
Semantics-directed Machine Architecture in ReWire

Abstract—The functional programming community has de-
veloped a number of powerful abstractions for dealing with the
full spectrum of programming models. But from the hardware
synthesis point of view, functional programming languages come
with their own costly baggage: the unrestricted use of recursion
and higher-order programming makes hardware synthesis im-
practical. This paper identifies a subset of the pure functional
language Haskell that can be compiled directly to efficient
implementations as hardware state machines, and a prototype
compiler, called ReWire, which implements this idea. We show
how ReWire lets designers leverage ideas from the functional
programming world, including monads, to tackle the complexity
of hardware design in a modular way, without compromising
efficiency.

I. INTRODUCTION

This paper introduces ReWire, a compiler for a subset
of the pure, functional language Haskell which produces
synthesizable VHDL code, suitable for use on FPGAs, for
sequential circuits. As a derivative of Haskell, ReWire inherits
Haskell’s main advantages: strong static typing, type inference,
type safety, type classes to support overloading, higher-order
functional programming abstractions such as monads, and the
absence of side effects. The combination of these features
is a powerful basis for formal verification: properties of the
system may be proved by applying simple equational reasoning
techniques to a high-level source program, and the compiler
produces efficient circuits directly from that program, meaning
there is no semantic gap between model and implementation.

Edwards [1] describes the challenges of synthesizing hard-
ware from C. There is a great profusion of hardware design
languages (HDL) that take the C language as a starting point
for hardware specification and synthesis. The most successful
of these C-based languages are, Edwards argues, only super-
ficially related to C—they may retain the surface syntax of C,
but they also extend and restrict C in essential ways.

Many of Edwards’ critiques may be summarized as fol-
lows: C and its descendants are fundamentally built on a fixed
programming model which does not conform to the essence
of sequential hardware. C’s programming model includes flat
memories, stacks, loops and recursion—the fundamental build-
ing blocks of a procedural programming model. Furthermore,
C is single-threaded with no native support for concurrency
or timing. A language for targeting hardware, by contrast,
requires more flexibility and expressiveness: notions of mem-
ory and timing may differ starkly from one design to another.
Many software mainstays (e.g., stack-based recursion) may not
be readily implemented in hardware. Memory hierarchies are
more complex in hardware than in software and, consequently,
an HDL needs more fine-grained control in the specification
of memory.

Functional languages allow program properties (e.g., cor-
rectness and security) to be verified through equational rea-
soning. This presents a tantalizing prospect for producing

verified hardware. Other features of functional programming
languages, however, do not map to hardware constructs effi-
ciently or, in some cases, at all. Sequential circuits typically
have some kind of interface with the outside world. Input-
output interactions are notoriously difficult to handle in a pure
functional language—indeed, the absence of side effects is part
of what enables the equational reasoning paradigm to begin
with. On the other hand, there are ways in which functional
languages may be too expressive for the hardware domain.
How, for example, does one compile arbitrary recursive func-
tions to logic gates?

In order to handle interactions with the outside world,
ReWire provides a construct called a reactive resumption,
originally discovered in the context of concurrency theory [3].
Reactive resumptions are a purely functional representation
of reactive systems such as sequential hardware circuits. In
ReWire, the use of recursion at runtime is restricted to guarded,
tail recursive functions that return reactive resumptions. Fur-
thermore, reactive resumptions are the only recursive structures
that are allowed at runtime. ReWire is a subset of Haskell—
i.e., any ReWire program is also a Haskell program. But,
the restrictions on recursion mean that, just as in VHDL or
Verilog, some valid Haskell constructs are not synthesizable—
if any forbidden forms of recursion are present in the program,
and those forms cannot be transformed away by the ReWire
partial evaluator (described in Section IV), then the result is
not synthesizable.

This article proceeds as follows. The remainder of this
section describes a case study in which a Xilinx PicoBlaze
is specified in ReWire. Section II is an overview of the design
of ReWire. Section III describes the structure of the ReWire
compiler. Section IV outlines how domain-specific extensions
to ReWire may be incorporated in the language using monads.
Section V talks about a simple CPU. Section VI presents
related work and Section VII concludes and describes future
work.

PicoBlaze in ReWire: The best way to learn a new
programming language is to focus on an example before
approaching the formal syntactic and semantic details. In this
section, we present a high level overview of a specification of
the Xilinx PicoBlaze embedded microcontroller [2] written in
ReWire.

