp A-.

unitp(v)
Alloc(a) *p A-.
Thread(i,a) *p Av.

deAlloc(a) *p A

unitp(—v)
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Associativity and left unit (twice): ‘

= rdAddr *g Aa.
(inAddr (a + 1) compile(—e)) *s A(w, rhs, tmps).
M(re] *p A
Alloc(a+1) *xp A
M(rhse] *p Ave.
store(a + 1,v.) *p A
M[(pop tmps,)] *p A-.
units | rdLoc(a+1) xp Av;.
deAlloc(a +1) *p A
Alloc(a) *p A-.
Thread(—v1,a) *xp Av.

deAlloc(a) *p A

unitp(—v)
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Unfolding definition of Thread(—v1,a) and left unit:

= rdAddr %5 Aa.

(inAddr (a + 1) compile(—e)) *s A(m, rhs, tmps).

unitg

M(re] *p A-.
AMloc(a+1) *p A
M(rhs.] *p Ave.
store(a + 1,v.) *p A
M[(pop tmps,)] *p A
rdLoc(a + 1) xp Av.
deAlloc(a + 1) xp A
Alloc(a) *p A-.
store(a, —v1) *p A
rdLoc(a) *xp Avs.
deAlloc(a) *p A

ul’litD (—UQ)

(C.3)

Comparing terms C.2 and C.3 (on pages 248 and 253, respecitvely), it is clear that they will be

equal if the following holds:

Alloc(a) *p A-.

rdLoc(a + 1) *p Avi.

store(a, —v1) *p A

deAlloc(a + 1)

This is a simple consequence of Lemma 13.

OLemma 14.

rdLoc(a + 1) *p Avy.
deAlloc(a+ 1) *p A
Alloc(a) *p A-.

store(a, —v1)
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C.2 Proof of Lemma 15

Lemma 15 (IfThen lemma) For all 7, . : MachLang (where my is produced by compile(b : Bool)),

and L., Ley;s - Label :

IfThen(M[B], M[r.], L¢, Legit) =

M[(ENDLABEL Legi; (SEGM(Le, Te 3 JUMP Legit) 5 mp © (JUMPLc, JUMP Legis)))]

| Proof of Lemma 15

lfThen(M[my], M[7.], Le, Legit)
= callcc Xk.
updateCode|Legit — ko] *p A
updateCode[L, — M[n.] *p A_.(JUMPLeyit)] *p A
M[mp] *p AB : Dynam(void) x Dynam(void) — Dynam(void).

ﬂ(_]ump L., jump Lemit))

Folding by definition of M[JUMPL.] and M[JUMPLes]:|

= callcc k.
updateCode|Legit — ko] *p A_.
updateCode[L, — M[m. ; JUMP Legit]] *p A-
M[m] *p AB.
BOM[IOMPL,], MIUMP Lei])
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Folding by definition of M[mp ¢ (JUMPL,, JUMP Lyt )]: ‘

= callcc Ax.
updateCode|Legit — ko] *p A_.
updateCode[L, — M[n. ; JUMP Legit]] *p A

My, o (JUMPL, JUMPLz;1)]

Folding by definition M[SEGM(L, 7)] and M[ny ; ... ; 7] : ‘

= callcc Ak.
updateCode|Legit > ko] *p A

M (SEGM(L,, 7. ; JUMP Legt) ; (mp © (JUMP L., JUMP Leyit)))]

Folding by definition M[(ENDLABEL L 7)]: ‘

=  MJ[(ENDLABEL Ly (SEGM(L, 7 ; JUMP Legit) 5 (7 © (JUMP L, JUMP Legit))))]

OLemma 15
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C.3 Proof of Lemma 16

Lemma 16 (R-lemma) Va* : Addr, p* : env,t : Src. R(a*, p*,t).

where the relation R(a* : Addr, p* : env,t : Src) is defined as:

(FreeVars(t) N p*) < a* =

inEnv p* (inAddr o* C[t]) = inEnv p* (inAddr a* (compile(t) *s Amp.unitg(M[m])))

‘Proof of Lemma 16 ‘

By induction on terms.

| Case t is constant ¢

Immediate.

| Case ¢ is z:=e

inEnv p* (inAddr o* C[z:=e])

= inEnv p* (inAddr o*
rdEnv xg Ap.
(px) *s Aa.
Cle] *s Age.
units(pe *p i :int.store(a,i))
= inEnv p* (inAddr o*
rdEnv *g Ap.
(pzx) *s Aa. )
(inEnv p* (inAddr a* C[e])) *s A@e.

units(pe *p i :int.store(a,i))

By the Induction Hypothesis: ‘
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inEnv p* (inAddr o*
rdEnv x5 Ap.

