
Cheap (But Functional) Threads†

William L. Harrison and Adam M. Procter
Department of Computer Science
University of Missouri
Columbia, Missouri

Abstract. This article demonstrates how a powerful and expressive abstraction
from concurrency theory plays a dual rôle as a programming tool for concurrent
applications and as a foundation for their verification. This abstraction—monads of
resumptions expressed using monad transformers—is cheap: it is straightforward to
understand, implement, and reason about. We illustrate the expressiveness of the re-
sumption monad with the construction of an exemplary multitasking operating sys-
tem kernel with process forking, preemption, message passing, and synchronization
constructs in the pure functional programming language Haskell.

Keywords: Monads, Resumptions, Concurrency, Functional Programming

1. “Cheap” Concurrency

This paper presents a low overhead approach to multi-threaded con-
current computation. We demonstrate how a rich variety of concurrent
behaviors—including synchronization, message passing, the forking and
suspension of threads among others—may be expressed succinctly in
a non-strict functional language with no changes to the host language
implementation. The necessary machinery—monads of resumptions—
is so expressive, in fact, that the kernel described here requires fewer
than fifty lines of Haskell 98 code. And, because this machinery may
be generalized as monad transformers, the functionality described here
may be reused and refined easily.

Many techniques and structures have emigrated from programming
language theory to programming practice (e.g., types, CPS, etc.), and
this article advocates that resumption monads make the journey as
well. This work is not intended to be theoretical; on the contrary,
its purpose is to demonstrate how a natural (but, perhaps, under-
appreciated) computational model of concurrency is used to construct
verifiable concurrent applications. The approach taken here is informal
and should be accessible to anyone familiar with monads in Haskell1.
And while the constructions described here occur in Haskell 98, they

† This article is an expanded version of the first author’s paper The Essence of
Multitasking published in the proceedings of AMAST 2006.

1 All the code presented in this paper is available from the authors.

c© 2015 Springer Science+Business Media, Inc. Manufactured in The Netherlands.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.1

2 William L. Harrison and Adam M. Procter

may be transcribed in a straightforward manner into any functional
programming language—even strict ones like ML or Scheme (Filinski,
1999; Espinosa, 1995).

A resumption (Plotkin, 1976) is a stream-like construction similar
to a continuation in that both tell what the “rest of the computation”
is. However, resumptions are considerably less powerful (read: cheaper)
than continuations—the only thing one may model with resumptions is
interleaved computation. This conceptual economy makes concurrent
applications structured with resumption monads easier to comprehend,
modify, extend, and reason about. Resumption monads are both an ex-
pressive programming tool for concurrent applications and a foundation
for their verification. The resumption-monadic structures explicated
here were critical in the specification and verification of a design for a
secure OS kernel (Harrison and Hook, 2009).

The genesis of this work is the design, implementation, and verifica-
tion of a secure operating system kernel in the pure, lazy functional lan-
guage Haskell. The High Assurance Security Kernel (HASK) project2

at the University of Missouri is working to develop and formally ver-
ify kernels for multi-level secure applications. Functional languages,
particularly of the non-strict variety, are well-known for promoting
mathematical reasoning about programs, and, perhaps because of this,
there has been considerable research in the use of functional languages
for operating systems and systems software. The present work has a
functional languages pedigree, yet fundamentally differs from it in at
least one key respect: we explicitly encapsulate all effects necessary to
the kernel with monads: input/output, shared state and interleaving
concurrency.

The structure of this article is as follows. After reviewing the related
work and necessary background in Sections 2 and 3, Section 4 describes
in detail how resumption monads may be used to model interleaving
concurrency. Two varieties of resumption computation are required
here; one for thread scheduling (referred to here as basic resumptions)
and another form that gives a precise account of our notion of thread
(called reactive resumptions). Section 4 describes both forms in de-
tail. Section 5 presents a resumption-monadic semantics for a CSP-like
concurrent language extended with “signals”; a thread may signal a
request to fork, suspend, print, send or receive a message, or acquire
or release a semaphore. This language is a convenient abstract syn-
tax for threads, and also serves to connect the previous research on
resumption-based language semantics to the research reported here.

2 The HASK project at the University of Missouri explores the application of
monadic semantics in formal methods. For more information, please consult the
project webpage http://hask.cs.missouri.edu.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.2

Cheap (But Functional) Threads 3

Specifically, with a small change to the kernel (namely, incorporation
of the non-determinism monad), a definitional interpreter can be given
that recovers a typical resumption-based denotational semantics for
the language. The appendix elaborates on this interpreter and its con-
nection to previous applications of the resumption monad to language
semantics. Section 6 describes the kernel itself, which consists of mu-
tually recursive scheduling and service handler functions. Section 7
presents another example: how implicit concurrency in the form of a
garbage collector may be encapsulated with resumption monads as well.
Section 8 presents conclusions and outlines future work.

2. Related Work

2.1. Modeling Concurrency in Functional Settings

The concurrency models underlying previous applications of functional
languages to concurrent system software fall broadly into four camps.

Concurrency via Non-deterministic Operators
The first camp (Henderson, 1982; Stoye, 1984; Stoye, 1986; Turner,
1987; Turner, 1990; Cupitt, 1992) assumes the existence of a non-
deterministic choice operator to accommodate “non-functional” situ-
ations where more than one action is possible, such as a scheduler
choosing between two or more waiting threads. However, such a non-
deterministic operator risks the loss of an important reasoning principle
of pure languages—referential transparency—and considerable effort is
made to minimize this danger. Non-determinism may be incorporated
easily into the kernel presented here via the non-determinism monad,
although such non-determinism is of a different, but closely related,
form; see the appendix for further details.

Demand-driven Concurrency
The second camp uses “demand-driven concurrency” (Carter, 1994;
Spiliopoulou, 1999) in which threads are mutually recursive bindings
whose lazy evaluation simulates interleaving concurrency. Interleaving
order is determined (in part) by the interdependency of these bindings.
However, the demand-driven approach requires some alteration of the
underlying language implementation to completely determine thread
scheduling. Thread structure is entirely implicit—there are no atomic
actions per se. Demand determines the extent to which a thread is
evaluated—rather like the “threads” encoded by computations in the
lazy state monad (Launchbury and Peyton Jones, 1994). Thread struc-
ture in the resumption-monadic setting is explicit—one may even view

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.3

4 William L. Harrison and Adam M. Procter

a resumption monad as an abstract data type for threads. This exposed
thread structure allows deterministic scheduling without changing the
underlying language implementation as with demand-driven concur-
rency; Section 6 describes such a deterministic scheduler in detail.

Concurrency via First-class Continuations
The third camp uses CPS to implement thread interleaving. Concur-
rent behavior may be modeled with first-class continuations (Claessen,
1999; Wand, 1980; Lin, 1998; Flatt et al., 1999; van Weelden and Plas-
meijer, 2002; Li and Zdancewic, 2007) because the explicit control over
evaluation order in CPS allows multiple threads to be “interwoven”
to produce any possible execution order. Claessen presents an elegant
formulation of this style using the CPS monad transformer (Claessen,
1999), although apparently without exploiting the full power of first-
class continuations—i.e., he does not use callcc or shift and reset . While
it is certainly possible to implement the full panoply of OS behaviors
with CPS, it is also possible to implement much, much more: all known
effects may be expressed via CPS (Filinski, 1996; Filinski, 1994). Re-
sumptions can be viewed as a disciplined form of continuations that
support a stream-like reasoning principle akin to the well-known “take
lemma” for streams (Bird and Wadler, 1988; Gibbons and Hutton,
2005). Readers interested in resumption-monadic verification should
consult (Harrison and Hook, 2009).

Program-structuring Paradigms for Multithreading
The last camp uses program-structuring paradigms for multi-thread-
ing, the first of which is called trampoline-style programming (Ganz
et al., 1999). Programs in trampoline-style are organized around a
single scheduling loop called a “trampoline.” One attractive feature of
trampolining is that it requires no appeal to first-class continuations. Of
the four camps, trampolining is most closely related to the resumption-
monadic approach described here. In (Ganz et al., 1999), the authors
motivate trampolining with a type constructor equivalent to the functor
part of the basic resumption monad (described in Section 4.1 below),
although the constructor is never identified as such.

The second structuring technique is known as delimited continu-
ations. Continuations are the meanings of whole evaluation contexts
and are frequently motivated with the intuition that they denote the
“rest of the program.” A delimited continuation is the meaning of a
“delimited” evaluation context, denoting the “first part” of the rest of
the program. Delimited continuations bear a close resemblance to what
we call reactive resumption monads and have recently been applied in
the construction of system software (Kiselyov and Shan, 2007). Both

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.4

Cheap (But Functional) Threads 5

reactive resumptions and delimited continuations support a request and
response notion of computation.

2.2. Concurrent Functional Languages

The previous research relevant to this article involves those applica-
tions of functional languages where the concurrency model is explicitly
constructed rather than inherited from a language implementation or
run-time platform. There are many applications of functional languages
to system software that rely on concurrency primitives from existing
libraries or languages (Harper et al., 1998; Biagioni et al., 2001; Birman
et al., 2000; Alexander et al., 1998); as the modeling of concurrency is
not their primary concern, no further comparison is made. Similarly,
there are many concurrent functional languages (Plasmeijer and van
Eekelen, 1998; Peyton Jones et al., 1996; Reppy, 1999; Cooper and Mor-
risett, 1990; Armstrong et al., 1996), but their concurrency models are
built in to their run-time systems and provide no basis for comparison
to the current work. It may be the case, however, that the resumption-
monadic framework developed here provides a semantic basis for these
languages.

2.3. Resumptions in Denotational Semantics

Resumptions are a denotational model of concurrency first introduced
by Plotkin (Plotkin, 1976; Schmidt, 1986; Bakker and Vink, 1996), al-
though this formulation of resumptions did not involve monads. Moggi
was the first to observe that the categorical structure known as a monad
was appropriate for the development of modular semantic theories
for programming languages (Moggi, 1990). In his initial development,
Moggi showed that most known semantic effects could be naturally
expressed monadically. He also showed how a sequential theory of con-
currency could be expressed in the resumption monad.

Both the basic and reactive formulations of the resumption monad
and monad transformer first occur in the work of Moggi (Moggi, 1990).
Espinosa presents a version of the basic resumption monad transformer
in his thesis (Espinosa, 1995). The basic resumption monad transformer
used here is due to Papaspyrou, et al. (Papaspyrou, 1998; Papaspyrou
and Maćoš, 2000; Papaspyrou, 2001). Papaspyrou has made extensive
use of this monad transformer in his research; this includes a monadic-
denotational semantics of ANSI C (Papaspyrou, 1998), an elegant study
of the relationship between side effects and evaluation order (Papaspy-
rou and Maćoš, 2000), and a monadic-denotational semantics of a
non-deterministic CSP-like language (Papaspyrou, 2001). The formu-
lation of reactive resumptions used here occurs (unsurprisingly) first in

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.5

6 William L. Harrison and Adam M. Procter

Moggi’s work (Moggi, 1990). It is later mentioned in passing by Filinski
(Filinski, 1999), although in a form appropriate for the strict language
ML. In (Filinski, 1999), the author presents an example of shared-state
concurrency implemented with basic resumptions.

