
Provably Correct Development of Reconfigurable
Hardware Designs via Equational Reasoning

Ian Graves, Adam Procter & William L. Harrison
Department of Computer Science, University of Missouri

Gerard Allwein
US Naval Research Laboratory, Washington, DC

Abstract—There is a semantic gap between the hardware
definition languages used to design and implement hardware
and the languages and logics used to formally specify and verify
them. Bridging this gap—i.e., constructing formal models from
existing hardware artifacts—can be costly, time-consuming, and
error prone—and yet utterly necessary if formal verification
is to proceed. This work demonstrates that this gap can be
collapsed by starting in a pure functional language that is
also a hardware description language, and that equational style
verifications may be performed directly on the source text of a
hardware design, thereby significantly lowering the verification
cost for reconfigurable designs. When combined with an efficient
compiler, this methodology achieves both good performance and
low cost verification.

I. INTRODUCTION

Reconfigurable computing emphasizes a “mix and match”
approach to system construction, frequently involving specially
tailored “one off” components. Formal methods can provide
high confidence that systems obey critical properties (e.g.,
safety and security), but, by reputation, they can also involve
a substantial investment of time and effort. Formal methods
may, therefore, seem somewhat antithetical to reconfigurable
computing. Can it make economic sense to invest the resources
for formal methods on potentially “one off” reconfigurable
systems?

The proposed methodology aims to make hardware veri-
fication cost effective for reconfigurable designs via a func-
tional programming language that also serves as a hardware
description language. The principal hypothesis of this research
is that following this methodology can significantly reduce the
effort of verifying hardware designs, thereby making formal
verification cost effective for reconfigurable computing. The
functional language—ReWire [1]—plays a dual rôle for both
hardware description and formal specification. We support this
hypothesis with a demonstration of the approach in which the
stream cipher Salsa20 [2] is implemented efficiently in ReWire
and verified using equational reasoning on the implementation
source code.

In the functional programming community, equational rea-
soning about programs frequently goes by the moniker “Bird-
Wadler style” (so named for the influential textbook [3]).
Functional programmers reason about source programs in an
equational style, by replacing equals for equals, making simpli-
fications, induction and coinduction, etc. Equational reasoning
is commonly used to justify, among other things, source-
to-source transformations and program correctness. This is
precisely what we use Bird-Wadler reasoning for in this paper,
although, in ReWire, programs are hardware descriptions.

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib (n+ 1) =

fib(n− 1) + fib(n)

fib2 :: Int -> (Int, Int)
fib2 0 = (0, 1)
fib2 n = (b, a+ b)
where

(a, b) = fib2(n)

Theorem (Fib). For all n ≥ 0, fib(n) = fst (fib2(n)).

Fig. 1: Bird-Wadler Program Development

This research demonstrates that formal methods and recon-
figurable systems are not antithetical to one another at all. The
contributions of this paper are as follows. (1) We describe
a methodology for developing high assurance, reconfigurable
systems leveraging pure functional languages and equational
reasoning. A standard practice in functional programming—
Bird-Wadler reasoning—is repurposed to hardware design with
this methodology. (2) We introduce an extension to ReWire
called Connect Logic, which consists of domain specific lan-
guage abstractions for hardware devices that support a mixture
of functional and structural design styles. (3) Encapsulation
of a pipelining structuring technique in Connect Logic is
exhibited along with (4) several performant implementations
of the Salsa20 stream cipher based on it.

Reconfigurable Salsa20 without ReWire: Consider the fol-
lowing experiment. A hardware designer decides to implement
the Salsa20 cipher in hardware. There are a number of good
reasons to do so, not the least of which is that reconfigurable
hardware can increase the possible throughput compared to
a software implementation. The hardware designer uses a
tried and true hardware definition language (HDL) like VHDL
or Verilog. The implementation path is straightforward—she
implements Bernstein’s defining equations [2] in terms of the
HDL and performs her usual development process involving
synthesis, simulation, and testing.

This first implementation is one step removed from Bern-
stein’s high-level specification, and, furthermore, is expressed
in a language without a formal semantics. So, how does she
prove that the first implementation is correct? It becomes clear
to the hardware engineer that the first implementation does not
suffice: even implemented in the most optimized fashion, it
contains too many gates for most FPGAs. So, the hardware
engineer produces a second implementation structured in an
explicitly pipelined form resulting in a circuit that fits on her
FPGA.

Is she all done? Not if formal proof is required that the
second implementation is correct. The second implementation

Draft submitted to FPT15

is two steps removed from Bernstein’s high level specification
and it is written in a language without a formal semantics.
To verify its correctness, where does she even start? She
could attempt to verify the implementation by encoding it in
the logic of a theorem prover, but, observe that this involves
yet another translation—and one which is not straightforward.
With this approach, how can we be sure that her logical spec-
ification faithfully relates Bernstein’s high-level specification
to a VHDL implementation?

Bird-Wadler Provably Correct Development: To illustrate
the formal methodology we advocate for reconfigurable com-
puting, consider first this classic example (p.131, [3]) of Bird-
Wadler style equational reasoning in Fig. 1. On the left is
the usual recursive definition of the Fibonacci function. It
serves as a reference specification defining the meaning of
the Fibonacci function, but it has terrible O(2n) performance.
The other version of the Fibonacci function on the right is
in an optimized, “accumulator-passing style” form with O(n)
performance.