(pz) *s Aa.

inEnv p* (inAddr a*
p

units(pe *p Ai:int.store(a,i))
inEnv p* (inAddr a*
rdEnv *g Ap.

(px) x5 Aa.

units(M[(7e, rhse, tmps.)])

units(pe *p Ai:int.store(a,i))
inEnv p* (inAddr a*
rdEnv *g Ap.

(px) x5 Aa.

compile(e) *s A(me, Ths., tmps,).

) x5 A‘Pe-

units(M[(me, rhse, tmps.)])

inEnv p* (inAddr a* compile(e)) xg A(me, rhse, tmps,).

*S A(pe.

inEnv p* inAddr a* compile(e)) xg A(me, rhse, tmps,).
P

unitg(M|[(me, rhse, tmps,)] *p i :int.store(a,i))

inEnv p* (inAddr a*
rdEnv *g Ap.

(px) x5 Aa.

M[[Tre]] *xD A

M(rhs.] *p A :int.
unitg(

M[(pop tmps,)] *p A

unit p ()
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= 1inEnv p* (inAddr o*
rdEnv x5 Ap.
(pz) *s Aa.

M|I7Te]] *xD A

unitg

store(a, 1)

inEnv p* inAddr a* compile(e)) xs A(me, Thse, tmps,).
P e

M(rhs.] *p Xi:in

M[(pop tmps,)] *p A

‘ FreeVars(z:=e) N p* < a*, a & tmps,, and so (pop tmps,) and store(a,i) commute:

= 1inEnv p* (inAddr o*
rdEnv *g Ap.
(px) x5 Aa.

M[[Tre]] *xD A

unitg

M[(pop tmps,)]

= inEnv p* (inAddr o*

rdEnv *xg Ap.

(px) *s Aa.

= inEnv p* (inAddr o*
rdEnv *xg Ap.
(pzx) *s Aa.

compile(e) *s (e, rhse, tmps,).

inEnv p* inAddr a* compile(e)) xs A(me, rhse, tmps,).
P

M(rhse] *p Xi:int.

store(a,i) *p A-.

(inEnv p* inAddr a* compile(e)) *s A(me, rhs., tmps,).

unitg(M[r.] xp A\.Mla:=rhs.] xp A_.M][(pop tmps,)]) |

unitg(M[re] xp A.Mla:=rhsc] xp A-.M][(pop tmps,)]) |
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= 1inEnv p* (inAddr o*
rdEnv x5 Ap.
(px) *s Aa.

compile(e) *s (e, Thse, tmps,).

units(M[r, ; a:=rhse ; (pop tmps,)]) |

rdEnv xg Ap.

pPIT) *s Aa. .
=  inEnv p* (inAddr o* (pz) *s Am.unitsg(M[r]))

compile(e) xs A(me, rhse, tmps,).

unitg(me ; a:=rhs. ; (pop tmps,)) |

= inEnv p* (inAddr a* compile(z:=e) x5 Am.unitg(M[nx]))

Case t 18 Zrpal

inEnv p* (inAddr a* C[Trya])

= inEnv p* (inAddr a” [rdEnv xg Ap.(pz) *s Aa. unitg(read(a))])

= 1inEnv p* (inAddr a* [rdEnv x5 Ap.(px) *s Aa. unitg(M[(NOP,a, {})])])

= inEnv p* (inAddr a” [rdEnv *xg Ap.(pz) *s Aa. unitg((NOP,a,{}))] xs Am.unitg(M][r]))
= inEnv p* (inAddr o [rdEnv x5 Ap.(pz) *s Aa. unitg((NOP,a,{}))]) *s Am.unitg(M][n])
= inEnv p* (inAddr a* compile(Zypq;)) *s Am.unitg(M[nx])

= 1inEnv p* (inAddr a* compile(Zyyq) *s Am.unitg(M][n]))

Case tiscy ;¢

inEnv p* (inAddr a* C[c; ; ¢2])