Much of the literature involving resumption monads (Moggi, 1990;
Papaspyrou, 1998; Papaspyrou and Maćoš, 2000; Papaspyrou, 2001;
Krstic et al., 2001; Jacobs and Poll, 2003) focuses on their use in elegant
and abstract categorical semantics for programming languages. The
current work advocates the use of resumption monads as an expressive
abstraction for concurrent programming and verification. The purpose
of this account, in part, is to provide an exposition on resumption mon-
ads so that the interested reader may grasp the literature more readily.
To this end, when resumption monads are introduced in Section 4, the
constructions are presented both as Haskell data type declarations and
in the categorical notation of Moggi’s lecture notes (Moggi, 1990), so
that the reader may compare the two formalisms side-by-side. And,
although semantics is not the primary concern here, the kernel con-
struction is not far off from resumption-monadic language semantics.
A definitional interpreter for a small concurrent language of threads
is given in Section 5, and the appendix outlines how this interpreter,
when combined with a branching-time version of the kernel, closely
resembles a published semantics (Papaspyrou, 2001). The constructions
underlying the branching-time kernel are also the basis of a recent
monadic semantics of asynchronous exceptions.

2.4. The “Awkward Squad”

Monads were introduced into functional languages as a means of deal-
ing with “impurities” such as exceptions and state (Wadler, 1992).
All Haskell implementations use the IO monad for impure actions;
printing out a character is performed by putChar :: Char → IO() for
example. There is also a version of Haskell with explicit concurrency—
namely, Concurrent Haskell (Peyton Jones et al., 1996)—with special
constructs supporting shared-state concurrency; these are typed within
the Haskell IO monad as well: forkIO :: IO() → IO() spawns a new
thread executing for its argument.

But what is IO? In the memorably colorful words of Simon Peyton
Jones, IO is a “giant sin-bin”, into which all the impure aspects neces-
sary for real world programming are swept3. But is IO truly a monad
(i.e., does it obey the monad laws)? What is the precise behavior of

3 See, for example, his slides from his talk “Lazy functional programming for
real: Tackling the Awkward Squad” available at research.microsoft.com/Users/

simonpj/papers/marktoberdorf/Marktoberdorf.ppt.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.6

Cheap (But Functional) Threads 7

combinators for the impurities such as concurrency or mutable state
gathered together in IO? In short, how does one prove properties of
programs of type IO? The fact is the structure of IO is opaque, and
so without closely examining the source code of existing Haskell im-
plementations, one simply could not answer such questions. And even
with the source code, the situation does not improve much as there are
multiple Haskell implementations, designed for efficiency rather than
for the needs of formal analysis.

The kernel design presented here confronts many “impurities” con-
sidered difficult to accommodate within a pure, functional setting—
concurrency, state, and input/output—which are all members of the so-
called “Awkward Squad” (Peyton Jones, 2000). These impurities have
been handled individually via various monadic constructions (consider
the manifestly incomplete list (Moggi, 1990; Peyton Jones and Wadler,
1993; Papaspyrou, 1998)). The current approach combines these indi-
vidual constructions into a single layered monad—i.e., a monad created
from monadic building blocks known as monad transformers (Liang,
1998; Espinosa, 1995). While it is not the intention of the current
work to model either the Haskell IO monad or Concurrent Haskell, the
techniques and structures presented here point the way towards such
models. Indeed, recent work of Swierstra and Altenkirch (Swierstra
and Altenkirch, 2007) applies a resumption-monadic framework (with
a different, though similar, formulation) to the semantics of the IO
monad. Furthermore, recent work of the authors (Harrison et al., 2008)
describes how asynchronous exceptions (in both the most general and
Haskell senses (Marlow et al., 2001)) can be modeled with the current
framework extended with the monad of non-determinism.

2.5. Linearity vs. Branching Concurrency

Temporal logics (Pnueli, 1977; Emerson, 1990; Manna and Pnueli, 1991)
are modal logics typically applied to the specification and verification
of concurrent systems and algorithms. They contain modalities such
as “eventually” that allow straightforward specifications of desirable
system properties; for example, the fairness of process scheduling (i.e.,
“eventually all runnable processes execute”) may be directly formulated
in temporal logic (Manna and Pnueli, 1991). Two notions of time—
linear and branching—distinguish temporal logics (Emerson, 1990).
Linear temporal logics allow that, at any moment in time, there is
only one “next” moment. The kernel described in Section 6 is linear
in this sense; because the kernel has deterministic scheduling, there is
only one possible next step. The model of time underlying branching
temporal logics allow for more than one “next” moment; time may

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.7

8 William L. Harrison and Adam M. Procter

split or “branch” into distinct possible futures. The kernel described in
Appendix A supports a finitely branching notion of time.

3. Monads and Monad Transformers

This section serves as a review of monads and monad transformers
(Moggi, 1990; Liang, 1998) with emphasis on how they are represented
in Haskell4. Section 3.1 reviews the Haskell syntax for monads as well
as the so-called monad laws. Readers familiar with this material may
choose to skip this section. Monads can encapsulate program effects
such as state, exceptions, multi-threading, environments, and CPS;
combining such effects into a single monad may be achieved using
monad transformers (Moggi, 1990; Liang, 1998), where each effect cor-
responds to an individual monad transformer. Section 3.1 also presents
two basic monads relevant to this work—the identity and state mon-
ads. Section 3.2 reviews the basic ideas behind monad transformers,
introducing the state monad transformer as an example. Monads con-
structed with monad transformers are easily combined and extended,
and monadic programs inherit this modularity, as is also described in
Section 3.2.

3.1. Monads in Haskell

A monad consists of a type constructor M and two functions:

return :: a→M a — the “unit” of M
(>>=) :: M a→ (a→M b)→M b — the “bind” of M

The return operator is the monadic analogue of the identity function,
injecting a value into the monad. The >>= operator gives a form of
sequential application.

These operators must satisfy the monad laws:

(return v) >>= k = k v — left unit
x >>= return = x — right unit
x >>= (λ a.(k a) >>= h) = (x>>= k) >>= h — associativity

Haskell syntax (Peyton Jones, 2003) has several alternative forms
for the bind operator. The “null bind” operator, >>, is defined as
x >> k = x >>= λ . k ; it ignores the value produced by x. The “do”
notation is sometimes easier to read than a sequence of nested binds:
do { v ← x ; k } = (x >>= λ v . k).

4 For readers needing a more thorough introduction, we recommend Liang,
Hudak, and Jones (Liang et al., 1995).

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.8

Cheap (But Functional) Threads 9

3.1.1. The Identity Monad
Defining a monad in Haskell typically consists of declaring a data type
and an instance of the built-in Monad class (Peyton Jones, 2003). For
example, the identity monad is declared as:

data Id a = Id a
deId (Id x) = x

instance Monad Id where
return v = Id v
(Id x) >>= f = f x

The data type declaration defines the computational “raw materials”
encapsulated by the monad (the Id monad provides no such mate-
rials). The variables return and >>= are overloaded in Haskell and
the instance declaration Monad Id gives their meaning for the type
constructor Id . Note, however, that Haskell does not guarantee that
such declarations obey the monad laws.

3.1.2. The State Monad
The following defines the well-known state monad in Haskell, assuming
for the sake of this exposition, that the state is simply the Int type:

data St a = ST (Int → (a, Int))
deST (ST ϕ) = ϕ
instance Monad St where

return v = ST (λ s. (v , s))
(ST ϕ) >>= f = ST (λ s0. let (v1, s1) = ϕ s0 in deST (f v1) s1)

Monads typically have non-proper morphisms to manipulate their
extra computational “raw material”; they are so-called because they
are not the monad’s “proper” morphisms (namely, >>= and return).
The state monad possesses a store, passed in a single-threaded manner
throughout a computation. Operators are defined to make use of this
store; they are the “get store” operator, g , and the “update store”
operator, u:

g :: St Int
g = ST (λ s. (s, s))

u :: (Int → Int) → St ()
u δ = ST (λ s. ((), δ s))

The unit constant, (), is returned by (u δ) to indicate that its return
value is content-free. The g computation returns the current store and
(u δ) applies store transformer δ to the current store.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.9

10 William L. Harrison and Adam M. Procter

3.2. Layered Monads & Monad Transformers

Monad transformers are generalizations of monads, each isolating a
particular effect. There are several formulations of monad transformers,
and we follow that given in (Liang, 1998; Liang et al., 1995). A monad
transformer consists of two data: a type constructor T , and a definition
of the monad (T M) in terms of any existing monad M . Section 3.2.1
presents the state monad transformer, and later in Section 4 introduces
monad transformers for resumptions.

Monad transformers allow monads to be constructed in a “lay-
ered” fashion; if Ti are monad transformers and M is a monad, then
M ′ = T1 (. . . (Tn M) . . .) is also a monad. Such monads are called
henceforth layered monads. A useful property of the layered approach
is that the monad laws need not be checked for M ′—it is known by
construction to be a monad (Liang, 1998). Note that any non-proper
morphisms arising in the intermediate layers of M ′ must be redefined
for M ′. That is, if M (or Tn M , etc.) has non-proper morphisms, they
must be redefined with each transformer application. The general issue
of whether a non-proper morphism can be redefined in a behavior-
preserving manner—called lifting—involves a slight restriction on the
order of application of monad transformers when the CPS monad trans-
former is included. None of these issues arise in the monads constructed
in this article, so we elaborate this point no further, but the interested
reader should consult the references5.

Layered monads implement a particular signature, where a signature
is a collection of typed uninterpreted function symbols (Loeckx et al.,
1996). The signature of any layered monad includes its unit and bind
as well as its non-proper morphisms. Considering the state monad for
example, its signature consists of the bind and unit and the u and
g operators. The essence of the modularity of the layered monadic
approach is that signatures may be re-interpreted at different monads
and that monad transformers give a canonical means of constructing
such re-interpretations in a manner which preserves the behavior of the
signature functions.

3.2.1. The State Monad Transformer
The state monad transformer generalizes the state monad. It takes
two type parameters as input—the type constructor m representing an
existing monad and a store type sto—and from these creates a monad
adding single-threaded sto-passing to the computational raw material

5 Especially, consider the dissertations of Espinosa and Liang (Espinosa, 1995;
Liang, 1998).

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.10

Cheap (But Functional) Threads 11

of m. Using the bind and return of m, the bind and return of the new
monad, (StateT sto m), are defined in an instance declaration:

data StateT sto m a = ST (sto → m (a, sto))
deST (ST x) = x
instance Monad m ⇒ Monad (StateT sto m) where

return v = ST (λ s. returnm (v , s))
(ST x) >>= f = ST (λ s0. (x s0) >>=m λ (y , s1). deST (f y) s1)

The bind and return of the input monad m are distinguished from those
being defined by attaching a subscript (e.g., returnm). The monad
St = StateT Int Id is equivalent to the previous, unlayered state monad
of Section 3.1.2.

Notational Convention. In Haskell 98, monadic operators are over-
loaded, and, although the Haskell type class system would resolve the
apparent ambiguity in the text of the definitions, such overloading
may make the Haskell code confusing to read. As a notational con-
vention adopted throughout this article, we eliminate such ambiguities
by subscripting the bind and return operators when it seems helpful.