The hallmark of Bird-Wadler development is that there
is a reference specification (e.g., fib) and one or more
transformations from it (e.g., into fib2) that give rise to an
equational verification (e.g., the Fib theorem in Fig. 1). This
verification justifies using the optimized version (i.e., replacing
fib(n) with fst(fib2(n))).

Provably Correct Development of Salsa20 with ReWire: It
is precisely the Bird-Wadler style of development that ReWire
enables for reconfigurable computing. Fig. 4 presents the hash
function from the Salsa20 stream cipher [2] represented in
a Haskell-like syntax. We discuss this figure in some detail
as well as explain the requisite Haskell syntax in subsequent
sections. It suffices to say that Fig. 4 contains a functional
program defining the Salsa20 hash function that also serves
as the high-level reference specification in the Bird-Wadler
development presented in our case study. To render it into a
synthesizable form, we add some Connect Logic annotations to
produce the ReWire code in Fig. 5. The ReWire compiler can
now synthesize a circuit for Salsa20. This new implementation
can now be measured in two ways: against standard perfor-
mance metrics as in Table I or by verifying that it produces the
same answers as the reference specification (Theorem 1). The
first ReWire implementation is now rewritten using pipelining
constructs also written in Connect Logic (the ten and twenty
stage pipelines in Figures 6 and 7, resp.). The correctness of
the pipelining transformation is given in Theorem 2.

Section II discusses related work, Section III introduces
Connect Logic and the pipelining structuring technique applied
and verified in Sections IV and V, resp. Section VI summarizes
and concludes. Most of the subject matter in this paper
relates to provably correct development of reconfigurable hard-
ware rather than on more traditional areas of reconfigurable
computing. The targeted audience for the paper is, however,
the reconfigurable computing community and so considerable
effort has been made to make the paper as self-contained as
possible.

II. RELATED WORK

There is a long history of formal methods being applied to
hardware designs [4]. The general process involves encoding

a hardware design in the logic of a theorem prover by hand1

and then proving theorems about the encoding. There is an
obvious danger that the encoding process—which one might
call semantic archaeology—will introduce errors as well as a
problem of soundness (i.e., how do you know a theorem about
the encoding applies to the hardware device itself?).

“Semantic archaeology”—the process of developing a for-
mal specification for an existing computing artifact—is the
principal reason that formal methods can be so time-consuming
and expensive. Sarkar et al. [5] describe the semantic ar-
chaeology process in the context of modeling the x86 mul-
tiprocessor instruction set architecture: “The key difficulty was
to go from the informal-prose vendor documentation, with
its often-tantalising ambiguity, to a fully rigorous definition
(mechanised in HOL) that one can be reasonably confident is
an accurate reflection of the vendor architectures (Intel 64 and
IA-32, and AMD64).”

Cryptol [6] is a domain-specific language for specifying,
verifying and implementing cryptographic algorithms. Given a
cryptographic algorithm, one can specify it in Cryptol, run a
number of automatic and semi-automatic proof tools over the
specification, and ultimately generate C code implementing the
algorithm itself. The current open source version of Cryptol
(v.2) does not generate hardware implementations, although a
previous proprietary version (v.1) did. ReWire, by contrast, is
a subset of Haskell compilable to VHDL and is not restricted
to cryptographic algorithms. Salsa20 has been specified in
Cryptol v.2, but no effort has been made to backport this
specification to Cryptol v.1 and synthesize it.

The usual standards for evaluating hardware architectures
and design flows are performance-based metrics (e.g., time and
space performance, power usage, etc.). Within the context of
mission critical systems, formal analysis and verification are
required evaluation modes as well. The Common Criteria for
Information Technology Security Evaluation (a.k.a. Common
Criteria or CC) is an international standard (ISO/IEC 15408)
for computer security certification and the US Federal gov-
ernment mandates following the CC requirements for mission
critical systems. The CC sets seven evaluation assurance levels
(EAL). The most stringent such level is EAL7, which requires
“extensive formal analysis” for applications in “extremely high
risk situations and/or where the high value of the assets justi-
fies the higher costs” ensuing from formal verification [7]. For
reconfigurable computing to be applied in the space of mission
critical systems, cost effective formal methods techniques must
be developed. The current research is a step in this direction.

Previous work demonstrated the construction and verifica-
tion of a secure many-core system in ReWire [1]. The present
work, in contrast, demonstrates the expression of a common
hardware design pattern (stall-free pipelining) in ReWire and
its verification. The emphasis in the former was on the design
and implementation of the ReWire language, while the current
work focuses on ReWire as a vehicle for hardware verification.

1E.g., Isabelle/HOL (http://isabelle.in.tum.de), ACL2 (http://www.cs.utexas.
edu/users/moore/acl2), and PVS (http://pvs.csl.sri.com), are the most com-
monly used provers for hardware verification.

2

Draft submitted to FPT15

d
f(it)

it+1

d1 d2

(o1,o2)

(i1,i2)

d
o

i
conn

i’

out o

b

a

d1!

c

b

d2!

(a)$ (d)(c)(b)$

Fig. 2: Device Constructors

III. CONNECT LOGIC IN REWIRE

Connect Logic has operations for composing and connect-
ing smaller devices to create larger ones. Sec. III-B below
introduces Connect Logic at a high level; for reasons of space,
a semantic treatment of Connect Logic is left for future work.
We then illustrate the use of Connect Logic via the design of
a pipelining transformation for ReWire. Section III-A gives
background information on pure functional languages and
equational verification.