= inEnv p* (inAddr a*(C[c1] *s Ap1.Clc2] *s Apa. unmitg(pr *p A_.p2)))
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inEnv p* (inAddr o*
(inEnv p*

inEnv p*

units(p1 *p A_.p2)

inEnv p* (inAddr a*

(inEnv p* (inAddr a* [compile(ci) *s
inEnv p* (inAddr a* [compile(ca) *g

units(p1 *p A_.2)

inEnv p* (inAddr o*

[inEnv p* (inAddr a* compile(cy))] *s

[1nEnv p* (inAddr a* compile(c2))] *s

(
(
(
|
|

inEnv p* (inAddr a*

[inEnv p* (inAddr a* compile(cy))] *s
[inEnv p* (inAddr a* compile(cz))] *s

unitg(M[mi] *xp A_.M[n2])

inEnv p* (inAddr a*

[inEnv p* (inAddr a* compile(cy))] *s
[inEnv p* (inAddr a* compile(cz))] *s

unltg M[[Tﬁ 3 7'('2]])

inEnv p* (inAddr a*

compile(cy) *g Ami.
compile(ca) *s Ame. )

unitg(M|[m; ; m2])
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(inAddr a* Cle1])) *s Aei.

(inAddr a* Ce2])) *s Aps.

Amp.units(M[m])])) *xs Aer.
Amg.units(M[ma])])) *s Aps.

Amp.unitg(M[m]) *s Agr.
Amg.unitg(M[ms]) *s Apa.

)\7’!’1.
Aﬂ'g. )
Aﬂ'l.
Ao, |)

)

)



compile(cy) *s Amy.
= inEnv p* (inAddr a* | compile(cy) xg Amp. | *s Am.unitg(M[n]))

unitg (7 ; m2)

= inEnv p* (inAddr a* [compile(c; ; c2) *s Am.unitg(M][x])])

‘Case tisnmewzinc

inEnv p* (inAddr a* C[new z in c])

rdEnv *xg Ap.
rdAddr xg Aa.
= inEnv p* (inAddr a*
[inEnv p[z — unitg(a)] (inAddr (a + 1) C[c])] *s Age.

unitg(Alloc(a) *p A_.@. xp A_.deAlloc(a))

Observe that p = p* and a = a*, and because FreeVars(new z in ¢) N p* < a*, we can conclude

that FreeVars(c) N p[z — unitgs(a)] < a+ 1.

So, by the induction hypothesis for c:|

= inEnv p* (inAddr o*
rdEnv xg Ap.
rdAddr xg Aa.
. compile(c) *g Ame. )
inEnv p[z — unitg(a)] (inAddr (a + 1) ) *s Age.
unitg(M[r.])

unitg(Alloc(a) *xp A_.p. xp A_.deAlloc(a))
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inEnv p* (inAddr a*

rdEnv *xg Ap.

rdAddr xs Aa.
(inEnv p[z +— unitg(a)] (inAddr (a + 1) compile(c))) x5 Ame. |)

units(Mr.]) *s Age.

unitg(Alloc(a) xp A_.@. xp A_.deAlloc(a))

inEnv p* (inAddr o*
rdEnv *xg Ap.
rdAddr xg Aa.
(inEnv p[z — unitg(a)] (inAddr (a + 1) compile(c))) *xg Ame.

unitg(Alloc(a) xp A_.M[n.] *p A_.deAlloc(a))

inEnv p* (inAddr a*
rdEnv *g Ap.
rdAddr xs Aa.
(inEnv p[z — unitg(a)] (inAddr (a + 1) compile(c))) *xg Am.

unitg(M[ALLOC(a) ; 7 ; DEALLOC(a)])

inEnv p* (inAddr a*

rdEnv *g Ap.

rdAddr x5 Aa.
(inEnv p[z — unitg(a)] xs Am.unitg(M]n]))

(inAddr (a + 1) compile(c))) *s Ame.

unitg(ALLOC(a) ; 7, ; DEALLOC(a))

inEnv p* (inAddr a* [compile(new z in ¢) *xg Am.unitg(M][x])])

Case tis —e
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inEnv p* (inAddr a* C[—e])

rdAddr xg Aa.
= inEnvp* (inAddr a* | (inAddr (a + 1) C[e]) *s Age. |)

unitg(Negate(pe, a))

rdAddr xg Aa.