Fig. 1a shows a block diagram of the PicoBlaze and
Fig. 1b presents the corresponding ReWire type declarations.
The PicoBlaze controller features 16 single byte registers, a
64 byte internal RAM, a 31 byte “stack” for call and return,
support for up to 256 input/output devices, and an ALU with
carry and zero flags. The register file type, RegFile, is declared
in ReWire as a Table W4 W8 (i.e., a mapping from W4 to
W8). Generally, for any n, the type Wn is a built-in type in
ReWire which stands for “n-bit word.” There are five flags
in PicoBlaze, which are, respectively, the zero (Z), carry (C),
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Chapter 1: Introduction

PicoBlaze Microcontroller Features
As shown in the block diagram in Figure 1-1, the PicoBlaze microcontroller supports the 
following features:

• 16 byte-wide general-purpose data registers

• 1K instructions of programmable on-chip program store, automatically loaded during 
FPGA configuration

• Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags

• 64-byte internal scratchpad RAM

• 256 input and 256 output ports for easy expansion and enhancement

• Automatic 31-location CALL/RETURN stack

• Predictable performance, always two clock cycles per instruction, up to 200 MHz or 
100 MIPS in a Virtex-II Pro FPGA

• Fast interrupt response; worst-case 5 clock cycles

• Optimized for Xilinx Spartan-3 architecture—just 96 slices and 0.5 to 1 block RAM

• Support in Spartan-6, and Virtex-6 FPGA architectures

• Assembler, instruction-set simulator support

PicoBlaze Microcontroller Functional Blocks

General-Purpose Registers 
The PicoBlaze microcontroller includes 16 byte-wide general-purpose registers, 
designated as registers s0 through sF. For better program clarity, registers can be renamed 
using an assembler directive. All register operations are completely interchangeable; no 
registers are reserved for special tasks or have priority over any other register. There is no 
dedicated accumulator; each result is computed in a specified register.

Figure 1-1: PicoBlaze Embedded Microcontroller Block Diagram
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(a) Block Diagram

type RegFile = Table W4 W8
type FlagFile = (Bit,Bit,Bit,Bit,Bit)
type Mem = Table W6 W8
data Stack = Stack { contents :: Table W5 W10,

pos :: W5 }
data Inputs = Inputs { instruction_in :: W18,

in_port_in :: W8,
interrupt_in :: Bit,
reset_in :: Bit }

data Outputs = Outputs { address_out :: W10,
port_id_out :: W8,
write_strobe_out :: Bit,
out_port_out :: W8,
read_strobe_out :: Bit,
interrupt_ack_out :: Bit }

(b) Corresponding ReWire Types

Fig. 1: Xilinx PicoBlaze Microcontroller ([2], page 8) Readily Represented in ReWire.

zero-save (Zsave), carry-save (Csave), and interrupt enable (IE)
flags. The type declaration for the flag registers is FlagFile in
Fig. 1b. The scratchpad RAM is represented as a table, Table
W6 W8.

In ReWire (as in Haskell [4]), a type synonym is a new
name for an existing type. Each of the aforementioned types
is declared as a type synonym—i.e., with the type form. The
right-hand sides of the aforementioned declarations involve
only built-in types (i.e., word, tuple and table types) and so
they are declared with type. As in Haskell, to introduce new
data types, ReWire has data declarations. The stack, input and
output types are defined with data declarations using record
syntax. Record types have the form, {x1 :: t1, · · · ,xn :: tn},
where each xi is a field name of type ti. Records are more
convenient than tuple types when there are a large number of
fields. The PicoState type, declared below, encapsulates all
components of the current state of the processor:

data PicoState
= PicoState { reg_file :: RegFile, flags :: FlagFile,

memory :: Mem, stack :: Stack,
outputs :: Outputs, inputs :: Inputs }

We can now define the PicoBlaze monad. The best way to
understand what this means is to see how it is used (we will
have more to say about it in subsequent sections).

type PicoBlaze = ReT Outputs Inputs (StT PicoState I)

The PicoBlaze monad defines a new domain-specific lan-
guage that allows us to write the program describing the
PicoBlaze processor. Rather than delving into the details of
monads, it is simpler to understand how a familiar idea is
represented with it. Below, the fetch-decode-execute loop for
PicoBlaze (called “fde”) is written in ReWire:

fde :: PicoBlaze ()
fde = do s <- getPicoState

let i = inputs s
instr = instruction_in i

ie <- getFlagIE
if reset_in i == 1

then reset_event
else if ie == 1 && interrupt_in i == 1

then interrupt_event
else decode instr

fde

The fde computation first gets the current state of the processor
with getPicoState and assigns it to s. The inputs on the input
ports are bound to i and instr is bound to the instruction
word. The current value of the interrupt enable flag is read and
assigned to ie. If the reset signal has been set (i.e., reset_in
i == 1), then the processor transitions to the reset_event

state (not shown). Otherwise, if the interrupt flag is set and an
interrupt has occurred, then the processor makes the transition
to the interrupt_event (not shown). Otherwise, the processor
decodes and executes the instruction. Finally, fde starts its loop
again.