The state monad’s non-proper morphisms may be generalized, too:

g :: Monad m⇒StateT s m s
g = ST (λ s. returnm (s, s))
u :: Monad m⇒ (s → s) → StateT s m a
u δ = ST (λ s. returnm ((), δ s))

In store-passing semantics of imperative programs (Schmidt, 1986),
the store is typically modeled by a type of the form Name → Value,
where Value refers to a type of storable values. Later in Section 5, we
give a store-passing semantics in monadic form for an imperative lan-
guage of threads in which the store is of the form Sto = Name → Int .
For the monad transformer, StateT Sto, two useful morphisms, getloc
and setloc, may be defined in terms of g and u as:

getloc :: (Monad m) ⇒ Name → StateT Sto m Int
getloc x = g >>= λ σ. return (σ x)
setloc :: (Monad m) ⇒ Name → Int → StateT Sto m ()
setloc x v = u [x 7→v]
[−7→−] :: (Eq a) ⇒ a → b → (a → b) → a → b
[i 7→v] σ = λ n. if i==n then v else (σ n)

An application getloc x returns the contents of location x . An appli-
cation setloc x v stores value v in location x . The type signatures for
getloc and setloc mean that they may be defined for any monad m by
applying the aforementioned state monad transformer. The polymor-

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.11

12 William L. Harrison and Adam M. Procter

phic operation [−7→−] is used throughout to construct Sto transform-
ers (i.e., [x 7→v] :: Sto→ Sto). In Section 7, it is also used to update
environments.

4. Concurrency Based on Resumptions

Two formulations of resumption monads are used here—what we call
basic and reactive resumption monads. Both occur, in one form or
another, in the literature (Moggi, 1990; Papaspyrou, 1998; Papaspyrou
and Maćoš, 2000; Papaspyrou, 2001; Espinosa, 1995; Filinski, 1999).
The basic resumption monad (Section 4.1) encapsulates a notion of
interleaving concurrency; that is, its computations are stream-like and
may be woven together into single computations representing any ar-
bitrary schedule. The reactive resumption monad (Section 4.2) en-
capsulates interleaving concurrency as well, but, in addition, affords
a request-and-response interactive notion of computation which, at a
high-level, resembles the interactions of threads within a multitasking
operating system.

A natural model of concurrency is the “trace model” (Roscoe, 1998).
The trace model views threads as (potentially infinite) streams of atomic
operations and the meaning of concurrent thread execution as the set
of all their possible thread interleavings. To illustrate this model, con-
sider the following example. Imagine that we have two simple threads
a = [a0, a1] and b = [b0], where a0, a1, and b0 are “atomic” operations,
and, if it is helpful, think of such atoms as single machine instructions.
Then, according to the trace model, the concurrent execution of threads
a and b, a‖b, is denoted by the set of all their possible interleavings6;
these are:

traces (a ‖ b) = {[a0, a1, b0], [a0, b0, a1], [b0, a0, a1]} (‡)

This means that there are three distinct possible execution traces
of (a ‖ b), each of which corresponds to an interleaving of the atoms in
a and b. Non-determinism in the trace model is reflected in the fact
that traces(a ‖ b) is a set consisting of multiple interleavings.

The trace model captures the structure of concurrent thread ex-
ecution abstractly and succinctly and is therefore well-suited to for-
mal characterizations of properties of concurrent systems (e.g., liveness
properties of schedulers such as fairness). However, a wide gap exists

6 Although in Roscoe’s model, this set is prefix-closed, meaning that it includes
all prefixes of any trace in the set. For the purposes of this exposition, we may ignore
this consideration.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.12

Cheap (But Functional) Threads 13

between this formal model and an executable system: traces are simply
lists of events, and each event is itself merely a place holder (i.e., what
do the events a0, a1, and b0 actually do?). Resumption monads bridge
this gap because they are a formal, trace-based concurrency model that
may be directly realized as executable Haskell code.

As we shall see in this section, the notion of computation provided
by resumption monads is that of sequenced computation. A resumption
computation has a list-like structure in that it includes both a “head”
(corresponding to the next action to perform) and a “tail” (correspond-
ing to the rest of the computation)—in this way, it is very much like the
execution traces in (‡). We now describe the two forms of resumption
monads in detail.

4.1. Sequenced Computation & Basic Resumptions

This section introduces sequenced computation in monadic style. First,
the most elementary resumption monad is constructed as a Haskell
data type declaration. Unlike other well-known monads such as state,
resumptions as a “stand alone” monad are not interesting at all, so we
then discuss the monad that combines resumptions with state. Finally,
we describe the generalization of the monad of basic resumptions as a
monad transformer.

The most basic resumption monad contains only a notion of se-
quencing and nothing else (see below). An R-computation is either a
completed computation, (Done v), a finite sequence of Pause’s end-
ing in a Done, (Pause(. . .Pause(Done v). . .)), or an infinite sequence
of Pause’s, (Pause(. . .)). Computations in this version of R resemble
streams without stream elements. The return operation for R is Done,
while the bind operation (>>=), in effect, appends two R-computations.
Note that the bind operator for R, >>=, is defined recursively.

data R a = Done a | Pause (R a)
instance Monad R where

return = Done
(Done v) >>= f = f v
(Pause r) >>= f = Pause (r >>= f)

Combining the monad of resumptions with the monad of state, the
resulting monad is much more expressive and useful:

data R a = Done a | Pause (St (R a))
instance Monad R where

return = Done
(Done v) >>= f = f v
(Pause r) >>= f = Pause (r >>=St λk. returnSt (k >>= f))

(∗)

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.13

14 William L. Harrison and Adam M. Procter

Here, the bind operator for R is defined recursively in terms of the bind
and unit for the state monad (written above as >>=St and returnSt,
respectively). The difference with the previous monad definition is that
some stateful computation—within “r >>=St . . .” in the last line of the
instance declaration—takes place.

A useful non-proper morphism, step, may be defined to recast a
stateful computation as a resumption computation:

step :: St a→R a
step x = Pause (x >>=St (returnSt ◦Done))

The step morphism is used later in Section 5 to define the atomic
actions of the thread model.

Returning to the trace model example from the beginning of this
section, we can now see that R-computations are quite similar to the
traces in (‡). The basic resumption monad has lazy constructors Pause
and Done that play the rôle of the lazy list constructors cons (:) and
nil ([]) in the traces example. If the atomic operations of a and b are
computations of type St (), then the following computations of type
R () are the set of possible interleavings:

step a0 >> step a1 >> step b0
step a0 >> step b0 >> step a1
step b0 >> step a0 >> step a1

where >> is the null bind operation of the R monad. While the stream
version implicitly uses a lazy cons operation (h : t), the monadic version
uses something analogous: (step h) >> t . The laziness of Pause allows
infinite computations to be constructed in R just as the laziness of cons
in (h : t) allows infinite streams to be constructed.

With this discussion in mind, we may generalize the previous con-
struction as a monad transformer (see below). The particular formula-
tion of the basic resumption monad and monad transformer we use are
due to Papaspyrou (Papaspyrou, 1998), although others exist as well
(Moggi, 1990; Espinosa, 1995; Filinski, 1999).

data ResT m a = Done a | Pause (m (ResT m a))
instance (Monad m) ⇒ Monad (ResT m) where

return = Done
(Done v) >>= f = f v
(Pause r) >>= f = Pause (r >>=m λ k . returnm (k >>= f))

step :: (Monad m) ⇒ m a → ResT m a
step x = Pause (x >>=m (returnm ◦ Done))

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.14

Cheap (But Functional) Threads 15

4.2. Reactive Concurrency

We now consider a refinement to the concurrency model presented
in the Section 4.1 which allows computations to signal requests and
receive responses in a manner something like software interrupts; we
coin the term reactive resumption7 to distinguish this structure from
the previous one. The concurrency associated with the reactive resump-
tion monad resembles nothing so much as the interaction between an
operating system and processes making system calls. Before present-
ing reactive concurrency in monadic form, we take a short detour to
motivate this intuition.

Processes executing in an operating system are interactive; processes
are, in a sense, in a continual dialog with the operating system. Consider
what happens when such a process makes a system call.

1. The process sends a request signal q to the operating system for
a particular action (e.g., a process fork). Making this request may
involve blocking the process (e.g., making a request to an I/O device
would typically fall into this category) or it may not (e.g., forking).

2. The OS, in response to the request q, handles it by performing
some action(s). These actions may be privileged (e.g., manipulating
the process ready list), and a response code r will be generated to
indicate the status of the system call (e.g., its success or failure).

3. Using the information contained in the response code r, the process
continues execution.

How might we represent this dialog? Assume we have data types of
requests and responses:

data Req = Cont | 〈other requests〉
data Rsp = Ack | 〈other responses〉

Both Req and Rsp must have certain minimal structure; the continue
request, Cont , signifies that the computation wishes to continue, while
the acknowledge response, Ack , is an information-free response.

We may add the computational raw material for interactivity to
the “state + resumptions” monad (i.e., the monad defined at (∗) in
Section 4.1) as follows:

data Re a = D a | P (Req , Rsp→ (St(Re a)))

7 A reactive program (Manna and Pnueli, 1991) is one which interacts continually
with its environment and may be designed to not terminate (e.g., an operating
system). Reactive programs may be modeled with reactive resumptions, hence the
choice of name.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.15

16 William L. Harrison and Adam M. Procter

To distinguish the reactive variety of resumption monad from the basic,
we use D and P instead of “Done” and “Pause”, respectively. The
notion of concurrency provided by this monad formalizes the process
dialog example described above. A paused Re-computation has the
form P(q , r), where q is a request signal in Req and r , if provided
with a response from Rsp, is the rest of the computation. The instance
declaration for this monad is:

instance Monad Re where
return v = D v
D v >>= f = f v
P (q , r) >>= f = P (q , λ s. (r s) >>=St λ k . returnSt (k >>= f))

The reactive variety of resumption monad has been known for some
years now, having its origin in early work of Moggi (Moggi, 1990),
where reactive monads are written in categorical style as functors (Barr
and Wells, 1990). At this point, it may be helpful for some readers to
compare such notation to the Haskell monad declarations:

T A = µX . (A + (Rsp→X)) — interactive input
T A = µX . (A + (Req×X)) — interactive output
T A = µX . (A + (Req×(Rsp→X))) — interactive input/output

Here, the µ notation is used to make the recursion within a data
type declaration explicit; µX.τ refers to the least solution of the re-
cursive domain equation X = τ . The third monad (a.k.a., interactive
input/output) implements what we have called reactive concurrency.

We use a particular definition of the request and response data types
Req and Rsp which correspond to the services provided by the operating
system (more will be said about the use of these in Section 6):

type Message = Int
type PID = Int
data Req = Cont | Sleepq | Forkq Comm | Bcstq Message

| Rcvq |Vq | Pq | Prntq String
| PIDq |Killq PID

data Rsp = Ack | Rcvr Message | PIDr PID

As with basic resumptions, reactive resumption monads may also be
generalized as a monad transformer. The following monad transformer
abstracts over the request and response data types as well as over the
input monad:

data ReactT q r m a = D a | P (q , r → (m (ReactT q r m a)))

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.16

Cheap (But Functional) Threads 17

The corresponding instance declaration is as follows.

instance (Monad m) ⇒ Monad (ReactT q r m) where
return v = D v
(D v) >>= f = f v
P (q , r) >>= f = P (q , λ c . (r c) >>=m λ k . returnm (k >>= f))

Reactive resumption monads have two non-proper morphisms. The
first of these, step, is defined along the same lines as with ResT :

step :: St a → Re a
step x = P (Cont , λAck . x >>=St (returnSt ◦ D))

The definition of step shows why we require that Req and Rsp have a
particular shape including Cont and Ack , respectively; namely, there
must be at least one request/response pair for the definition of step. An-
other non-proper morphism provided by ReactT allows a computation
to raise a signal:

signal :: Req → Re Rsp
signal q = P(q , returnSt ◦ return)

Furthermore, there are certain cases where the response to a signal
is intentionally ignored, for which we use signalI :

signalI :: Req → Re ()
signalI q = P (q , λ . returnSt (returnRe ()))

4.3. Time Complexity of >>=R and >>=Re

Because the bind operations for R and Re are both O(n) in the size of
their first arguments, one can write programs that, through the careless
use of the bind, end up with quadratic (or worse) time complexity. Note,
however, the kernel avoids this entirely by relying on co-recursion in
the definition of handler.