= inEnv p* (inAddr a® | (inEnv p* (inAddr (a +1) C[e])) *s Age. |)

unitg(Negate(pe, a))

Observe that a = a*, and because FreeVars(—e) N p* < a*, we can conclude that FreeVars(e) N p* <

a+ 1.

So, by the induction hypothesis for e: ‘

= inEnv p* (inAddr a*
rdAddr xg Aa.
inEnv p* (inAddr (a + 1)
compile(e) xs A(me, Thse, tmps,). x5 Ape. |)

unitS(Mwﬂ'ea rhse, tmpse>]]))

unitg(Negate(pe, a))

= inEnv p* (inAddr a*
rdAddr xs Aa.
inAddr (a + 1)
compile(e) xs A(me, Thse, tmps,). x5 Ape- |)

units(M[(7e, rhse, tmps,)])

unitg(Negate(ype, a))
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= inEnv p* (inAddr a*
rdAddr xg Aa.
(inAddr (a + 1) compile(e)) *s A(me, rhse, tmps,).
units(M|[(me, rhse, tmps,)]) *xs Age.

unitg(Negate(ype, a))

= inEnv p* (inAddr a*
rdAddr xg Aa.
(inAddr (a + 1) compile(e)) x5 A(me, hse, tmps,). |)

unitg(Negate(M[(me, rhse, tmps, )], a))

By the Separability (Lemma 14): ‘

= inEnv p* (inAddr a*
rdAddr xgs Aa.
(inAddr (a + 1) compile(e)) *s A{me, rhs., tmps,). )

unitg(M[(m, ; ALLOC(a) ; a:=rhs. ; (pop tmps,), —a, {a})])

= inEnv p* (inAddr o*
rdAddr xg Aa.
(inAddr (a + 1) compile(e)) xg A(me, rhse, tmps,). xs Aip.units(M{[ip]))

unitg((me ; ALLOC(a) ; a:=rhse ; (pop tmps,), —a,{a}))

= inEnv p" (inAddr a* [compile(—e) xg Aip.unitg(M[ip])])

| Case ¢ is if b then c|

inEnv p* (inAddr o* C[if b then c])
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= inEnv p* (inAddr o*
newlabel xg ALeyit-
newlabel xg AL..
C[b] *s Awp.
Cle] *s Ape.
unitg(IfThen(vp, Yc, Ley Legit)))
= inEnv p* (inAddr o*
newlabel *g ALgg-
newlabel *g AL..
(inEnv p* (inAddr a* C[b])) *s A@p-
(inEnv p* (inAddr a* C[c])) *s A@e.
unitgs(IfThen(vp, ©c, Ley Legit)))
= inEnv p* (inAddr o*
newlabel xg ALcggst-
newlabel xg AL.
inEnv p* (inAddr a* (compile(b) *s Amp.unitg(M[mp]))) *s Awp.
inEnv p* (inAddr a* (compile(c) *s Amc.unitg(M[n.]))) *s Ape.
unitg(IfThen(¢y, pc, L, Legit)))
= inEnv p* (inAddr o*
newlabel xg ALcggt-
newlabel xg AL,.
(inEnv p* (inAddr a* compile(b))) *g Amp.
unitg(M[mp]) x5 App.
(inEnv p* (inAddr a* compile(c))) *s Ame.
units(M[r.]) *s Age.

unitg(IfThen(p, e, Le, Lexit)))
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= inEnv p* (inAddr o*
newlabel xg ALeyit-
newlabel xg AL..
(inEnv p* (inAddr a* compile(b))) *g Amp.
(inEnv p* (inAddr a* compile(c))) *s Ame.
unitg(IfThen(M[mp], M[n¢], Le, Lexit)))
= inEnv p* (inAddr o*
newlabel xg ALcgg-
newlabel xg AL,.
compile(b) *g Amp.

compile(c) *s Ame.

unitg(IfThen(M[np], M[n.], Le, Lexit)))

Let ITif = (ENDLABEL Legi; (SEGM(Le, ¢ ; JUMP Legis) ; (Bo(JUMPL,, JUMPLeyit)))), then by Lemma 15,
this equals:

=  inEnv p* (inAddr a*
newlabel xg ALegit-
newlabel xg AL,.
compile(b) *s Amyp.
compile(c) *s Ame.

unitg(M[IL;]))

=  inEnv p* (inAddr a*

newlabel *g ALeyit-

newlabel xg AL,.
compile(b) *s Amp. x5 Am.unitg(M[r]))

compile(c) *g Ame.