Fig. 2 shows the ReWire code corresponding to the Pi-
coBlaze add immediate instruction. The definition of addImm

ends with two calls to tick. The tick operation delimits single
cycles. Each PicoBlaze instruction takes two cycles. In addImm,
the first cycle (i.e., the operations up to the first tick) contains
all of the instruction’s action, while the second cycle—the
second tick—does nothing but wait for a single cycle [2].

II. REWIRE CORE

Our prototype compiler is structured around a core lan-
guage, which is a subset of Haskell, called ReWire Core.
Fig. 3 illustrates the structure of a ReWire Core program
via an example near and dear to functional programmers’
hearts: the Fibonacci sequence F = (0, 1, 1, 2, 3, 5, . . . ), where
Fn = Fn−1 + Fn−2 for all n > 1. The construction of this
simple example illustrates how a mathematical structure from
concurrency theory called a reactive resumption, combined
with some standard functional programming techniques, forms
the basis of sequential circuit specifications in ReWire. Later,
in Section III, we will use the same example to demonstrate
how ReWire produces efficient implementations of reactive
resumption-based specifications as hardware state machines.

As a subset of Haskell, ReWire Core places two primary
restrictions on the form of programs. First, every program
must be defined in terms of a set of equations, which may be
mutually recursive, producing a reactive resumption. Second,
the form of recursion and the use of higher-order constructs
(functions operating on functions, or functions operating on
resumptions) is restricted. In Section IV, we demonstrate
how a source-to-source program transformation called partial
evaluation [5] can be used to enhance the expressiveness



decode :: Instruction -> CPU ()
decode "011000<x:____><k:________>" = addImm x k
...
addImm :: Register -> Register -> CPU ()
addImm sX kk = do v <- getReg sX

c <- getFlag FlagC
let (c’,v’) = (v ‘addWithCarry‘ kk) c
putFlag FlagZ (toBit $ v’ == 0)
putFlag FlagC c’
putReg sX v’
incrPC
tick
tick

Fig. 2: ReWire Code for PicoBlaze Add Immediate Instruction.

of ReWire by making conservative extensions to the core
language, which can automatically be translated back into the
core language.

Reactive Resumptions: The design of ReWire starts from
the observation that computation in sequential hardware is
clocked, meaning that it produces an output and takes an input
at each discrete tick of a clock; and that it may have memory,
in the sense that the behavior of the circuit at time t may
depend on events that have taken place before t. To represent
this sort of computation, ReWire provides a type called a
reactive resumption. The type React o i a—read “the type of
a reactive resumption computation with output type o, input
type i, returning a value of type a”—may be represented in
Haskell according to the following type declaration.
data React o i a =

D a
| P o (i -> React o i a)

In English, this means that a value of the type React o i a is
either a “done thing” (tagged with D), in which case it carries a
value of type a; or a “paused thing” (tagged with P), in which
case it carries an output of type o, and a function that takes
an input of type i and produces a new computation of type
React o i a. The recursive nature of this definition—React

o i a is defined in terms of itself—is essential. Constructing
a P-value requires both an output value and a function that
produces from an input value another resumption representing
(in informal terms) the “rest” of the computation.

Restrictions on Recursion: In the software realm, recursion
is a pervasive tool for functional programming. Recursion
in its full generality, however, is difficult to implement in
hardware, and doing so may even require features that are
actually undesirable, such as a stack or a heap. More limited
forms of recursion such as tail recursion, however, are much
more amenable to implementation in hardware. A function
is tail recursive if the last operation it performs is calling
itself. Tail recursive procedures can be transformed into loops
using tail call elimination [6]. ReWire Core restricts recursive
specifications as follows: (1) recursion is only allowed in
functions producing a result of type React; (2) only tail
recursion is allowed; (3) all recursive functions must be
productive, meaning they eventually produce a P or D; (4)
recursive functions may only have arguments of simple types
(i.e. no recursive data structures such as trees). In summary,
every ReWire Core program is a set of productive, mutually
tail recursive equations with result types in React.