A. Pure Functional Languages & Equational Verification

1) Primer on Haskell/ReWire Syntax: For the sake of being
as self-contained as possible, this section presents a quick
overview of Haskell—and, hence, ReWire—syntax necessary
to understand this paper.

Haskell [8] is a strongly-typed, purely functional language.
A Haskell program consists of a number of function and
datatype declarations. The type of a function from type a to
type b is written, a -> b. The type for a tuple with first and
second components a and b, resp., is written (a, b). The fact
that a Haskell expression e has type a is written e :: a. Haskell
has a built-in list type constructor: [a] is the type of all lists
of elements of type a. Because of Haskell’s lazy evaluation
strategy, lists can have an infinite number of elements—such
lists are also called streams.

Below are a number of function declarations. The simplest
function is the identity function, which takes its argument
and simply returns it. Given two functions, f and g, their
composition is written, f ◦ g. Function application is written
either g(x) or by simple juxtaposition, g x. The function map
takes two arguments, a function f and a list l, and applies f
to each element of l, thereby creating a new list. The function
drop takes a non-negative integer n and a list l, and returns
the list missing the first n elements from l. Cons (:) takes
an item i0 and a list of items and returns a new list with
i0 on the front. N.b., it is important to distinguish (::)—“has
type”—from list cons (:).

id x = x
(f ◦ g) x = f (g(x))
map f [i0, i1, . . .] = [f(i0), f(i1), . . .]
drop n [i0, . . . , in−1, in, . . .] = [in, . . .]
i0 : [i1, . . .] = [i0, i1, . . .]
nth j [i0, . . . , ij, . . .] = ij
fst (a, b) = a
snd (a, b) = b

We note without proof that, for two non negative integers,
n and m, it holds that:

drop (n+ m) l = drop n (drop m l) (†)

In Haskell/ReWire, we can introduce new datatypes with
the data keyword. In the following declarations, Quad and
Hex are type constructors that, given any type a, construct
new types, Quad a and Hex a, resp. To construct a value
of a datatype, apply a data constructor; the data construc-
tors below are Q and H. For example, a value Q 1 2 3 4
is of type Quad Int; we write this type declaration as
Q 1 2 3 4 :: Quad Int. A Bit is either High or Low.
data Quad a = Q a a a a
data Hex a = H a a a a a a a a a a a a a a a a
data Bit = High | Low

ReWire has built-in types for words. A 32-bit (128-bit)
word belongs to the type W32 (W128). For example, a value
of type (Quad W32) has the form (Q w1 w2 w3 w4), which is
nothing more than four 32-bit words.

2) Purity and Equational Verification: Haskell (and, hence,
ReWire) is a pure language, which is a critical foun-
dation for equational reasoning. Purity means that the
type of a Haskell program faithfully represents its value
and behavior. If a Haskell function has type Int -> Int,
then the function takes an Int as input and produces
an Int as output. Furthermore, we can conclude that
the function possesses no side effects whatsoever because,
in Haskell, side effects are reflected accurately in the
types. The expression (print "Hello World"), for in-
stance, prints out Hello World to the prompt and, there-
fore, (print "Hello World") :: IO ()—it produces the
value nil, (), which is tagged in its type with IO, meaning it
performs input/output in some form.

To prove an equation, e = e′, one starts from e and
“replaces equals for equals” until e′ is reached. In symbols,
this proof is e= e1 = e2 = · · · = en = e′ in which each step
is justified by a known equation x=y—as in “replace x in ei
by y to obtain ei+1”. Purity supports this style of reasoning
because, being all Haskell expressions are side effect free, they
cannot interact unpredictably with the expressions in which
they are substituted.

B. Extending ReWire with Connect Logic

This section presents the ReWire operators for the compo-
sitional construction of devices from other devices. We refer
to these particular operators as “Connect Logic”. Connect
Logic enables two or more existing devices to be composed
in parallel and connected together. Connect Logic supports
a compositional style of hardware design akin to structural
VHDL. Formulating the design of a hardware device may be
accomplished as in previous work [1] (i.e., without Connect
Logic), or, existing devices may be composed with Connect
Logic operations into bigger devices.

There is a type constructor Dev for synchronous devices in
ReWire. There are three basic architectural constructors that
Connect Logic adds to the ReWire language. The first, iter,
constructs a synchronous device from a pure function from
inputs to outputs. The second, 〈&〉, composes two devices in
parallel. The third, refold, is a recursion operator that is used
to interconnect devices and/or express feedback loops (i.e.,
feed back device outputs to inputs).

3

Draft submitted to FPT15

1) Types for Devices: There is one basic unit of Con-
nect Logic, devices, for which we introduce the following
type: Dev i o for any types i and o. A term of type,
Dev i o, represents a clocked computation that, for each
clock cycle, takes an input of type i, produces an output
of type o, and may possess internal storage. We eschew
the formal definition of Dev as it is unnecessary to under-
standing Connect Logic and its uses. Device d is clocked,
as illustrated in the inset figure. The clock is represented
by the underlying structure of Dev i o, rather than as an

d

o

i

clk

d :: Dev i o

explicit parameter. A device is created in
Connect Logic by either iterating a function
or through composition of existing devices.
We introduce operators for constructing de-
vices and composing them into larger, inter-
connected devices. All Connect Logic opera-
tions are constructors for Dev, meaning that
they are functions producing Dev i o values
for some i and o types.