5. What is a “thread” anyway?

Operating systems texts (for example (Deitel, 1982)) define threads
as lightweight processes8 executed in the same address space. Some
concurrent programming languages (notably CSP (Hoare, 1978) and
SR (Andrews and Olsson, 1993)) also contain a notion of threads. But

8 Throughout, we do not distinguish threads from processes.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.17

18 William L. Harrison and Adam M. Procter

type Name = String
data Prog = PL [Comm]
data Exp = Plus Exp Exp |Var Name | Lit Int |GetPID
data BoolExp = Equal Exp Exp | Leq Exp Exp | TrueExp | FalseExp

data Comm = Skip
| Assign Name Exp
| Seq Comm Comm
| If BoolExp Comm Comm
| While BoolExp Comm
| Print String Exp — prints string/value
| Psem — acquire semaphore
| Vsem — release semaphore
| Sleep — suspend execution
| Fork Comm — creates thread
| Broadcast Name — broadcasts variable
| Receive Name — receives avail. msg
| Kill Exp — terminates arg.

Figure 1. The Language of Threads. This concurrent, imperative language allows
threads to signal the operating system. Within the expression language, there is a
special signal for returning a threads process identifier.

what is an ideal thread? The fundamental building block of a thread is
the atomic action. An action is atomic when it is both non-interruptable
and terminating—the archetypal example of such an action is a single
machine instruction. A thread is, then, a (potentially infinite) sequence
of such atomic actions: (a0; a1; . . .).

To precisely define “atom” and “thread” in the monadic setting, we
begin by first summarizing the underlying monadic signatures created
thus far with monad transformers; eliding the >>= and return opera-
tions, these are:

St = StateT Sto Id

g :: St Sto

u :: (Sto→Sto)→St a

R = ResT St

g :: St Sto

u :: (Sto→Sto)→St a

step :: St a→R a

Re = ReactT Req Rsp St

g :: St Sto

u :: (Sto→Sto)→St a

step :: St a→Re a

signal :: Req→Re Rsp

Here, Req and Rsp are as defined in Section 4.2. Each of these monadic
signatures allows useful non-proper morphisms to be defined; the mor-
phisms getloc and setloc may be defined within each of the above
monadic signatures and signalI :: Req → Re () may be defined in the
rightmost.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.18

Cheap (But Functional) Threads 19

mexp :: Exp → Re Int
mexp (Lit i) = return i
mexp (Plus e1 e2) =

do v1 ← mexp e1
v2 ← mexp e2
return (v1+v2)

mexp (Var x) = step (getloc x)
mexp GetPID =

signal PIDq >>=

λ (PIDr pid). return pid

mbexp :: BoolExp → Re Bool
mbexp (Equal e1 e2) =

do v1 ← mexp e1
v2 ← mexp e2
return (v1==v2)

mbexp (Leq e1 e2) =
do v1 ← mexp e1

v2 ← mexp e2
return (v1≤v2)

mbexp TrueExp = return True
mbexp FalseExp = return False

Figure 2. Semantics for the Language of Threads: Expressions

An atomic action will have type St a. However, not all Haskell terms
of type St a may be considered atomic, as they may fail to terminate.
Consider the term of type St a defined as bomb = u (λ σ. σ) >>St bomb.
Because bomb does not terminate, it can not be considered atomic.
To guarantee termination of atomic actions, we restrict the notion of
atomic action to Haskell terms of type St a constructed from getloc,
setloc x v , >>=St , and returnSt without the use of recursion or error-
producing Haskell operations such as undefined and error . Threads are
Haskell terms of type Re a defined with similar restrictions; namely,
threads are formed from P , D , step x (for atomic x :: St a), >>=Re ,
and returnRe without undefined or error . A typical infinite thread starts
with:

signal Rcvq >>= λ (Rcvr m).
step (setloc x m) >>

step (getloc x) >>= · · ·

Note that the restricted use of the store (i.e., using only combinations of
getloc and setloc x v) guarantees the single-threadedness (in the sense
of (Flanagan and Qadeer, 2003)) of such threads.

5.1. Language of Threads

We now consider a language of threads; its monadic semantics is con-
venient for thread creation. An abstract syntax for this language is
shown in Figure 1. The language is much like that of (Papaspyrou,
2001) extended with signals; to accommodate signaling here, we must
use reactive resumptions.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.19

20 William L. Harrison and Adam M. Procter

store :: Name→Int→Re a
store loc v = step (setloc loc v)

prog :: Prog → [Re a]
prog (PL cs) = map cmd cs

cmd :: Comm → Re a
cmd Skip = return ()
cmd (Assign x e) = (mexp e) >>= store x
cmd (Seq c1 c2) = cmd c1 >> cmd c2
cmd (If b c1 c2) = mbexp b >>= λ v . if v then cmd c1 else cmd c2
cmd (While b c) = mwhile (mbexp b) (cmd c)

where
mwhile β ϕ = do v ← β

if v then ϕ >> (mwhile β ϕ) else return ()

Figure 3. Semantics for the Language of Threads: Programs & Commands (Part 1)

The programming language for threads is similar to familiar exam-
ples from the literature of concurrency such as CSP (Hoare, 1978),
Dijkstra’s guarded command language (Dijkstra, 1975), and the lan-
guage of temporal logic (Manna and Pnueli, 1991). Programs in Prog
are finite lists of commands: c1 ‖ . . . ‖cn , where ci ∈ Comm, and col-
lectively, these commands ci are executed concurrently over a shared
state. Comm includes the simple imperative language with loops, and
the semantics of this language fragment (i.e., while programs with “‖”)
is the same as one would find elsewhere (Papaspyrou, 2001; Papaspyrou,
1998). Where the language and its semantics differ from previous work
is in the inclusion of signals; commands may request some intervention
on the part of the kernel. The abstract syntax for signal commands
are in the last eight lines of the Comm grammar from Figure 1 and
allow signals for output, synchronization, suspension and forking, and
message passing.

The semantics of expressions, Exp and BoolExp, are shown in Fig-
ure 2. With the exception of GetPID expression, they are standard
monadic definitions for arithmetic and boolean expressions. The GetPID
expression requests the process identifier of the thread. First, the re-
quest is made using signal PIDq and the response to this request will
be of the form (PIDr pid); when such a response comes, the identifier
pid is returned.

Figures 3 and 4 show the semantics of Comm and Prog . Just as
the case for expressions, the While fragment of Comm has a typical
definition for an imperative language, or rather, the text of its definition
is typical. This semantics has the effect of “unrolling” the loop to create

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.20

Cheap (But Functional) Threads 21

cmd (Print m e) = (mexp e) >>= λ v . signalI (Prntq (output m v))
where

output m v = m++“ : ”++show v

cmd Sleep = signalI Sleepq

cmd (Fork c) = signalI (Forkq c)
cmd (Broadcast x) = mexp (Var x) >>= (signalI ◦ Bcstq)
cmd (Receive x) = signal Rcvq >>= λ (Rcvr m). (store x m)
cmd Psem = signalI Pq

cmd Vsem = signalI Vq

cmd (Kill e) = (mexp e) >>= λ pid . signalI (Killq pid)

Figure 4. Semantics for the Language of Threads: Commands (Part 2)

a (potentially) infinite computation in the Re monad. For example, the
meaning of the program (while (0==0) skip)—written in concrete
syntax—is equal to the following “loop unrolling”:

(cmd skip) >>Re (mexp 0==0) >>Re (cmd skip) >>Re . . .

Note that this “loop unrolling” describes an infinite computation (in
the sense of Section 4) in Re and not ⊥ (as it would if the iteration
occurred in the state monad St).

The interesting part is that of the signaling commands shown in
Figure 4. Each of these commands is defined using a call to the signal
morphism of the Re monad (or the defined morphism signalI from
Section 4.2); for example, the commands to receive a message and
acquire the semaphore are defined as:

cmd (Receive x) = signal Rcvq >>= λ (Rcvr m). (store x m)
cmd Psem = signalI Pq

To Receive a message into the program variable x , first the command
signals a receive request, expecting a response of the form (Rcvr m)
where m is the message contents. Having received the message, it is
then stored in x . To acquire the semaphore, a thread sends the signal
Pq . The response code to such a request, if it comes, is always Ack and,
for this reason, signalI is used to ignore the response code.

6. The Kernel

This section describes the structure and implementation of a kernel
providing a variety of services typical to an operating system. For the
sake of comprehensibility, we have deliberately made this kernel simple;
the goal of the present work is to demonstrate how typical operating

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.21

22 William L. Harrison and Adam M. Procter

system services may be represented using resumption monads in a
straightforward and compelling manner. It should be clear, however,
how more powerful or expressive operating system behaviors may be
captured as refinements to this system.

The structure of the kernel is given by the global system configu-
ration and two mutually recursive functions representing the scheduler
and service handler. The system configuration consists of a snapshot
of the operating system resources; these resources are a list of threads
ready to execute, a message buffer, a single semaphore, an output chan-
nel, and a counter for generating new process identifiers. The system
configuration is captured as the following Haskell type declaration:

type System = ([(PID ,Re ())], — ready list
[Message], — message buffer
Semaphore, — Int, 1 initially
String , — output channel
PID) — identifier counter

The first component is the ready list consisting of a list of pairs:
(pid , t). Here, pid is the unique process identifier of thread t . The
second component is a message buffer where messages are assumed
to be single integers and the buffer itself is a list of messages. Threads
may broadcast messages, resulting in an addition to this buffer, or
receive messages from this buffer if a message is available. There is a
single semaphore, and individual threads may acquire or release this
lock. The semaphore implementation here uses busy waiting, although
one could readily refine this system configuration to include a list of
blocked processes waiting on the semaphore. The fourth component
is an output channel (merely a String) and the fifth is a counter for
generating process identifiers.

In general, the types of a scheduler and service handler will be:

sched :: System→ R ()
handler :: System→ (PID ,Re ())→ R ()

A sched morphism takes the system configuration (which includes the
ready list), picks the next thread to be run, and calls the handler
on that thread. The sched and handler morphisms translate reactive
computations—i.e., those interacting threads typed in the Re monad
present in the ready list—into a single, interwoven scheduling typed in
the basic R monad. The range in the typings of sched and handler is
(R ()) precisely because the requested thread interactions have been
mediated by handler along the lines illustrated in Figure 5.

Figure 5 illustrates a high-level overview of the structure and op-
eration of an arbitrary resumption-monadic kernel and, in particular,

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.22

Cheap (But Functional) Threads 23

!

sched

(req
1
,t
1
)

M

(reqi ,ti)

M

(reqn,tn)

"

$
$ $

%

$
$
$

&

'

$
$ $

(

$
$
$

= handler (reqi ,ti) ; sched

(req
1
,t
1
)

M

(re) q i ,rest(ti))

M

(reqn ,tn)

"

$
$ $

%

$
$
$

&

'

$
$ $

(

$
$
$

Figure 5. Intuitive Structure and Operation of a Resumption-monadic Kernel. Fol-
lowing to its scheduling policy, scheduler sched picks thread ti to execute from
a collection of ready threads. The request handler, handler, services the selected
thread’s request, reqi and executes a slice of ti. The handler returns control to
the scheduler, throwing a new system configuration including the remainder of ti,
(req′i, rest(ti)), back to sched.

the interaction between a scheduler, sched, and the service handler,
handler. From the ready list component of the system configuration,
the scheduler chooses the next thread to be serviced and passes it,
along with the system configuration, to the service handler. The service
handler performs the requested action and throws the remainder of the
thread and the system configuration (possibly updated to reflect the
just-serviced request) back to sched. The scheduler/handler interaction
converts reactive Re computations representing threads into a single
basic R computation representing a particular schedule. This is repre-
sented pictorially in Figure 5: multiple calls to the co-recursive sched
function will weave together a single basic schedule computation from
slices of the handler-serviced reactive thread computations in the ready
list.