1 module Fibonacci where

2 type Output = W8
3 type Input = (Bit,Bit) - - ( reset , h o l d )

4 type Re a = React Output Input a

5 start :: Re ()
6 start = P 0 (\ (r,h) ->
7 case r of
8 0 -> loop 0 1
9 1 -> start)

10 loop :: W8 -> W8 -> Re ()
11 loop cur nxt = P cur (\ (r,h) ->
12 case r of
13 0 -> case h of
14 0 -> loop nxt (cur+nxt)
15 1 -> loop cur nxt
16 1 -> start)

Fig. 3: Fibonacci Sequence in ReWire Core

Example: The machine of Fig. 3 flashes the elements of
the Fibonacci sequence in binary on the (8-bit) output line,
beginning from F0 = 0 and moving to the next element
of the sequence at each clock tick. In order to make things
slightly more interesting, we also supply two one-bit input
lines—a reset signal and a “hold” signal—to the machine. The
initial machine state, called start, sends 0 on the output line
and transitions back to start when the reset signal is active,
and otherwise to state loop with arguments of 0 for the cur

parameter and 1 for the nxt parameter. The other machine
state, called loop, takes the cur and nxt parameters supplied
by the previous state, signals cur on the output lines, and
transitions either to start (when the reset line is active), to
loop with cur and nxt values unchanged (when the reset line
is inactive and the hold line is active), or to loop with the
current value of nxt moved into the cur argument and cur+nxt

supplied for nxt (when both reset and hold are inactive).

At this point, the reader may notice that the PicoBlaze
specification of Section I uses language features that lie outside
of ReWire Core. For example, the calls to interrupt_event

and decode are not proper tail calls; furthermore, the do

notation which allows for the manipulation of mutable registers
is not part of ReWire Core. The mechanism by which these
extended language constructs are handled is detailed later in
Section IV. In the meantime, the following section outlines
how ReWire Core programs can be implemented as hardware
state machines, via a prototype compiler producing synthesiz-
able VHDL suitable for use on FPGAs.

III. GENERATING VHDL FROM REWIRE CORE

The pipeline used to generate synthesizable VHDL consists
of three phases. The first and second phases involve the
generation and simplification of code in a simple intermediate
representation called the State Machine Intermediate Language
(SMIL). Translating ReWire Core into SMIL allows us to
perform a number of optimizations that would be difficult
to implement at the source (ReWire Core) level, but without
having to implement them against VHDL in all of its com-
plexity. Once simplification is completed, the final compiler
phase produces VHDL code from simplified SMIL.



out width 8; in width 2; init out 0; init state start

state start ()
when signals[0] == ’0’, out 0, goto loop (0,1);
when signals[1] == ’1’, out 0, goto start;

state loop (cur[8], nxt[8])
when signals[0] == ’0’, out 0, goto start;
when signals[1] == ’0’, out cur, goto loop(nxt,cur+nxt);
when signals[1] == ’1’, out cur, goto loop(cur,nxt);

Fig. 4: Fibonacci: Intermediate SMIL Code

A. SMIL Generation and Simplification

SMIL is a simple compiler-intermediate language whose
programs are explicitly structured as finite state machines. In
addition to named control states, each state is accompanied
with a set of data variables (e.g. cur and nxt associated with
state loop in Fig. 4), whose values are supplied by the previous
state when a transition is made. These variables may be used to
implement registerized state. SMIL is a simply typed language;
the only types in the language are sized bit vectors. When
translating ReWire Core to SMIL, a simple correspondence
holds: those functions that are supplied as arguments to P

correspond to states in the SMIL machine.

After the initial SMIL code is generated, a few rounds
of simplification are performed, applying such standard tech-
niques as common subexpression elimination [6]. The post-
simplification SMIL code for this example is given in Figure 4.

B. VHDL Generation

The final phase of the compiler pipeline generates VHDL
from the simplified SMIL code. The VHDL generator produces
a typical two-process implementation of the state machine
(Fig. 5): one process handles the updating of the state register
at every rising clock edge, and the other process contains all
the combinational logic needed to produce the next-state value.
The only persistent signal in the resulting design is state_reg,
which contains (1) a tag indicating whether the machine is
“done” or “paused”; (2) a register for the current output
signals; (3) a tag of width dlog2(number of control states)e
indicating the current control state; and (4) space for the data
variables in the control states (here, just cur and nxt from
cs1—if more than one control state has data variables, we
only need to make enough space for the largest case). Here
our decision only to allow tail calls in the source language has
paid off; rather than implementing the data passing from state
to state as a stack, we can simply allocate a single global data
variable, and overwrite it with a new value at state transition
time.