2) Iteration: The most basic Connect Logic constructor,
iter, iterates a pure function of type i -> o, producing an
output corresponding to the input at each clock cycle. The
Haskell definition of iter is as follows:
iter :: (i -> o) -> o -> Dev i o
iter f o = do i <- signal o

iter f (f i)

Fig. 2(a) illustrates the device created with the iter oper-
ation. The type declaration above means that iter is a device
constructor that takes a function from inputs i to outputs o
and an initial output value and constructs a corresponding
device. The device (iter f o) will, at the first clock cycle,
return output o and, in the next clock cycle after consuming an
input i, will produce a new output, (f i). This pattern repeats
recursively ad infinitum. The (signal o) operator outputs its
argument o and returns the next input. The definition of the
(iter f o) constructor above may be read as (1) output o (i.e.,
signal o), (2) receive the next input (i.e., do i<− signal o),
and then (3) repeat the pattern with new “initial” output (f i).

3) Parallelism: Parallelism is expressed with the device
constructor, 〈&〉, that composes two existing devices, d1 and
d2, into a single device, d1 〈&〉 d2, in which both devices
operate in parallel and in isolation from one another. N.b.,
we are assuming, here and elsewhere, that both arguments d1
and d2 are non-terminating. The type declaration of 〈&〉 is:
〈&〉 :: Dev i1 o1 ->

Dev i2 o2 ->
Dev (i1,i2) (o1,o2)

We omit its Haskell definition as doing so would require
an unnecessary excursion into Haskell’s syntax and semantics.
Fig. 2(b) presents a pictorial version of d1 〈&〉 d2. The type
signature of 〈&〉 means that the input and output types of con-
structed device d1 〈&〉 d2 are pairs of the inputs and outputs of
d1 and d2, resp. Both subdevices d1 and d2 are isolated from
one another in d1 〈&〉 d2—i.e., there is no intercommunication
or shared state between them. Such interaction may be added
explicitly using the refold operator described below. The
parallelism operator may be generalized to arbitrary numbers
of devices (i.e., beyond two), but, for lack of space, we only
present the simplest case.

R1



1
[
x[4] ⊕=(x[0]� x[12])≪ 7
x[14]⊕=(x[10]� x[6])≪ 7

x[9]⊕=(x[5]� x[1])≪ 7
x[3]⊕=(x[15]� x[11])≪ 7

2
[
x[8]⊕=(x[4]� x[0])≪ 9
x[2]⊕=(x[14]� x[10])≪ 9

x[13]⊕=(x[9]� x[5])≪ 9
x[7] ⊕=(x[3]� x[15])≪ 9

3
[
x[12]⊕=(x[8]� x[4])≪ 13
x[6] ⊕=(x[2]� x[14])≪ 13

x[1] ⊕=(x[13]� x[9])≪ 13
x[11]⊕=(x[7]� x[3])≪ 13

4
[
x[0] ⊕=(x[12]� x[8])≪ 18
x[10]⊕=(x[6]� x[2])≪ 18

x[5] ⊕=(x[1]� x[13])≪ 18
x[15]⊕=(x[11]� x[7])≪ 18

R2



5
[
x[1] ⊕=(x[0]� x[3])≪ 7
x[11]⊕=(x[10]� x[9])≪ 7

x[6] ⊕=(x[5]� x[4])≪ 7
x[12]⊕=(x[15]� x[14])≪ 7

6
[
x[2]⊕=(x[1]� x[0])≪ 9
x[8]⊕=(x[11]� x[10])≪ 9

x[7] ⊕=(x[6]� x[5])≪ 9
x[13]⊕=(x[12]� x[15])≪ 9

7
[
x[3]⊕=(x[2]� x[1])≪ 13
x[9]⊕=(x[8]� x[11])≪ 13

x[4] ⊕=(x[7]� x[6])≪ 13
x[14]⊕=(x[13]� x[12])≪ 13

8
[
x[0] ⊕=(x[3]� x[2])≪ 18
x[10]⊕=(x[9]� x[8])≪ 18

x[5] ⊕=(x[4]� x[7])≪ 18
x[15]⊕=(x[14]� x[13])≪ 18

Fig. 3: Salsa20 Hashing Algorithm [9]. Operation ⊕ is bitwise
exclusive OR and � is addition modulo 232, and ≪ is left
rotate. Each set of four assignments numbered 1–8 is a quarter
round, and each round, R1 and R2, consists of four quarter
rounds each. The algorithm consists of repeating each double
round (R1;R2) ten times in succession. Argument x is a 16
element array of 32 bit words.

4) Interdevice Communication & Feedback: Making in-
terconnections between devices occurs using another device
level operator, refold. The refold operator can be used
to connect sub-devices within its third argument and to hide
internal connections as well. The use of refold is illustrated
in Fig. 2(c). Given a device d :: Dev i1 o1, and two pure
functions, out :: o1 -> o2 and conn :: (o1 -> i2 -> i1),
refold out conn d is a new device with the following be-
havior. Given an external input i′ and current value output o
by internal device d, the new input to d is conn o i′ and the
new external output is out o. The type of refold is:

refold :: (o1 -> o2) ->
(o1 -> i2 -> i1) ->
Dev i1 o1 ->
Dev i2 o2

5) Defining a Pipeline: The form of pipeline we consider
is a simple one, namely stall-free pipelines, in which the output
from a stage flows directly into the input of the next stage. It
is possible to define more complex pipelines (e.g., instruction
pipelines that stall, etc.) with Connect Logic, but we leave that
subject for a follow-on publication.