There are many possible choices for scheduling algorithms—and,
hence, many possible instances of sched—but for our purposes, round
robin scheduling suffices:

rr :: System → R ()
rr ([], , , ,) = Done () — stop when no threads
rr ((t : ts), q , s, o, g) = handler (ts, q , s, o, g) t

A typical call to handler has the form (handler sys (pid ,P(req , r)))
and handler will choose the appropriate response for request req . Sec-
tions 6.1– 6.6 describe the action of handler in detail.

6.1. Basic Operation

We make use of two auxiliary functions throughout. The tick function
inserts a “no-op” step onto the beginning of its argument. The ins
function inserts a thread into the ready list component of a system
configuration.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.23

24 William L. Harrison and Adam M. Procter

tick :: Monad m ⇒ ResT m a → ResT m a
tick = Pause ◦ returnm

ins :: System → PID → Re () → System
ins (w , q , s, o, g) i r = (w ++ [(i , r)], q , s, o, g)

When handler encounters a thread which has completed (i.e., the
thread is a computation of the form D), it simply calls the scheduler
with the system configuration unchanged. If the thread wishes to con-
tinue (i.e., it is of the form P(Cont , r)), then handler acknowledges the
request by passing Ack to r :

handler :: System → (PID ,Re ()) → R ()
handler sys (i ,D v) = tick (rr sys)
handler sys (i ,P(Cont , r)) = step (r Ack) >>= (rr ◦ (ins sys i))

As a result, the first atom in r is scheduled, and the rest the thread is
passed to the scheduler.

6.2. Printing

When a print request (Prntq msg) is signaled, then the string msg is
appended to the output channel o and the rest of the thread is passed
to the scheduler.

handler sys (i ,P(Prntq msg , r)) = step (r Ack) >>= nxt
where

(w , q , s, o, g) = sys
nxt r ′ = rr (w ++ [(i , r ′)], q , s, o ++ msg , g)

An alternative implementation of output could use the “interactive out-
put” monad formulation of Section 4.2 instead of encoding the output
channel as the string o.

6.3. Dynamic Scheduling

A thread may request suspension with the Sleepq signal; the handler
acknowledges the Sleepq request and reschedules the thread. The effect
of this is to delay the thread by one scheduling cycle.

handler sys (i ,P(Sleepq , r)) = step (r Ack) >>= (rr ◦ (ins sys i))

An obvious refinement of this service would include a counter field
within the Sleepq request and use this field to delay the thread through
multiple cycles.

A request to spawn a thread executing command c is handled by
the clause below. A thread for c is created by applying cmd and the

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.24

Cheap (But Functional) Threads 25

result is given a new identifier g . Then, both parent and child thread
are added back to the ready list:

handler sys (i ,P(Forkq c, r)) = step (r Ack) >>= nxt
where

(w , q , s, o, g) = sys
nxt r ′ = rr (w ++ [(i , r ′), child], q , s, o, g + 1)
child = (g , cmd c)

6.4. Asynchronous Message Passing

When a thread broadcasts a message m, it is appended to the message
queue:

handler sys (i ,P(Bcstq m, r)) = step (r Ack) >>= nxt
where

(w , q , s, o, g) = sys
nxt r ′ = rr (w ++ [(i , r ′)], q ++ [m], s, o, g)

When a Rcvq signal occurs and the message queue is empty, then
the thread waits:

handler (w , [], s, o, g) (i ,P(Rcvq , r)) = tick wait
where

wait = rr (w ++ [(i ,P(Rcvq , r))], [], s, o, g)

Note that, rather than busy-waiting for a message, the message
queue could contain a “blocked waiting list” for threads waiting for
the arrival of messages, and, in that scenario, the handler could wake
a blocked process whenever a message arrives. If there is a message m
in the message queue, then it is passed to the thread:

handler sys (i ,P(Rcvq , r)) = step (r (Rcvr m)) >>= nxt
where

(w , q , s, o, g) = sys
nxt r ′ = rr (w ++ [(i , r ′)],ms, s, o, g)
m = head q
ms = tail q

6.5. Process-level Preemption

Processes in a cooperative multitasking system only return control to
the system voluntarily. In a preemptive multitasking system (e.g., the
kernel described in this section), the system may interrupt or preempt

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.25

26 William L. Harrison and Adam M. Procter

a running process to recover control. Control over processes can also
occur at the process level as well and the current subsection describes
one such operation.

One thread may preempt another by sending it a kill signal remi-
niscent of the Unix (kill -9) command; this is implemented by the
following handler declaration that, upon receiving the signal Killq j ,
removes the thread with process identifier j from the ready list:

handler sys (i ,P(Killq j , r)) = step (r Ack) >>= nxt
where

(w , q , s, o, g) = sys
nxt r ′ = let

exit i = λ(pid , t). pid 6= i
wl ′ = filter (exit j) (w ++ [(i , r ′)])

in
rr (wl ′, q , s, o, g)

Thread j is removed from the ready list using the Haskell standard
prelude function:

filter :: (a → Bool) → [a] → [a]

In a call (filter b l), filter returns those elements of list l on which b is
true (in order of their occurrence in l).

The Killq signal is a primitive example of what is known in Con-
current Haskell as an asynchronous exception (Marlow et al., 2001).
In Concurrent Haskell, threads may interrupt one another using the
asynchronous exception operator throwTo:

throwTo :: ThreadID → Exception→ IO ()

A call (throwTo p e) sends the exception e to the thread p, not return-
ing until the exception has been raised. If the interrupted thread has
no exception handler, it enters an error state; otherwise it processes the
exception according to its handler. In one sense, this behaves much like
sending a message asynchronously, where the exception is the message
itself. While this description is admittedly high-level and imprecise, it
does suggest an approach to a resumption-monadic model for Haskell’s
asynchronous exceptions.

6.6. Synchronization Primitives

Requesting the system semaphore s will succeed if s > 0, in which case
the requesting thread will continue with the semaphore decremented;
if s 6> 0, the requesting thread will suspend. These possible outcomes

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.26

Cheap (But Functional) Threads 27

are bound to goahead and tryagain in the following handler clause,
and handler chooses between them based on the current value of s (see
below). This implementation uses busy waiting for the sake of simplic-
ity. One could easily implement more efficient strategies by including a
queue of waiting threads with the semaphore.

handler sys (i ,P(Pq , r)) = if s > 0 then
goahead

else
tryagain

where
(w , q , s, o, g) = sys
goahead = step (r Ack) >>= go
go r ′ = rr (w ++ [(i , r ′)], q , s − 1, o, g)
tryagain = tick (rr (w ++ [(i ,P(Pq , r))], q , s, o, g))

A thread may release the semaphore without blocking and this is
encoded by the following handler routine:

handler (w , q , s, o, g) (i ,P(Vq , r)) = step (r Ack) >>= nxt
where

nxt r ′ = rr (w ++ [(i , r ′)], q , s + 1, o, g)

Note that this semaphore is general rather than binary (Andrews and
Olsson, 1993), meaning that the semaphore counter mutex may have
as its value any non-negative integer rather than just 0 or 1.

7. Garbage Collection

This section presents another application of the resumption-monadic
framework developed in the preceding sections. The example is that of
adding a model for garbage collection to a definitional interpreter for a
simple λ-calculus. It follows the familiar pattern in monadic specifica-
tion set by Wadler in his now classic introduction to monads (Wadler,
1992). Wadler shows how new behaviors can be manifested in an in-
terpreter via changes to the monad underlying the interpreter. Here, a
λ-calculus interpreter written in terms of the monad of environments
is reinterpreted in a reactive resumption monad. This reinterpretation,
in turn, exposes the “breaks” in program evaluation when a memory
manager might decide to perform garbage collection. This interaction
between a program and the garbage collector illustrates a form of im-
plicit concurrency standing in contrast to the explicit concurrency of
Section 6.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.27

28 William L. Harrison and Adam M. Procter

We begin with an interpreter for a language with abstraction, ap-
plication, variables, and arithmetic. From there, we refactor the de-
sign by transferring responsibility for managing the environment to a
heap-based memory management discipline. The memory management
system is implemented as a signal handler in the sense of Section 6. It
is then a simple matter to extend the memory manager with garbage
collection.

For the sake of simplicity, we use certain algebraic data types (such
as lists) that, by their very nature, require the host language itself to
implement garbage collection. This means that the garbage collector
presented here should be viewed as an abstract model or specification,
rather than a useful implementation. If we run the garbage collecting
interpreter presented below in Haskell, the result is doubly garbage
collected—once by the explicit garbage collector implemented in the
resumption monad, and once by the implicit garbage collection of the
Haskell runtime. Previous work has demonstrated, however, that spec-
ifications of this sort can be compiled directly to efficient machine
code without incurring the double-garbage collection problem (Har-
rison et al., 2009).

7.1. The Standard Interpreter

First, the monad underlying the λ-calculus interpreter is defined, then
the definition of the domain of values is given, followed finally by the
text of the standard interpreter. The monad underlying the standard
interpreter is an environment monad (Liang et al., 1995):

data E a = E (Env → a)
type Env = [(Name,V)]

rdenv :: E Env
rdenv = E (λρ. ρ)
inenv :: Env→ E a→ E a
inenv ρ (Eϕ) = E (λd .ϕρ)

This monad has two attendant non-proper morphisms, rdenv and inenv .
The first, rdenv , is an E computation that returns the current en-
vironment, while a call to the second, inenv ρ ϕ, resets the current
environment within ϕ to ρ. The bind and unit for E are defined in
Liang et al. (1995, 1996, 1998).