Evaluation: Simulation and Synthesis: Having verified the
circuit’s functionality in simulation (Fig. 6), we used Xilinx’s
XST synthesis tool to implement this circuit on a Xilinx
Spartan-3E XC3S500E FPGA, speed grade -4. The maximum
clock frequency for the inferred circuit is 201.005 MHz, which
is reasonably fast for this chip. Size and timing statistics for
the resulting implementation are given in the table below. As
one might expect, the circuit uses only a tiny fraction of the
logic elements on the board.

-- Signals declared in architecture header.
signal state_reg, state_reg_initial,
state_reg_next, state_reg_next_cs0, state_reg_next_cs1

: STD_LOGIC_VECTOR(0 to 25) := (others => ’0’);

sm_process: process(sm_inputs,clock,state_reg_next) is
begin
if rising_edge(clock) then
state_reg <= state_reg_next; end if;

end process sm_process;

state_reg_initial <= machine_reset;

sm_outputs <= state_reg(1 to 8);

with state_reg(9) select state_reg_next <=
state_reg_next_cs0 when ’0’,
state_reg_next_cs1 when ’1’,
state_reg_initial when others;

state_reg_next_cs0 <=
machine_tick("00000000", "00000001")

when sm_inputs(0) = ’0’ else
machine_reset

when sm_inputs(1) = ’1’ else
state_reg_initial;

state_reg_next_ll_cs1 <=
machine_reset when sm_inputs(0) = ’1’ else
machine_tick(state_reg(10 to 17), state_reg(18 to 25))

when sm_inputs(1) = ’1’ else
machine_tick(state_reg(18 to 25),

PRIM_W8_Plus(state_reg(10 to 17),
state_reg(18 to 25)))

when sm_inputs(1) = ’0’ else
state_reg_initial;

Fig. 5: Fibonacci: Final VHDL Output

Used Available Utilization
Slices 15 4656 0.32%
Slice Flip Flops 18 9312 0.19%
4-Input LUTs 55 9312 0.59%
Bonded IOBs 11 232 4.74%
GCLKs 1 24 4.17%

IV. CONSERVATIVE EXTENSIONS TO REWIRE

The core language of Section II represents a subset of
Haskell that can easily be compiled to efficient hardware state
machines. It is easy to see, however, that for some applications
the restrictions of ReWire Core are too limiting. Consider, for
example, a design such as a CPU that has a large amount
of persistent state such as registers and flags. In ReWire
Core, one would have to “thread the state through” explicitly,
passing pre- and post-values from one state to the next. From
an abstraction point of view, we would be much better off
if we could somehow extend this core language to support
stateful programming, in essence extending the language with
constructs particular to our circuit’s intended structure. There
is a common design pattern called a monad [7] that allows us
to do exactly this.

A. Monads

Monads are the principal means by which impure pro-
gramming models (i.e., stateful, programming with exceptions,
concurrency, non-determinism, etc.) are expressed within pure
languages like Haskell. A monad is simply a type constructor,
M, combined with two operations:
return :: a -> M a
(>>=) :: M a -> (a -> M b) -> M b
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Fig. 6: Fibonacci: Waveform from the ISim Simulator

These operations must obey the “monad laws”—i.e., that >>= is
associative and return is its left and right unit. We use monads
as a means of conservatively extending ReWire Core. Memory
architectures are expressed as state monads, particularly those
created by multiple applications of the state monad transformer
discussed below.

Reactive Resumptions are Monads: One example of a
monad, as it happens, are reactive resumptions themselves. In
particular, for any output and input types o and i, React o i

is a monad, with its bind and return operations defined as:

(>>=) :: React o i a -> (a -> React o i b) -> React o i b
D v >>= f = f v
P o k >>= f = P o (\ i -> k i >>= f)

return :: a -> React o i a
return v = D v

While all monads have bind and return operations, it is
also very common to define additional operations that are
appropriate to the particular monad. For React, we define an
operation called signal which has the effect of writing a value
to the circuit’s output, waiting for the next clock tick, and
returning the input at the following clock tick.

signal :: o -> React o i i
signal o = P o (\ i -> return i)

With these building blocks—still defined completely in
terms of the primitive notion of a resumption—we can rewrite
our Fibonacci machine in a more “imperative” style as fol-
lows, using a special syntax for monads called do-notation
provided by ReWire (and Haskell). Note that here we have
also economized on code size by defining a custom helper
function resetIf that takes a bit and a resumption computation
as arguments, and performs the computation if the bit is zero,
but transitions to the reset state in other cases.