Stall-free pipelines—henceforth simply “pipelines”—have
the flavor of functional composition, and the architectural
combinators of ReWire allow the formalization of this intu-
ition. For functions, fj, of appropriate type, the composition,
fn ◦ · · · ◦ f1, resembles a pipeline. Of course, this ignores
the timing aspect of a pipeline. In ReWire, we can express
this pipeline, along with its timing, as the following:

iter f1 o1 · · · iter fn on

where fj :: aj -> aj+1 are pure functions from input of
type aj to output of type aj+1 and each oj :: aj+1 is the
initial output value produced by pipeline stage iter fj oj.
The combinator chains each stage together, connecting the

4

Draft submitted to FPT15

salsa20 :: W128 -> Hex W32
salsa20 nonce = hash (initialize key0 key1 nonce)

hash :: Hex W32 -> Hex W32
hash x = x + doubleround(· · · (doubleround︸ ︷︷ ︸

10

(x)) · · ·)

doubleround :: Hex W32 -> Hex W32
doubleround x = rowround (columnround x)

quarterround :: Quad W32 -> Quad W32
quarterround (y0, y1, y2, y3) = (z0, z1, z2, z3)
where
z1 = y1 ⊕ (y0 + y3) ≪ 7
z2 = y2 ⊕ (z1 + y0) ≪ 9
z3 = y3 ⊕ (z2 + z1) ≪ 13
z0 = y0 ⊕ (z3 + z2) ≪ 18

rowround :: Hex W32 -> Hex W32
rowround (y0, . . . , y15) = (z0, . . . , z15)

where
(z0, z1, z2, z3) = quarterround (y0, y1, y2, y3)
(z5, z6, z7, z4) = quarterround (y5, y6, y7, y4)
(z10, z11, z8, z9) = quarterround (y10, y11, y8, y9)
(z15, z12, z13, z14) = quarterround (y15, y12, y13, y14)

columnround :: Hex W32 -> Hex W32
columnround (x0, . . . , x15) = (y0, . . . , y15)

where
(y0, y4, y8, y12) = quarterround (x0, x4, x8, x12)
(y5, y9, y13, y1) = quarterround (x5, x9, x13, x1)
(y10, y14, y2, y6) = quarterround (x10, x14, x2, x6)
(y15, y3, y7, y11) = quarterround (x15, x3, x7, x11)

Fig. 4: Reference Specification of Salsa20 Hash Function [2],
which plays the rôle of reference specification in our case
study. Operation ⊕ is bitwise exclusive OR, + is addition
modulo 232, and ≪ is left rotate.

output of the jth stage to the input of the j+1th stage. The
combinators for pipelining, etc., are defined below.

Note that is not syntactic sugar for function com-
position. For example, while it is true that id ◦ f = f, it
is also the case that iter id o1 iter f o2 6= iter f o2.
The LHS of this inequality is a two stage pipeline while
the RHS is a one stage pipeline. The outputs both pipelines
produce will be related, of course.

Given two devices, d1 and d2, the ReWire code for con-
necting them in pipelined sequence is below. This construction
is illustrated in Fig. 2(d). The two devices are first placed
unconnected in parallel (i.e., d1 <&> d2 :: Dev (a, b) (b, c))
and, in this context, both devices operate in isolation. The
combined device consumes a single input of type (a, b) and
produces a single output of type (b, c). The output type for
(d1 d2) is c; i.e., the second component of the output tuple
of d1 <&> d2. The external input (of type a) to (d1 d2) is
passed to the subdevice d1 and the output of d1 to the input
of d2; thus the routing function pipe is as defined below:

() :: Dev a b -> Dev b c -> Dev a c
d1 d2 = refold snd pipe (d1 〈&〉 d2)
where
pipe (b, c) a = (a, b)

sls20dev :: Dev (Bit, W128) (Hex W32)
sls20dev = refold out conn (passthru 〈&〉 dblrd)

zeros :: Hex W32
zeros = 〈...sixteen all zero words...〉

dblrd :: Dev (Hex W32) (Hex W32)
dblrd = iter doubleround (doubleround zeros)

passthru :: Dev (Hex W32) (Hex W32)
passthru = iter id zeros

out :: (Hex W32, Hex W32) -> Hex W32
out ((x0, . . . , x15), (y0, . . . , y15)) = (x0+y0, . . . , x15+y15)

conn :: (Hex W32, Hex W32) ->
(Bit, W128) -> (Hex W32, Hex W32)

conn (o1, o2) (Low, nonce) = (o1, o2)
conn (o1, o2) (High, nonce)) = (x, x)

where
x = initialize key0 key1 nonce

Fig. 5: Iterative Salsa20 Device in ReWire.

6) Compiling Connect Logic: A pure function f in ReWire
will be compiled into a combinational circuit of fixed depth
that, in turn, determines a fixed delay. If f = fn ◦ · · · ◦ f1,
then its depth is additive as is its delay. Composition of pure
functions exposes an opportunity for a pipelining optimization
to reduce the average propagation delay of the entire circuit.