The data type V , defined below, is the type of values in the in-
terpreter. The standard interpreter is given in terms of the functions
mkfun, appenv , and apply :

data V = Wrong |Num Int | Fun (V → E V)

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.28

Cheap (But Functional) Threads 29

mkfun :: Name→ E V → E V
mkfun n ϕ = rdenv >>= λρ.

return (Fun (λv. inenv ρ[n 7→v] ϕ))
appenv :: Name→ E V
appenv n = rdenv >>= lookup n

apply :: V → V → EV
apply (Fun f) v = f v

The source language Term and interpreter [[−]] are defined as follows:

data Term = Var Name — Variables

| Con Int — Constants

| Add Term Term — Addition

| Lam Name Term — Abstraction

| App Term Term — Application

[[−]] :: Term→ E V
[[Var x]] = appenv x
[[Con i]] = return (N i)
[[Add u v]] = [[u]] >>= λa. [[v]] >>= λb. add a b
[[Lam x v]] = mkfun x [[v]]
[[App t u]] = [[t]] >>= λf . [[u]] >>= λa. apply f a

7.2. Reinterpreting the Standard Interpreter in Re

We now reinterpret the interpreter with a reactive resumption monad
where operations in environments in E are replaced by signals and
a signal handler is given to service these requests. The requests and
responses data types specifying the signals are:

dataReq = MkCl Name (Re V) — Make closure

| Ap V V — Apply

| LkUp Name — Look up name

| Cont — Continue

dataRsp = Val V — Return value

| Ack — Acknowledge

And, the new monad hierarchy is:

type R = ResT Id
type Re = ReactT Req Rsp Id

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.29

30 William L. Harrison and Adam M. Procter

All operations that deal with environments (mkfun, apply , and appenv)
are now implemented as signals to the handler. The helper functions
are then redefined in terms of the reactive operator, signal :

mkfun :: Name→ Re V→ Re V
mkfun n ϕ = signalV (MkCl n ϕ)
apply :: V→ V→ Re V
apply f v = signalV (Ap f v)
appenv :: Name→ Re V
appenv n = signalV (LkUp n)

We are using a slightly altered form of the signal operator here; it is to
be used when the response received from the handler is known to be a
value constructed with Val :

signalV :: Req → Re V
signalV q = P (q , returnK ◦ returnRe ◦ (λ (Val v). v))

The function values in V are replaced with closures, because the
memory manager presented later must inspect closures to implement
garbage collection:

data V = Wrong |Num Int | Cl Name Env (Re V)

The code for the new handler is:

handler :: Env→ Re V→ R(Re V)
handler ρ (D v) = return (D v)
handler ρ (P(Cont , r)) = stepR (r Ack)
handler ρ (P(MkCl n ϕ, r)) = stepR (r (Val (Cl n ρ ϕ)))
handler ρ (P(Ap(Cl n ρ′ ϕ) v, r))

= go (ρ′[n 7→v]) ϕ >>= stepR ◦ r ◦Val
handler ρ (P(Ap v , r)) = stepR (r (Val Wrong))
handler ρ (P(LkUp n, r)) = stepR (r (Val (lookup n ρ)))

The helper function loop iterates a handler h over its second argu-
ment. There is a clear analogy between resumption computations and
list or streams; loop may be viewed as a resumption-monadic analogue
of the map function on lists.

loop :: (Re V→ R(Re V))→ Re V→ R V
loop h (D v) = Done v
loop h ϕ = (h ϕ) >>= loop h

Finally, the function go is the top-level function which supplies the
initial environment to the handler.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.30

Cheap (But Functional) Threads 31

go :: Env→ Re V→ R V
go = loop ◦ handler

Placing environments under the control of the handler paves the way
for garbage-collected memory management. Notice that, while the text
of the interpreter function [[−]] is unchanged, the notion of computa-
tion underlying it is radically different from the environment-monad
interpreter described above.

7.3. Memory Management

We now extend the handler with a simple memory manager. Instead
of storing values for live variables directly in the environment as in the
previous interpreter, we store them in a map from locations to values;
in other words, variables are now heap allocated. We extend the monad
hierarchy:

type Env = [(Name,Loc)]
type Sto = [(Loc,V)]
type K = StateT Sto Id
type R = ResT K
type Re = ReactT Req Rsp K

The monad K , taken together with the non-proper morphisms read
and store defined below, models the memory of a Von Neumann ma-
chine. One can envision compiling read and store operations almost
directly to machine code on any standard instruction set architecture,
and more will be said about this in Section 8. The operators read and
store are implemented in Haskell as follows:

read :: Loc→ KV
read l = g >>= λs. return (lookup l s)
store :: V → Loc→ K()
store v l = u[l 7→v]

Here, g and u are the “get” and “update” state monad operations.
Two changes to handler complete the new implementation. When

the handler receives an Ap request, it stores the value at a free heap
location using storeNew , and binds a pointer to that location to n in
the closure’s environment. LkUp requests are handled by retrieving the
pointer from the environment, and following that pointer via read to
retrieve the value from the heap.

handler :: Env→ Re V→ R(Re V)
handler ρ (P(Ap(Cl n ρ′ ϕ) v, r))

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.31

32 William L. Harrison and Adam M. Procter

= stepR(storeNew v) >>= λl.
go (ρ′[n 7→l]) ϕ >>= stepR ◦ r ◦Val

handler ρ (P(LkUp n, r)) = stepR (read (lookup n ρ))
>>= stepR ◦ r ◦Val

The function storeNew is defined:

storeNew :: V→ Re Loc
storeNew v = findFreeLoc >>= λl . store v l >> return l

Here, the function findFreeLoc inspects the heap to find an unallocated
memory location; its straightforward definition is not included here.

7.4. Implementing Garbage Collection

The interpreter in Section 7.3 is equivalent to that of Section 7.2 in the
sense that they ultimately produce the same answers, but it does not
yet recover dead heap locations. This section presents an extension of
the handler with garbage collection.

When the new handler, defined below, needs to store a new value
on the heap, it first invokes the non-proper morphism gc, which imple-
ments a garbage collection strategy such as mark-and-sweep. We must
therefore supply gc not just with the current environment, but also
with all environments that are on the stack. This change is reflected in
the new type of handler , which now takes a stack argument instead of
an environment. By convention, the current environment is always at
the top of the stack. With this modification, gc may inspect all bound
variables at a point in program evaluation to distinguish live locations
from dead ones. The modified handler is given below; the only change
from the previous version is the addition of “stepR (gc (ρ′ : s)) >>”:

type Stack = [Env] qqqqqq
handler :: Stack→ ReV→ R(Re V)
handler s (P(Ap (Cl n ρ′ ϕ) v , r)) = stepR (gc (ρ′ : s)) >>

stepR (storeNew v) >>= λl.
go (ρ′[n 7→l] : s) ϕ

>>= stepR ◦ r ◦ V al

Finally, we define the garbage collection function itself. The defini-
tion uses two helper functions whose definitions are not elaborated here:
findLive :: Stack → [Loc] takes a stack of environments and returns a
list of locations accessible from environments on the stack (essentially
the “mark” in mark-and-sweep garbage collection), and freeDead is a
helper function that takes a list of live locations and updates the store
by marking as free all allocated locations not present in the live list. The

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.32

Cheap (But Functional) Threads 33

constant gcThreshold :: Int defines the minimum heap size required for
a garbage collection pass to be triggered.

gc :: Stack→ K ()
gc stk = u (gcHelper stk)
where
gcHelper :: Stack → Sto → Sto
gcHelper sta sto = if length sto > gcThreshold then

freeDead (findLive sta) sto
else

sto

8. Future Work and Conclusions

As of this writing, resumptions as a model of concurrency have been
known for thirty years and, in monadic form, for almost twenty. Yet,
unlike other techniques and structures from language theory (e.g., con-
tinuations, type systems, etc.), resumptions have evidently never found
wide-spread acceptance in programming practice. Resumptions have
remained, until now, primarily of interest to language theorists. This
is a shame, because resumptions—especially in monadic form—are a
natural and beautiful organizing principle for concurrency: they capture
exactly what one needs to write and think about concurrent programs—
and no more!

Resumption monads are both an expressive programming tool for
concurrent applications and a foundation for their subsequent veri-
fication. To demonstrate the usefulness of resumption monads as a
programming abstraction for concurrent, reactive systems, we have
presented an exemplary operating system kernel supporting a broad
range of behaviors. All of the behaviors typically provided by an op-
erating system kernel may be easily and succinctly implemented using
resumption monads and one may verify the resulting programs with
straightforward equational reasoning. Simplicity was a necessary de-
sign goal for the kernel as it is meant to show both the wide scope
of concurrent behaviors expressible with resumption monads and the
ease with which such behaviors may be expressed. To be sure, more
efficient implementations and realistic features may be devised (e.g., the
semaphore implementation relies on an inefficient busy-waiting strategy
and the message broadcast is too simple to be of practical use). The
kernel is not intended to be useful in and of itself, but rather to provide
a starting point from which efficient concurrent applications may be
designed, implemented, and verified.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.33

34 William L. Harrison and Adam M. Procter

The framework for reactive concurrency developed here has been
applied to such seemingly diverse purposes as language-based security
(Harrison and Hook, 2009) and bioinformatics (Harrison and Harrison,
2004); each of these applications is an instance of this framework. The
main difference lies in the request and response data types Req and Rsp.
Consider the subject of (Harrison and Harrison, 2004), which is the
formal modeling of the life cycles of autonomous, intercommunicating
cellular systems using domain-specific programming languages. Each
cell has some collection of possible actions describing its behavior with
respect to itself and its environment. The actions of the photosynthetic
bacterium Rhodobacter sphaeroides are reflected in the request and
response types:

data Req = Cont |Divide |Die | Sleep |Grow | LightConcentration
data Rsp = Ack | LightConcRsp Float

Each cell may undergo physiological change (e.g., cell division) or react
to its immediate environment (e.g., to the concentration of light in
its immediate vicinity). The kernel instance here also maintains the
physical integrity of the model.

Instances of this kernel, being written in terms of the signature of
a layered monad, inherit the software engineering benefits from monad
transformers that one would expect—namely, modularity, extensibil-
ity, and reusability. Such kernel instances may be extended by either
application of additional monad transformers or through refinements
to the resumption monad transformers themselves. Such refinements
are typically straightforward; to add a new service to the kernel of
Section 6, for example, one merely extends the Req and Rsp types
with a new request and response and adds a corresponding handler
definition.

One promising application for this work is as a denotational foun-
dation for the “Awkward Squad” (Peyton Jones, 2000) as it occurs in
Haskell 98 and Concurrent Haskell/GHC: concurrency, shared state,
and exceptions. The exception mechanisms of Concurrent Haskell—
especially asynchronous exceptions (Marlow et al., 2001; Peyton Jones,
2000)—seem to fit well into the reactive concurrency paradigm (Har-
rison et al., 2008). In fact, Swierstra and Altenkirch have recently
proposed an approach to the semantics of the Awkward Squad (Swier-
stra and Altenkirch, 2007) that models IO with reactive resumption
monads (although the reactive resumption-monadic structure of these
IO models is not explicitly identified as such in their paper).

An alternative formulation of the reactive resumption monad that
differs in the treatment of responses and requests is explored by Swier-
stra and Altenkirch (Swierstra and Altenkirch, 2007). While the pre-

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.34

Cheap (But Functional) Threads 35

sentation in Section 4.2 specifies requests and responses so that, in
principle, any response could be given to any request, Swierstra and
Altenkirch’s formulation supports a per-request notion of response. For
example, the following is the syntax of the “teletype” monad TT :

data TT a = GetChar (Char → TT a)
| PutChar Char (TT a)
| Return a

In our setting, separate requests are collected in the Req sum type and
the system calls are handled by pattern matches (e.g., P(PutChar c, k)).
Swierstra and Altenkirch’s formulation, in effect, merges the pause “P”
with the request, “PutChar c”, in the definition of TT .

Monadic specifications can typically be rendered executable by em-
bedding them in a higher-order functional programming language like
Haskell, but alternative approaches to implementing monadic speci-
fications have been explored in the past. Filinski (1999) introduced
a general approach to translating layered monads into a λ-calculus
with first-class continuations. One motivation for finding implementa-
tion alternatives is to avoid some of the overhead that can come with
functional languages. Take, for example, the garbage collection build-
ing block presented in Section 7. As a means for relating a language
semantics to an implementation, this specification has its virtues. But,
a Haskell implementation of it will not be of much practical use because
it will be doubly garbage collected—i.e., it has the explicit garbage col-
lector from the building block as well as the Haskell run-time system’s
collector. Fortunately, kernels written in the style of Sections 6 and 7
are tail recursive and tail recursive functions can always be transformed
into loop code via tail call elimination (Muchnick, 1997).

The High Assurance Security Kernel Laboratory9 at the University
of Missouri is building compilers to translate security kernels (Harrison
and Hook, 2009) written within the resumption-monadic framework
described here directly into machine language. These kernels are built
from particular combinations of monad transformers (especially, re-
sumption monad transformers for concurrency). This monad compila-
tion strategy is not intended to be as general as Filinski’s. Rather, they
will take advantage of the restriction to concurrency monads to produce
verifiable object code with predictable space and time behavior. For
more information about monad compilation strategies, please consult
the references (Harrison et al., 2009).