1 module Fibonacci where

2 type Output = W8
3 type Input = (Bit,Bit) - - ( rst , h o l d )

4 type Re a = React Output Input a

5 resetIf :: Bit -> Re () -> Re ()
6 resetIf rst m = case rst of
7 1 -> start
8 0 -> m

9 start :: Re ()
10 start = do (rst,hold) <- signal 0
11 resetIf rst (tick 0 1)

12 tick :: W8 -> W8 -> Re ()
13 tick cur nxt = do (rst,hold) <- signal cur
14 resetIf rst (
15 case hold of
16 1 -> tick cur nxt
17 0 -> tick nxt (cur+nxt))

Monad Transformers: Now say we wanted to add some
additional functionality—e.g., a register—to our design. It is
not obvious how to accomplish this with React as we have
described it thus far. But there is a standard tool for adding
such functionality known as monad transformers, by which
monads can be extended with new operations in a canonical
fashion [7].

Treating React as a monad lets us use monad transformers.
A particularly useful transformer is the state monad trans-
former StT, which takes an existing monad m and adds an
updateable state s to it. If m is a monad, then StT s m is a state
monad with state of type s. The definition of that state monad
transformer threads state through the existing monad. Note that
the monad operations, >>= and return, are overloaded. The
state monad transformer also adds two new operations, update
(u) and get (g), as well as the lifting operation, liftST, which
is used to redefine any existing m-operations. See the appendix
for full definitions.
u :: (s -> s) -> StT s m ()
g :: StT s m s
liftST :: m a -> StT s m a

In Section V, a fetch-decode-execute cycle is defined for
a monad with a register file state, RegF. This state is added to
React using the state monad transformer, StT RegF.

B. Partial Evaluation

Partial evaluation [5] is a source-to-source program trans-
formation that has been studied within the programming lan-
guages community since the 1980’s. It has usually been studied
in the context of functional languages. Partial evaluation might
also be called static evaluation because it transforms a source
program into a simplified version by performing as much of
the computation statically as is possible.

The canonical example of partial evaluation involves the
power function, expressed in Haskell as:
power :: Int -> Int -> Int
power 0 x = 1
power n x = x * (power (n-1) x)

Let us say that one knew the value of the first parameter was 2.
The expression power 2 could be simplified via the following
derivation:
power 2 x = x * (power (2-1) x) = x * (power 1 x)

= x * x * (power (1-1) x) = x * x * power 0 x
= x * x * 1 = x * x

It should be noted that this specialized version of power, power
2, is no longer recursive. A partial evaluator performs just
this kind of evaluation/reduction/simplification automatically.
ReWire uses a partial evaluator to rewrite non-Core constructs
to expressions in Core when possible. It is frequently possible



to do so, which substantially increases the utility of the ReWire
framework. In particular, partial evaluation is what makes our
conservative extensions conservative.

V. CASE STUDY: SIMPLE CPU

This case study concerns the description in ReWire of a
simple CPU including its instruction set and fetch-decode-
execute cycle. The ReWire code in its entirety is listed in the
Appendix. The CPU has an 8 bit address space and its register
set contains two 8 bit general purpose registers, r1 and r2, and
an 8 bit program counter, pc. It has two input ports, the first of
which is a single bit wide reset line to (re)start the CPU. The
second port is a connection to a 16 bit wide data bus. Likewise,
the CPU has two output ports connecting it to a single bit line
controlling an LED as well as to a 16 bit address line.

The remainder of this section describes the ReWire pro-
gram for the CPU in its entirety. The program is small.
Discounting comments and blank lines, it contains on the order
of 70 lines of code, roughly half of which are type signatures
for functions included only for readability’s sake. The heart
of the ReWire program for the CPU is an interpreter for its
instruction set—this interpreter is precisely the execute phase
of the fetch-decode-execute cycle.