unit g (TT;)

inEnv p* (inAddr a* [compile(if b then ¢) xs Am.unitg(M][x])])
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‘Case tis ey leq ey

Assume FreeVars(t) N p*) < a*.

inEnv p* (inAddr a* C[e; leq e2])

= inEnv p* (inAddr o*

rdAddr xg Aa.

inAddr (a + 2)
Clei] *s Aer.
Cle2] *s Apo.

unitg(Lteq(p1, v2,a))

By Axiom 2 on page 90, the above occurrences of C[e;] and C[ez] can be replaced, respectively,
by

inEnv p* (inAddr (a* + 2) C[e1])

and

inEnv p* (inAddr (a* + 2) C[e2])

= inEnv p* (inAddr o*
rdAddr *s Aa.
inAddr (a + 2)
(inEnv p* (inAddr (a* +2) Cle1]) *s Agi.

(inEnv p* (inAddr (a* + 2) C[ez2]) *s Aga.

unitg(Lteq(p1, w2, a))

By induction, the lemma holds for both e; and e2. Since FreeVars(t) N p* < a*, it holds that

FreeVars(t) N p* < a* + 2, and thus the following (dropping the inEnv p* (inAddr (a* + 2) —)) :
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= inEnv p* (inAddr a*
rdAddr x5 Aa.
inAddr (a + 2)
(compile(e1) xg A(myi, rhsy, tmps,). M[(71, rhs1, tmps;)]). *s Api.

(compile(e2) xg A(mo, Thse, tmpss). M[(ma, Thsa, tmpss)]) *s Apa.

unitg(Lteq(p1, p2,a))

= inEnv p* (inAddr a*
rdAddr xg Aa.
inAddr (a + 2)
compile(e1) xg A(my, rhsq, tmpsy).

compile(ez) *xg A(ma, rhse, tmpss).

unitg(Lteq(M[(m1, rhsi, tmps,)], M[(72, rhsa, tmpssy)], a))
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= inEnv p* (inAddr o*
rdAddr *g Aa.
inAddr (a + 2)
compile(ey) xg A(my, rhsy, tmps,).
compile(eg) xg A(ma, rhsa, tmps,).
M([(m1,rhs1, tmps;)] *p Ai.
M[(ma, rhsa, tmpsy)] *p Aj.
Alloc(a) *p A-.
Alloc(a+1) xp A
units | Thread(i,a) xp Av;.
Thread(i,a + 1) xp Avs.
deAlloc(a) *p A

deAlloc(a+1) *xp A

unitp (N, kp).(v1 <ve — K, KF))
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From the definition of Thread and store(a + 1,j) commuting with read(a): ‘

= inEnv p* (inAddr o*
rdAddr xgs Aa.
inAddr (a + 2)
compile(e1) xg A(my, rhsy, tmps;).
compile(ea) *xg A(ma, rhse, tmpss).
My, rhs1, tmps,)] *p M.
M[(ma, rhsa, tmpsy)] *p Aj.
Alloc(a) *p A-.
Alloc(a+1) *p A
store(a,i) *p A-.
units | store(a+1,5) *p A
read(a) *p Avi.
read(a + 1) xp Avs.
deAlloc(a) *p A

deAlloc(a+1) *xp A

unitp (N, kp).(v1 <ve — K, KF))
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Folding the definition of M[BRLEQa (a+1)]: |

= inEnv p* (inAddr a*
rdAddr xgs Aa.
inAddr (a + 2)
compile(e1) *g A(my, rhsy, tmps;).
compile(es) *g A(mg, rhsa, tmpss).
M[(m1, rhs1, tmps,)] *xp M.
M[(ma, rhsa, tmpsy)] *p Aj-
Alloc(a) *p A-.
units | Alloc(a+1) xp A
store(a,i) *p A

store(a +1,7) *p A

M([BRLEQa (a+1)]
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From the definition of M[(m, rhs, tmps)] and simplifying twice by left unit:

= inEnv p* (inAddr a*
rdAddr x5 Aa.
inAddr (a + 2)
compile(e1) *g A(my, rhsi, tmps,).
compile(ez) *g A(ma, rhse, tmpsy).
M[m] *p A
M(rhsi] xp Xi.
M[pop tmps,] *p A
M([me] *p A
M(rhs2] *p Aj.
units | M{[pop tmpss] *p A
Alloc(a) *p A
Alloc(a+1) xp A
store(a,i) *xp A

store(a +1,7) *p A

M|[BRLEQa (a+1)]

Three observations:

1 By FreeVars(t) N p* < a* and the induction hypothesis, any free variable in e; or ez is bound

to some unitg(@) where @ < a* = a.