Layered resumption monads can play an essential rôle in the formal
development of concurrent applications. While we have emphasized

9 HASK home page: http://hask.cs.missouri.edu.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.35

36 William L. Harrison and Adam M. Procter

resumption monads as a programming tool, it should not be forgotten
that layered monads are mathematical constructions as well; in fact,
resumption monads are a mathematical theory of concurrency with a
long pedigree. This firm foundation supports verification of programs
through the mathematics underlying the programs; in the verification
of a security kernel built with the monadic structures explicated here
(Harrison and Hook, 2009), no other formalisms (e.g., temporal logic)
were needed—powerful properties of the constructions themselves were
sufficient and effective.

Layered monads play a dual rôle as a mathematical structure and
as a programming abstraction. This duality supports both executabil-
ity and precise reasoning—as well as the software engineering bene-
fits of modularity and extensibility. Taken as a whole, this approach
constitutes what is sometimes called a formal methodology (Manna
and Pnueli, 1991) for concurrent programming; that is, a specification
language combined with a repertoire of related proof techniques.

References

Alexander, D., W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis, J. Moore, C.
Gunder, S. Nettles, and J. Smith: 1998, ‘The SwitchWare active network
architecture’. IEEE Network.

Andrews, G. R. and R. A. Olsson: 1993, The SR Programming Language: Concur-
rency in Practice. Benjamin/Cummings.

Armstrong, J., R. Virding, C. Wikström, and M. Williams: 1996, Concurrent
Programming in Erlang. Prentice-Hall, second edition.

Bakker, J. d.: 1980, Mathematical Theory of Program Correctness, International
Series in Computer Science. Prentice-Hall.

Bakker, J. d. and E. d. Vink: 1996, Control Flow Semantics, Foundations of
Computing Series. The MIT Press.

Barr, M. and C. Wells: 1990, Category Theory for Computing Science. Prentice Hall.
Biagioni, E., R. Harper, and P. Lee: 2001, ‘A Network Protocol Stack in Standard

ML’. Higher-Order and Symbolic Computation 14(4), 309–356.
Bird, R. and P. Wadler: 1988, Introduction to Functional Programming. Prentice

Hall.
Birman, K., R. Constable, M. Hayden, C. Kreitz, O. Rodeh, R. van Renesse, and W.

Vogels: 2000, ‘The Horus and Ensemble Projects: Accomplishments and Limi-
tations’. In: Proceedings of the DARPA Information Survivability Conference &
Exposition (DISCEX ’00).

Carter, D.: 1994, ‘Deterministic Concurrency’. Ph.D. thesis, Department of
Computer Science, University of Bristol.

Claessen, K.: 1999, ‘A Poor Man’s Concurrency Monad’. Journal of Functional
Programming 9(3), 313–323.

Cooper, E. C. and J. G. Morrisett: 1990, ‘Adding Threads to Standard ML’. Techni-
cal Report CMU-CS-90-186, Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.36

Cheap (But Functional) Threads 37

Cupitt, J.: 1992, ‘The Design and Implementation of an Operating System in a
Functional Language’. Ph.D. thesis, Computing Laboratory, University of Kent
at Canterbury.

Deitel, H. M.: 1982, An Introduction to Operating Systems. Addison-Wesley.
Dijkstra, E. W.: 1975, ‘Guarded commands, nondeterminacy and formal derivation

of programs’. Communications of the ACM 18(8), 453–457.
Emerson, E. A.: 1990, ‘Temporal and Modal Logics’. In: J. van Leeuwen (ed.):

Handbook of Theoretical Computer Science, Vol. B. Elsevier Science Publishers
B.V., Chapt. 16, pp. 995–1072.

Espinosa, D.: 1995, ‘Semantic Lego’. Ph.D. thesis, Columbia University.
Filinski, A.: 1994, ‘Representing monads’. In: Proceedings of the 21st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’94). pp. 446–457, ACM Press.

Filinski, A.: 1996, ‘Controlling Effects’. Ph.D. thesis, School of Computer Science,
Carnegie Mellon University.

Filinski, A.: 1999, ‘Representing layered monads’. In: Proceedings of the 26st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’99). pp. 175–188, ACM Press.

Flanagan, C. and S. Qadeer: 2003, ‘Types for atomicity’. In: Proceedings of the
2003 ACM SIGPLAN International Workshop on Types in Language Design
and Implementation (TLDI ’03). pp. 1–12, ACM Press.

Flatt, M., R. B. Findler, S. Krishnamurthi, and M. Felleisen: 1999, ‘Programming
Languages as Operating Systems (or Revenge of the Son of the Lisp Ma-
chine)’. In: Proceedings of the 4th ACM International Conference on Functional
Programming (ICFP). pp. 138–147, ACM Press.

Ganz, S. E., D. P. Friedman, and M. Wand: 1999, ‘Trampolined style’. In: Pro-
ceedings of the 4th ACM SIGPLAN International Conference on Functional
Programming. pp. 18–27, ACM Press.

Gibbons, J. and G. Hutton: 2005, ‘Proof Methods for Corecursive Programs’.
Fundamenta Informaticae Special Issue on Program Transformation 66(4),
353–366.

Harper, R., P. Lee, and F. Pfenning: 1998, ‘The Fox Project: Advanced Lan-
guage Technology for Extensible Systems’. Technical Report CMU-CS-98-107,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA. (Also
published as Fox Memorandum CMU-CS-FOX-98-02).

Harrison, W. L., G. Allwein, A. Gill, and A. Procter: 2008, ‘Asynchronous Ex-
ceptions as an Effect’. In: Proceedings of the 9th International Conference on
the Mathematics of Program Construction (MPC08), Vol. 5133 of LNCS. pp.
153–176.

Harrison, W. L. and R. W. Harrison: 2004, ‘Domain Specific Languages for Cellular
Interactions’. In: Proceedings of the 26th Annual IEEE International Conference
on Engineering in Medicine and Biology.

Harrison, W. L. and J. Hook: 2009, ‘Achieving Information Flow Security Through
Monadic Control of Effects.’. Journal of Computer Security 17(5), 599–653.

Harrison, W. L., A. Procter, J. Agron, G. Kimmel, and G. Allwein: 2009, ‘Model-
Driven Engineering from Modular Monadic Semantics: Implementation Tech-
niques Targeting Hardware and Software’. In: DSL ’09: Proceedings of the IFIP
TC 2 Working Conference on Domain-Specific Languages. Berlin, Heidelberg,
pp. 20–44, Springer-Verlag.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.37

38 William L. Harrison and Adam M. Procter

Henderson, P.: 1982, ‘Purely functional operating systems’. In: J. Darlington, P.
Henderson, and D. Turner (eds.): Functional Programming and Its Applications:
an Advanced Course. Cambridge University Press, pp. 177–191.

Hoare, C. A. R.: 1978, ‘Communicating Sequential Processes’. Communications of
the ACM 21(8), 666–677. See corrigendum (?).

Jacobs, B. and E. Poll: 2003, ‘Coalgebras and Monads in the Semantics of Java’.
Theoretical Computer Science 291(3), 329–349.

Kiselyov, O. and C. Shan: 2007, ‘Delimited Continuations in Operating Systems’.
In: B. N. Kokinov, D. C. Richardson, T. Roth-Berghofer, and L. Vieu (eds.):
CONTEXT, Vol. 4635 of Lecture Notes in Computer Science. pp. 291–302,
Springer.

Krstic, S., J. Launchbury, and D. Pavlovic: 2001, ‘Categories of Processes Enriched
in Final Coalgebras’. In: Proceedings of the 4th International Conference on
Foundations of Software Science and Computation Structures (FOSSACS). pp.
303–317, Springer-Verlag.

Launchbury, J. and S. L. Peyton Jones: 1994, ‘Lazy functional state threads’. In: Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). pp. 24–35, ACM Press.

Li, P. and S. Zdancewic: 2007, ‘Combining events and threads for scalable network
services implementation and evaluation of monadic, application-level concur-
rency primitives’. In: PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation. New York, NY,
USA, pp. 189–199, ACM Press.

Liang, S.: 1998, ‘Modular Monadic Semantics and Compilation’. Ph.D. thesis, Yale
University.

Liang, S., P. Hudak, and M. Jones: 1995, ‘Monad transformers and modular inter-
preters’. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). pp. 333–343, ACM Press.

Lin, A. C.: 1998, ‘Implementing Concurrency for an ML-based Operating System’.
Ph.D. thesis, Massachusetts Institute of Technology.

Loeckx, J., H.-D. Ehrich, and M. Wolf: 1996, Specification of Abstract Data Types.
New York, USA: Wiley & Teubner.

Manna, Z. and A. Pnueli: 1991, The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer Verlag.

Marlow, S., S. L. P. Jones, A. Moran, and J. H. Reppy: 2001, ‘Asynchronous
Exceptions in Haskell’. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). pp. 274–285.

Moggi, E.: 1990, ‘An Abstract View of Programming Languages’. Technical Report
ECS-LFCS-90-113, Department of Computer Science, Edinburgh University.

Muchnick, S. S.: 1997, Advanced compiler design and implementation. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Papaspyrou, N. S.: 1998, ‘A Formal Semantics for the C Programming Language’.
Ph.D. thesis, National Technical University of Athens, Department of Electrical
and Computer Engineering, Software Engineering Laboratory.

Papaspyrou, N. S.: 2001, ‘A Resumption Monad Transformer and its Applications
in the Semantics of Concurrency’. In: Proceedings of the 3rd Panhellenic Logic
Symposium. An expanded version is available as a technical report from the
author by request.

Papaspyrou, N. S. and D. Maćoš: 2000, ‘A Study of Evaluation Order Semantics
in Expressions with Side Effects’. Journal of Functional Programming 10(3),
227–244.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.38

Cheap (But Functional) Threads 39

Peyton Jones, S.: 2000, ‘Tackling the Awkward Squad: Monadic Input/Output,
Concurrency, Exceptions, and Foreign-language Calls in Haskell’. In: Engineering
Theories of Software Construction, Vol. III 180 of NATO Science Series. IOS
Press, pp. 47–96.

Peyton Jones, S. (ed.): 2003, Haskell 98 Language and Libraries, the Revised Report.
Cambridge University Press.

Peyton Jones, S., A. Gordon, and S. Finne: 1996, ‘Concurrent Haskell’. In: Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). pp. 295–308, ACM Press.

Peyton Jones, S. and P. Wadler: 1993, ‘Imperative Functional Programming’. In:
Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). pp. 71–84, ACM Press.

Plasmeijer, R. and M. van Eekelen: 1998, ‘The Concurrent Clean Language Re-
port’. Technical Report CSI-R9816, Computing Science Institute, University of
Nijmegen, Nijmegen, The Netherlands.

Plotkin, G. D.: 1976, ‘A Powerdomain Construction’. SIAM Journal of Computation
5(3), 452–487.

Pnueli, A.: 1977, ‘The temporal logic of programs’. In: Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS). pp. 46–57.

Reppy, J. H.: 1999, Concurrent programming in ML. New York, NY, USA:
Cambridge University Press.

Roscoe, W. A.: 1998, Theory and Practice of Concurrency. Prentice-Hall.
Schmidt, D. A.: 1986, Denotational Semantics: A Methodology for Language

Development. Boston: Allyn and Bacon.
Smyth, M. B.: 1978, ‘Powerdomains’. Journal of Computer and System Sciences

16(1), 23–36.
Spiliopoulou, E.: 1999, ‘Concurrent and Distributed Functional Systems’. Technical

Report CS-EXT-1999-240, University of Bristol.
Stoye, W.: 1984, ‘A New Scheme for Writing Functional Operating Systems’.