The two operators 〈&〉 and refold are treated as prim-
itives in the ReWire compilation process. These operations
correspond directly to structural features in generated VHDL.
The 〈&〉 operation is compiled to a single VHDL entity that
handles the combined IO of two ReWire devices, and port
maps it accordingly. The refold operator is a single entity
with included functions to manipulate the IO of a device in
the manner prescribed by the type of the refold function.

IV. PROVABLY CORRECT DEVELOPMENT OF SALSA20
DEVICES IN REWIRE AND CONNECT LOGIC

Salsa20 is a stream cipher developed by Bernstein [9]
and is part of the ECRYPT ESTREAM [10] portfolio of
cryptographic ciphers. Salsa20 was originally intended for
software implementation, but can also be synthesized on an
FPGA with careful consideration given to space and mapping
constraints. Fig. 3 presents the Salsa20 hashing algorithm,
which is the heart of the Salsa20 algorithm itself and where
the bulk of its computation occurs. The inputs to the algorithm
include a 16-element array of 32 bit words, called x in the
figure.

A. Salsa20 Reference Specification

Fig. 4 contains the reference specification for Salsa20. This
specification simply recasts Bernstein’s functional specifica-
tion [2] using Haskell syntax. The function hash formulates
the original specification from Fig. 3 and the function salsa20
is the entry point for the whole algorithm. There are certain
details which we have left out of this code for the sake of
brevity and comprehensibility; these include routines to change
endianness, to reformat words as sequences of bytes, and

5

Draft submitted to FPT15

pipe10 :: Dev W128 (Hex W32)
pipe10 = refold out inpt tenstage

where
tenstage = stage · · · stage︸ ︷︷ ︸

10

stage = passthru 〈&〉 dblrd

Fig. 6: Ten Stage Pipeline

similar such routines. The function initialize sets up the
initial input; its definition is omitted as well.

B. Salsa20 Iterative Implementation

Fig. 5 contains the additional ReWire code to create an
iterative version of Salsa20. Two devices are created, dblrd
and passthru, using the iter constructor in Connect Logic.
A diagrammatic view of the circuit produced is found in
Fig. 8(a). Synthesis estimates of resource usage and FMax for
sls20dev are in Table I.

There is one functional unit performing the doubleround
operation. This operates ten cycles to produce on an-
swer. When the inputs to the device sls20dev are
[(High, n), (Low, n0), . . . , (Low, n9), . . .], then, on the cycle
with input (Low, n9), the output will be salsa20 n. The
High bit signifies that the device should start hashing n. The
(Low, n′) input signifies that n′ should be ignored and that the
iteration should continue.

C. Pipelining Salsa20

The numbers for the iterative device are reasonable, but
the structure of the cipher algorithm would indicate that there
is room for improvement. There is an apparent performance
gap with this approach: nine cycles of the device do not yield
useful output. Pipelining our base components together gives
us a way to keep our performance characteristics with respect
to clock speed roughly the same while enabling our device
to be productive on every clock cycle. We do so by placing
ten different passthru 〈&〉 dblrd devices in sequence, con-
necting their inputs and outputs together to obtain pipe10 in
Fig. 6.

A twenty stage pipeline may be created by increasing
the granularity of each stage. Now, instead of staging each
doubleround as before, each component columnround and
rowround is staged (see Fig. 7).

V. EVALUATING PROVABLY CORRECT SALSA20 DEVICES

This section evaluates the devices created in the previous
section according to two modes: performance and verifica-
tion. The devices synthesized by the ReWire compiler ex-
hibit performance comparable to a previously published, hand
optimized design [11] We sketch the verification of general
theorem which characterizes the correctness of the pipelining
transformation applied in Section IV-C.

In this section, we sketch the verification of the pipelining
transformation defined in Section IV. There is a function of
the following type that serves to run a device on stream of
inputs: feed :: [i] -> Dev i o -> [o]. For a stream of inputs

crstage = passthru 〈&〉 crdev
where
crdev = iter columnround (columnround zeros)

rrstage = passthru 〈&〉 rrdev
where
rrdev = iter rowround (rowround zeros)

pipe20 =


crstage rrstage

...

crstage rrstage
crstage rrstage

 (10)

Fig. 7: Twenty Stage Pipeline.

is :: [i] and a device d :: Dev i o, feed is d is the stream
of outputs created by running the device d on is. N.b., feed
preserves the order of outputs with respect to inputs; i.e., if i
is the nth input in is, then the (n + 1)st item in feed is d
was produced by d on i. We omit the definition of feed.