The abstract syntax for the instruction set is:
data Instr = Branch0 W8 - - b r a n c h if r0 =0

| LoadR1 W8 - - l o a d r1 f r o m o f f s e t

| LoadR2 W8 - - l o a d r2 f r o m o f f s e t

| Add - - r1 := r1 + r2

| SetLED - - led := lsb [ r1 ]

| Invalid - - i n v a l i d i n s t r u c t i o n

The instructions include instructions to branch, load the r1 and
r2 registers, and a simple add. There is also an instruction to
assign the least significant bit of the r1 register to the LED
output port—assigning 1 (resp., 0) to the port turns on (resp.,
off) the LED. Finally, there is an Invalid instruction because
not all 16 bit words correspond to valid instructions. The effect
of executing Invalid will be to return to the reset state.

The following are types underlying the architecture:
type InpSig = (Bit, - - e x t e r n a l r e s e t l i n e

W16) - - i n p u t w o r d f r o m bus

type OutSig = (Bit, - - LED off / on

Addr) - - o u t p u t a d d r e s s to bus

type Addr = W8
type RegF = (W8,W8,W8) - - ( r1 , r2 , pc )

InpSig is the type of the input ports and OutSig is the type
of the output ports. Addresses (Addr) are 8-bits wide and the
register file (RegF) contains three registers as described above.

The CPU monad is a composition of three monad trans-
formers. The first is a reactive component (Re), encapsulating
the i/o of signals from the external environment. The second
and third components add the raw material for manipulat-
ing the register file (StT RegF) and the current signals (StT
CPUState).
type Re = React OutSig InpSig
type U = StT RegF Re
type CPU = StT CPUState U
type CPUState = OutSig

Instructions on the CPU are defined in terms of the follow-
ing operations. The operation, put rf, sets the current register

file to register file rf and get reads the current register file. The
operations putOutSig and getOutSig are similar, affecting the
output signals. These are defined in terms of the state monad
transformer operations u and g.
put :: RegF -> CPU ()
get :: CPU RegF
putOutSig :: OutSig -> CPU ()
getOutSig :: CPU OutSig

With put and get, we define commands for setting and reading
the individual RegF components; those for r1 and r2 are similar
to putPC and getPC, so we omit them.
putPC :: W16 -> CPU ()
putPC pc = get >>= \ (r1,r2,_) -> put (r1,r2,pc)
getPC :: CPU W16
getPC = get >>= \ (_,_,pc) -> return pc

With putOutSig and getOutSig, we define commands for
setting and reading the output signals. The LED is cleared
and set via putLED. Similar commands for reading from and
writing to the address bus are omitted:
putLED :: Bit -> CPU ()
putLED led = getOutSig >>= \ (_,a) -> putOutSig (led,a)

The decode phase of the fetch-decode-execute cycle is
simply a function that splits a W16 into two bytes, an opcode
byte and an operand byte (used only for branches and loads).
Due to the small size of the instruction set, there are a number
of wasted bits in this encoding.
decode :: W16 -> Instr
decode w = case split16 w of

(0x80,byt) -> Branch0 byt
(0x81,byt) -> LoadR1 byt
(0x82,byt) -> LoadR2 byt
(0x83,_) -> Add
(0x84,_) -> SetLED
(_,_) -> Invalid

split16 :: W16 -> (W8,W8)
split16 (W16 b0 b1 b2 b3 b4 b5 b6 b7

b8 b9 ba bb bc bd be bf) = (byt1,byt2)
where byt1 = W8 b0 b1 b2 b3 b4 b5 b6 b7

byt2 = W8 b8 b9 ba bb bc bd be bf

The CPU monad includes the current signals, and onSig is a
convenience function that applies a function to the input signals
and returns the result in CPU. The sigCPU function returns the
current input signals.

Below are the start and fetch states. The start state is
the initial state in the FSM computation underlying the CPU’s
operation. It sets the initial pc register and LED to 0, writes
(0,0) to the output port, and then transitions to fetch.
start :: CPU ()
start = do putPC 0

putLED 0
putOutSig (0,0)
fetch

fetch :: CPU ()
fetch = do pc <- getPC

putAddr pc
putPC (pc+1)
(r,w) <- sigCPU
resetIf r (exec (decode w))

The function resetIf is a helper function that returns the
simple CPU to the reset state if the test is false (0).

The execution phase for the simple CPU is found in Fig. 7.