2 By construction (i.e., e; and ey are compiled for store shape a + 2, and allocated addresses

strictly increase), a,a + 1 ¢ tmps; U tmps,.

3 Thus, neither a nor a + 1 occur in the code m; and .
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‘These observations allow the above to be refactored as: ‘

= inEnv p* (inAddr o*
rdAddr *s \a.
inAddr (a + 2)
compile(ey) xg A(my, rhsy, tmpsy).
compile(ez) xg A(ma, rhse, tmpsy).
M[m] *p A
Alloc(a) *p A
(M[rhs1] *p Ai.store(a,i)) *p A
M[m2] *p A-.
unitg | (M([rhsy] *p Aj.store(a +1,5)) *p A
Alloc(a+1) xp A
M[pop tmps,] *p A-.

M[pop tmpsy] *p A

M|[BRLEQa (a+1)]

= inEnv p* (inAddr o*

rdAddr xg Aa.

inAddr (a + 2)
compile(e1) xs A(my, rhsy, tmps,).
compile(eg) xg A(mg, rhsg, tmps,).

71 ; ALLOC(a) ; a:i=rhs1 ; m ; a + l:=rhsy
units M| (@)

; ALLOC(a + 1) ; pop tmps, ; pop tmpss ; BRLEQa (a+1)

= inEnv p* (inAddr a* (compile(e; leq e2) xg Am.unitg(M(r])))
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| Case ¢ is while b do c]

First, unfolding the meaning of the code returned by: ‘ compile(while b do ¢):

SEGM[Lca e 3 JUMP Ltest] 3

M] ENDLABEL L, | SEGM[Lyes¢, m ¢ (JUMPL,, JUMPL,)]; | |
JUMPL;¢s;
= callcc As.

updateCode[L, > ko] xp A_.
M(SEGM[L,, 7. ; JUMP Lyest]] *p A
M(SEGM[Lyest, 7 © (JUMPL,, JUMPL,)]] *p A_.
M[JIUMP Liest]
= callcc Ak.
updateCode[L, > ko] xp A_.
updateCode[L, — M[m. ; JUMP Lyest]] *p A-
updateCode[Lyest — M[mp ¢ (JUMPL,, JUMPL,)]] *p A_.
jump Liesy
= callcc Ak.
updateCode[L, > Ke| xp A_.
updateCode[L, — M[n.] *p A_.jump Lyest] *p A
updateCode[Liest — M[mp] *p AB.B(jump L., jump L)] *p A
jump Lyesy
= WhilePS(M[m], M[nc], Liest, Le, L)

Assume FreeVars(while b do ¢) N p* < a*
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inEnv p* (inAddr o* C[while b do c])

= inEnv p* (inAddr o*
newlabel xg ALjeg.
newlabel xg AL..
newlabel xg ALg.
C[b] *s App.
Cle] *s Age.

units(WhilePS(@y, ¢c, Liest, Le, L))

As in previous cases, Axiom 2 can be used to show that, within the above context, the induction
hypothesis can be applied to C[b] and C[c]. That is, C[b] and C[c] can be replaced by compile(b) xs

Amp.units(M[m]) and compile(c) xs Amc.unitg(M|n.]), respectively. Thus:

= inEnv p* (inAddr a*

newlabel *g ALjeg-

newlabel xg AL.

newlabel xg AL.

(compile(b) *s Amp.unitg(M[m])) *s Ap.

(compile(c) *s Ame.unitg(M[n.])) *s Aec.

units(WhilePS(p, ¢y Liests Ley L))

= inEnv p* (inAddr o*
newlabel xg ALjcg.
newlabel xg AL,.
newlabel xg AL.
compile(b) *g Amp.

compile(c) *g Ame.

units(WhilePS(M([mp], M[7c], Ltest, Le, L))
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Now, given the initial remarks and the definition of compile(while b do ¢): ‘

= inEnv p* (inAddr a*(compile(while b do ¢) *s Am.unitg(M][r])))

OLemma 16
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