Technical Report 56, Computing Laboratory, Cambridge University.
Stoye, W.: 1986, ‘Message-based Functional Operating Systems’. Science of

Computer Programming 6(3), 291–311.
Swierstra, W. and T. Altenkirch: 2007, ‘Beauty in the beast’. In: Proceedings of the

ACM SIGPLAN Haskell Workshop (Haskell07). pp. 25–36.
Tolmach, A. and S. Antoy: 2003, ‘A Monadic Semantics for Core Curry’. In: Proceed-

ings of the 12th International Workshop on Functional and (Constraint) Logic
Programming.

Turner, D.: 1987, ‘Functional programming and communicating processes’. In: Pro-
ceedings of Parallel Architectures and Languages Europe (PARLE), Vol. 259 of
Lecture Notes in Computer Science. pp. 54–74, Springer-Verlag.

Turner, D.: 1990, ‘An Approach to Functional Operating Systems’. In: D. Turner
(ed.): Research Topics in Functional Programming. Addison-Wesley Publishing
Company, pp. 199–217.

van Weelden, A. and R. Plasmeijer: 2002, ‘Towards a Strongly Typed Functional
Operating System’. In: Proceedings of the 14th International Workshop on the
Implementation of Functional Languages (IFL), Vol. 2670 of Lecture Notes in
Computer Science. Springer-Verlag.

Wadler, P.: 1992, ‘The Essence of Functional Programming’. In: Proceedings of the
19th Symposium on Principles of Programming Languages (POPL). pp. 1–14,
ACM Press.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.39

40 William L. Harrison and Adam M. Procter

Wadler, P.: 1995, ‘Monads for functional programming’. In: Proceedings of the 1992
Marktoberdorf International Summer School on Logic of Computation, Vol. 925
of Lecture Notes in Computer Science. pp. 24–52.

Wand, M.: 1980, ‘Continuation-based multiprocessing’. In: Proceedings of the
1980 ACM Conference on LISP and Functional Programming. pp. 19–28.
Reprinted in Higher-Order and Symbolic Computation 12(3):285–299, 1999, with
a foreword (?).

Appendix

A. The Branching Kernel

This appendix presents a generalization of the kernel from Section 6 to
one with a branching notion of time (Manna and Pnueli, 1991; Pnueli,
1977). The branching kernel elaborates all possible schedulings of a set
of threads, and its realization requires little more than a tiny change
to the monad definitions. Specifically, this change is the use of the non-
determinism monad (defined below) instead of the identity monad in
the definitions of the St , R and Re monads.

Interestingly, the branching kernel illuminates the connection be-
tween the definitional interpreter presented in Section 5 and previous
applications of the resumption monad to language semantics and it
is also the foundation for a recent model of asynchronous exceptions
(Harrison et al., 2008). Papaspyrou (2001) presents a categorical se-
mantics of a language much like that of Section 5 without the signaling
commands. The monad of denotation encapsulates state and basic
concurrency—just as the R monad from previous sections—combined
with a computational theory of non-determinism based on the pow-
erdomain construction (Plotkin, 1976; Smyth, 1978). In Papaspyrou’s
semantics, the meaning of a concurrent command, c || c′, elaborates
all interleavings of the meanings of c and c′. This is precisely what
the definitional interpreter of Section 5 does when combined with the
branching kernel.

This section proceeds as follows. Section A.1 describes how non-
determinism is modeled semantically and how such models are repre-
sented in functional languages via the list monad. Section A.2 shows
how the non-determinism effect is combined with the state and concur-
rency effects. Section A.3 describes the non-deterministic scheduler.

A.1. The List Monad & Non-determinism

When a program may return multiple values, one says that it is non-
deterministic. Consider, for example, the amb operator of McCarthy

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.40

Cheap (But Functional) Threads 41

(1963). Given two arguments, it returns either one or the other; for ex-
ample, the value of 1 amb 2 is either 1 or 2. The amb operator is angelic:
in the case of the non-termination of one of its arguments, amb returns
the terminating argument. For the purposes of this exposition, however,
we ignore this technicality. In the presence of such non-determinism,
many familiar equational reasoning principles fail—one cannot even
say that 1 amb 2 = 1 amb 2. Referential transparency—that one can
substitute “equals for equals”—is destroyed by such a non-deterministic
operations. Consider, for example, the (possibly) non-equal values of
“let x = (1 amb 2) in x + x” and “(1 amb 2) + (1 amb 2)”.

Semantically, non-deterministic programs may be viewed as return-
ing sets of values rather than just one value (Bakker, 1980; Schmidt,
1986). According to this view, the meaning of (1 amb 2) is simply the
set {1, 2}. The encoding of non-determinism as sets of values may be
expressed monadically via the set monad; this monad may be expressed
in pseudo-Haskell notation as:

return x = { x } S >>= f =
⋃

(f S)

where f S = { f x | x ∈ S }. In the set monad, the meaning of (e amb e ′)
is the union of the meanings of e and e ′.

That lists are similar structures to sets is familiar to any functional
programmer; a classic exercise in introductory functional programming
courses represents sets as lists and set operations as functions on lists
(in particular, casting set union (∪) as list append (++)). Some authors
(Wadler, 1992; Wadler, 1995; Espinosa, 1995; Liang, 1998) have made
use of the “sets as lists” pun to implement non-deterministic programs
within functional programming languages via the list monad. The list
monad (written “[]” in Haskell) is defined by the instance declaration:

instance Monad [] where
return x = [x]
(x : xs) >>= f = f x ++ (xs >>= f)
[] >>= f = []

This straightforward implementation suffices for our purposes, but it
is known to contain an inaccuracy when the lists involved are infinite
(Tolmach and Antoy, 2003). Specifically, because l++k = l if the list l
is infinite, append (++) loses information that set union (∪) would not.

The non-determinism monad has a non-proper morphism, merge,
that combines a finite number of nondeterministic computations, each
producing a set of values, into a single computation returning their
union. For the set monad, it is union (∪), while with the list implemen-
tation, merge is concatenation:

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.41

42 William L. Harrison and Adam M. Procter

merge[] :: [[a]]→[a]
merge[] = concat

Note that the finiteness of the argument of merge is assumed and is
not reflected in its type.

A.2. Combining Non-determinism with Other Effects

This section considers the combination of non-determinism with the
state and resumption effects. The monads constructed in this section
are exactly the ones that would arise through the application of monad
transformers using the list monad in place of the identity monad; that
is, they are defined as:

type Stn = StateT Sto []
type Rn = ResT Stn

type Ren = ReactT Req Rsp Stn

The monads constructed here are distinguished from corresponding
earlier ones with a subscript (“n” for non-determinism). This section
constructs the above monads “by hand” with the intention of assisting
the reader.

It is enlightening to consider what the monad Stn would look like
if it were constructed “by hand” (i.e., without the application of the
state monad transformer to the list monad); the Haskell data type
declaration to do this is:

data Stn a = ST (Sto → [(a,Sto)])

A computation in Stn , when applied to a store, returns a collection
of value and output state pairs. In our setting, this collection will
always be finite, although this is obviously not expressed in the type
declaration itself. In equivalent categorical language (Moggi, 1990), this
monad would be written:

Stn A = (Pfin(A×Sto))Sto

where (−)Sto are maps from Sto into its argument and Pfin(−) is set
of finite subsets drawn from its argument.

The monad Stn has the bind, unit, update and get operations defined
by the state monad transformer (i.e., >>=, return, u, g , respectively)
as well as the lifted merge morphism, defined as:

mergeSt :: [Stn a]→Stn a
mergeSt phis = ST (λ σ.merge[] (map (λ (ST ϕ). ϕ σ) phis)

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.42

Cheap (But Functional) Threads 43

rrobin ([s,t],…)

handler ([t],…) s

rrobin ([t,s1],…)

handler ([s1],…) t

rrobin ([t1,s1],…)

…

allscheds ([s,t],…)

handler ([t],…) s

allscheds([t,s1],…)

…

handler ([s],…) t

allscheds([s,t1],…)

… … …

Figure 6. Round-robin Schedulings (left): Reflects the call graph between the rr
scheduler and the handler routine. Finite-branching Scheduler (right): Reflects the
call graph between the allscheds scheduler and the handler routine.

More interesting still is when ResT is applied to Stn ; this monad
can be constructed “by hand” as follows:

data Rn a = Done a | Pause (Sto → [(Rn a,Sto)])

While resumptions without non-determinism resemble streams, resump-
tions with non-determinism resemble trees in the following sense. Given
an input store, a Paused computation returns a collection of resump-
tion and result store pairs, and these pairs may be viewed as the
children of the original computation. An Rn -computation of the form,
Pause(λ σ. [(r1, σ1), . . . , (rn , σn)]), may be viewed as a “root” with the
resumption computations produced by ri as its children.

The merge operation may be lifted to Rn by the following definition.

mergeR :: [Rn a]→ Rn a
mergeR ts = Pause (mergeSt (map returnStn ts))

In effect, mergeR creates a new “root node” with the arguments in ts as
its children. In Moggi’s categorical notation (Moggi, 1990), Rn would
be defined as the functor:

Rn A = µX . (Pfin((A + X)×S))S

The by-hand construction of Ren is analogous to that of Rn , so no
further comment is necessary.

A.3. Generalizing the Kernel with Non-deterministic
Scheduling

The kernel described in Section 6 chooses one scheduling out of many
possible schedulings; to change this kernel so that it elaborates all

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.43

44 William L. Harrison and Adam M. Procter

possible schedules, only a few simple and straightforward changes are
necessary. First, add the raw material for non-determinism to the sys-
tem by changing the “base monad” from Id to []; that is, define Stn ,
Rn , and Ren as described in Section A.2. The second and final step
defines a non-deterministic scheduler that picks every possible ready
thread to be run next; this is accomplished with one application of
the mergeR morphism. The resulting scheduler—called allscheds and
defined in this section—elaborates all schedules in a tree-like fashion.
For the sake of comparison, Figure 6 portrays (on the left) the actions of
the deterministic scheduler, rr , and (on the right) the non-deterministic
scheduler, allscheds.

The auxiliary function, schedulings, computes all possible scheduling
choices from a ready list. For ready list wl = [t1, . . . , tn], (schedulings wl)
computes each possible choice for the next thread to execute, where
each choice has the form (ti , [t1, . . . , ti−1, ti+1, tn]). Note that the or-
dering within the second component may not be identical to that of
the input list. The Haskell code for schedulings is:

schedulings :: [a] → [(a, [a])]
schedulings [] = []
schedulings wl = hts [] wl
where

hts front [] = []
hts front (t : ts) = (t , front++ts) : (hts (t : front) ts)

Using the mergeR operation arising from the above monad con-
structions and schedulings, it is a simple matter to define a scheduler
elaborating all possible schedules. This scheduler, allscheds, applies
handler to each scheduling choice computed by schedulings and merges
the resulting executions together as portrayed in Figure 6. The Haskell
code for allscheds is:

allscheds :: System a→ Rn a
allscheds (w , q , s, o, g) =mergeR (map dispatch scheds)

where
scheds = schedulings wl
dispatch = λ (t , ts). handler (ts, q , s, o, g) t

Note that handler has been altered to call allscheds instead of rr ,
but, other than this trivial change, it is identical to the definition in
Section 6.

hosc-cheapthreads.tex; 6/08/2015; 6:26; p.44