A. Performance

We evaluated the performance of the VHDL generated
from our high level specifications by synthesizing it using
Xilinx ISE targeting a Kintex 7 FPGA (xc7k160t-3fbg676).
The synthesis results detailed in Table I show an increase
in throughput and resource utilization as we pipeline that
is in line with intuitive expectations. The 10-stage pipeline
and the iterative implementation are the same design core
replicated tenfold. We observe a nearly tenfold increase of
flip-flop usage and a notable increase in LUT usage (likely im-
pacted by optimizations in the synthesis tools). In the 20-stage
pipeline, we divide our basic unit into separate rowRound
and columnRound pipeline stages. This introduces some
addtional LUT usage, but doubles flip-flop (slice) usage be-
cause the number of stages in the pipeline are doubled. The
maximum frequency of the 20-stage pipeline increases by
approximately 1.7 times which indicates a doubling effect from
doubling the pipeline with a moderate amount of overhead.
These numbers demonstrate that our approach is competitive
with similar work in the area of synthesizing Salsa20 [11] on
modern FPGAs.

dblrd

conn

out

(a) Iterative Salsa20

dblrd dblrd

…"

dblrd

init

out

10"stages"

(b) Ten Stage Pipelined Salsa20 Device

Fig. 8: Diagrammatic views of circuits produced by ReWire
in Figs. 5 and 6. The conn, out and init blocks are
combinational logic produced by compiling the functions of
the same name. Code for init has been omitted.

6

Draft submitted to FPT15

B. Testing the Iterative Salsa20 Device Automatically

We used the QuickCheck tool [12] to test the putative
correctness of the relationship between the reference specifi-
cation salsa20 and the iterative ReWire definition sls20dev
(from Figs. 4 and 5, resp.). Below is a Bool-valued function,
test, that takes a W128 nonce n as input and computes an
equation. Note that the value of input stream is is of the form
[(High, n), (Low, undefined), (Low, undefined), · · ·] where
undefined is a special “don’t care” constant built-in to
Haskell.

test :: W128 -> Bool
test n = reference == iterative

where
reference = salsa20 n
iterative = nth 10 (feed is sls20dev)
is = (High,n) : repeat (Low,undefined)

QuickCheck can generate random inputs to test and, if
test returns True for each input, then QuickCheck remarks
that the tests were passed; below is a transcript of running
QuickCheck on this correctness condition for sls20dev:

GHCi, version 7.10.1: http://www.haskell.org/
ghc/ :? for help

[1 of 1] Compiling Salsa20 (Salsa20.
hs, interpreted)

Ok, modules loaded: Salsa20.
*Salsa20> quickCheck test
+++ OK, passed 100 tests.
*Salsa20>

The correctness condition is neatly summed up in the
following theorem (stated without proof):

Theorem 1 (Correctness of Iterative Salsa20). For all nonces
n, n0, . . . , n9 :: W128, assume input stream is has the form
[(High, n), (Low, n0), · · · , (Low, n9), . . .]. Then, the following
equation holds: salsa20 n = nth 10 (feed is sls20dev).

C. Verification of Pipelining

1) Lemmas: This section states the Lemmas used in prov-
ing the correctness of pipelining (Theorem 2 below). Each
lemma is left unproven, although we describe the intuitive
meaning of each.

Lemma 1 says that the pipelining operator is associative.
The associativity of allows for “parentheses to be dropped”;
i.e., (f g h) can stand for either the right- or left-hand
sides of the equation in the lemma.

Lemma 1 (Associativity). The operation is associative.

f (g h) = (f g) h

LUTs Slices Fmax (MHz) T (Gbit/s)

Iterative 3459 651 99.4 5.1
10 Stage 22840 6019 97.5 49.9
20 Stage 25519 12309 167.4 85.7

TABLE I: Resource usage, Fmax, and throughput (T) of the
Salsa20 algorithm as implemented and compiled in ReWire.

Lemma 2 relates stages in a pipeline of devices created
with iter. The LHS below performs f and g in succession.
The RHS performs f and g in the first stage and the identity
function in the second stage. N.b., the RHS is not identical to
iter (g ◦ f) (g o2) because the former has two stages while
the latter has one.

Lemma 2. Let g :: b -> c, f :: a -> b, o1 :: c, and o2 :: b.
Then, we have:

iter f o2 iter g o1
= iter (g ◦ f) (g o2) iter id o1

Lemma 3 relates feed l with in terms of infinite
streams. It gives a condition under which the pipeline may
be reduced by one stage.

Lemma 3. Let l be an infinite stream and ϕ :: Dev i o, then:
feed l (ϕ iter id o) = o : feed l ϕ

Lemma 4 characterizes the interaction of feed and iter
in terms of a stream recording the outputs of device argument
to feed. The first is just the initial output of one stage pipeline
device (iter f o) and the rest are simply f mapped onto l.

Lemma 4. Let l :: [i] be an infinite stream and f :: i → o.
Then, feed l (iter f o) = o : map f l.

2) Correctness Theorem: The following theorem says that
feeding an n-stage pipeline a stream of inputs is the same as
mapping a composite function across those inputs, as long as
the first n outputs are ignored.

Theorem 2 (Correctness of Pipelining). Assuming that
f = f1 ◦ · · · ◦ fn and that l is an infinite stream, then:

map f l
= drop n (feed l (iter fn on · · · iter f1 o1))

Proof:

First, define: F0 = id and Fi+1 = Fi ◦ fi+1. Observe that,
by Lemmas 1 and 2 (n−1 times),

iter fn on · · · iter f1 o1
= iter Fn (Fn−1 on)

 iter id (Fn−2 on−1)
 · · ·
 iter id (F0 o1)

{f = Fn, F0 = id}
= iter f (Fn−1 on)

 iter id (Fn−2 on−1) (‡)
 · · ·
 iter id o1

7

Draft submitted to FPT15

Working from the RHS of the theorem statement:

drop n (feed l (iter fn on · · · iter f1 o1))
{By (‡)}

= drop n (feed l

 iter f (Fn−1 on)
 iter id (Fn−2 on−1)
 · · ·
 iter id o1

)

{ Lemma 3, n−1 times }
= drop n (o1 : · · · : Fn−2 on−1 : feed l (iter f (Fn−1 on)))
{ (†), Section III-A1 }
= drop 1 (feed l (iter f (Fn−1 on)))
{ Lemma 4 }
= drop 1 (Fn−1 on : map f l)
{ Defn. drop }
= map f l

VI. SUMMARY AND CONCLUSIONS

This paper considered the provably correct development
of several reconfigurable designs and implementations of the
Salsa20 stream cipher. The vehicle for this development is
the ReWire language. ReWire is a sublanguage of the pure,
functional language Haskell, and, as such, possesses a rig-
orous semantics that supports formal verification. Functional
languages are generally quite expressive, and, consequently,
the Salsa20 specifications in ReWire were quickly produced,
concise and comprehensible, and elegant. Connect Logic—a
previously unpublished part of ReWire—supports a structural
style of development in a functional HDL. Connect Logic was
key to rapidly prototyping Salsa20 in ReWire, especially in the
introduction of pipelining optimizations to the specifications.

It is commonplace for hardware engineers to “think in
diagrams”. Any circuit or device specification will include
a diagram depicting the high-level structure of the device.
This diagram domain abstraction is used as an informal guide
for comprehending the design. But how do we express such
structural notions in a functional language-based HDL like
ReWire? To this end, we introduced an extension to ReWire
called Connect Logic, that encapsulates the diagrammatic
style directly in the syntax of ReWire. This paper defines
Connect Logic and illustrates its use with a case study of
the construction of an efficient, pipelined hardware design and
implementation of the Salsa20 stream cipher. Furthermore, and
more to the point, we verify the correctness of this device
through equational reasoning on the ReWire source text.

New language abstractions are not typically cost free. There
is usually some trade-off with respect to performance and
language implementers attempt to minimize such overheads.
Furthermore, new abstractions tend to be more useful in some
situations than in others. The Salsa20 cipher was chosen as a
test for ReWire to evaluate (1) how well cryptographic algo-
rithms might be expressed in ReWire and (2) what performance
trade-off, if any, might arise with respect to carefully hand-
optimized implementations? The performance of the synthe-
sized ReWire devices (as shown in Table I) was quite good
and, although there are not any published numbers on hand-
optimized implementations of Salsa20 that afford direct com-
parison with our results, the achieved performance was in line
with the only relevant publication in the area [11]. Question (1)
concerns what is, admittedly, more of an aesthetic issue than

a measurable quantity. Still, it is safe to say that the Salsa20
specifications in ReWire would be readily comprehensible to
those with experience in functional programming.

More importantly, a clear advantage of the ReWire method-
ology is that the artifacts we produced were verified in the
manner of ordinary functional programs directly on the text of
the design. This is a point worth emphasizing: verification of
ReWire programs takes place on the program itself. Because
VHDL has no mathematical semantics, artifacts produced
in VHDL (or in Verilog for that matter) would require an
additional step in which the formal specification of the device
would encoded by hand in the logic of a theorem prover [4].
This hand-encoding is fraught with the potential for error as
well as being quite time-consuming.

REFERENCES

[1] A. Procter, W. L. Harrison, I. Graves, M. Becchi, and G. Allwein, “Se-
mantics driven hardware design, implementation, and verification with
ReWire,” in ACM SIGPLAN/SIGBED Conf. on Languages, Compilers,
Tools and Theory for Embedded Systems (LCTES), 2015.

[2] D. J. Bernstein, “Salsa20 specification,” 2005, http://cr.yp.to/snuffle/
spec.pdf.

[3] R. Bird and P. Wadler, Introduction to Functional Programming. Pren-
tice Hall, 1988.

[4] T. Melham, Higher Order Logic and Hardware Verification, ser. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1993, vol. 31.

[5] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant,
M. O. Myreen, and J. Alglave, “The semantics of x86-CC multiproces-
sor machine code,” in Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’09, 2009, pp. 379–391.

[6] L. Erkök, D. McNamee, J. Kiniry, I. Diatchki, and J. Launchbury,
Programming Cryptol. Galois Inc., 2014.

[7] NIAP-CCEVS, “Common criteria for information technology security
evaluation part 3: Security assurance components,” National Information
Assurance Partnership, Tech. Rep. CCMB-2012-09-003, September
2012, https://www.niap-ccevs.org/.

[8] S. Peyton Jones, Ed., Haskell 98 Language and Libraries, the Revised
Report. Cambridge University Press, 2003.

[9] D. J. Bernstein, “New stream cipher designs,” M. Robshaw and O. Bil-
let, Eds., 2008, ch. The Salsa20 Family of Stream Ciphers, pp. 84–97.

[10] ——, “The eSTREAM project - eSTREAM phase 3 - Salsa20
(portfolio profile 1),” 2005, retrieved November 11, 2014. [Online].
Available: http://www.ecrypt.eu.org/stream/salsa20pf.html

[11] J. Sugier, “Low-cost hardware implementations of salsa20 stream cipher
in programmable devices,” Journal of Polish Safety and Reliability
Association Summer Safety and Reliability Seminars, vol. 4, no. 1, 2013.

[12] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” in Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, 2000, pp. 268–
279.

8