The CPU described here has been synthesized for the same
target FPGA as the Fibonacci machine of Section III. The



exec :: Instr -> CPU ()
exec (Branch0 pc’) = getPC >>= \ pc -> putPC (pad pc’) >> sigCPU >>= \ (rst,_) -> resetIf rst fetch
exec i@(LoadR1 a) = putAddr (pad a) >> sigCPU >>= \ (rst,_) -> resetIf rst $ exec_2 i
exec i@(LoadR2 a) = putAddr (pad a) >> sigCPU >>= \ (rst,_) -> resetIf rst $ exec_2 i
exec Add = getR1 >>= \ r1 -> getR2 >>= \ r2 -> putR1 (r1+r2) >> sigCPU >>= \ (r,_) -> resetIf r fetch
exec SetLED = getR1 >>= \ r1 -> putLED (lsb r1) >> sigCPU >>= \ (r,_) -> resetIf r fetch
exec Invalid = start
exec_2 :: Instr -> CPU ()
exec_2 (LoadR1 _) = sigCPU >>= \ (r,w) -> putR1 (trim w) >> resetIf r fetch
exec_2 (LoadR2 _) = sigCPU >>= \ (r,w) -> putR2 (trim w) >> resetIf r fetch
lsb :: W8 -> Bit
lsb (W8 _ _ _ _ _ _ _ b7) = b7

Fig. 7: The Execution Phase of the Simple CPU.

maximum clock rate is 133.515 MHz, and the device usage is
characterized by the following table.

Used Available Utilization
Slices 115 4656 2.47%
Slice Flip Flops 48 9312 0.52%
4-Input LUTs 213 9312 2.29%
Bonded IOBs 27 232 11.64%
GCLKs 1 24 4.17%

A. Simulation in Haskell

Because ReWire is a proper subset of the Haskell program-
ming language, ReWire programs may also be executed using
the Glasgow Haskell Compiler (GHC). To simulate the sim-
ple CPU, the function call (simulate start n [] []) steps
through n steps of the cpu, recording each (InpSig,OutSig)

pair in a list. An example execution follows:
GHC> simulate start 5 [] []
[ ((0x0,0x8180),(0x0,0x0)) ,
((0x0,0xFFFF),(0x0,0x80)),
((0x0,0xFFFF),(0x0,0x80)),
((0x0,0x8400),(0x0,0x1)) ,
((0x0,0x8400),(0x1,0x1)) ]

VI. RELATED WORK

From the point of view of programming language taxon-
omy, ReWire falls into the category of functional languages,
with a strong emphasis on monadic programming. Other
approaches to synthesis grounded in declarative programming
include Raabe et al.’s “sketches” [8], and a case study in syn-
thesizing an MPEG-4 decoder from a data flow program [9].

Within the functional programming world, Lava [10], [11]
is a domain-specific language for hardware specification em-
bedded in Haskell. While the particulars of the Lava idea
vary by implementation, Lava is in essence a method to
specify circuit behavior at the level of signals, meaning it
operates on roughly the same level of abstraction as VHDL
or Verilog. ReWire, by contrast, attempts to compile a subset
of Haskell itself to hardware circuits, and relies on a somewhat
more abstract set of primitives (namely reactive resumptions).
Cλash [12] is both a compiler for a subset of Haskell to VHDL.
Like ReWire, Cλash uses Haskell itself as a source language
rather than embedding a domain-specific language in Haskell.
Cλash requires some limits be placed on kinds of algebraic
data types used as well as the basic operating types. ForSyDe
is a platform to compile models of hardware written in Haskell
to circuitry [13]. ForSyDe operates similarly to Lava in that

it uses a Haskell as a host for an embedded domain-specific
language, with circuits represented by types provided by the
ForSyDe platform.

A number of works [14], [15], [16], [17], [18] have tackled
the problem of recursion in hardware synthesis. Skliarova and
Sklyarov provide an overview of this line of work [19]. The
approach taken by ReWire is to view non-tail recursion as a
language extension, which can only be synthesized in cases
where partial evaluation manages to eliminate it or turn it into
tail recursion.

VII. CONCLUSIONS AND FUTURE WORK

Edwards [1] has commented on the difficulty of compiling
from a C like language to hardware. This has led him to
pursue Haskell as a source [20]. The case study in this
paper suggests that synthesizing sequential circuits from purely
functional languages is indeed feasible. Furthermore, the use of
higher-order functional abstractions, such as monads, greatly
speeds the construction of complex circuits, and makes their
specifications much more extensible.

One possible avenue of future work is to adapt the ReWire
compiler to enable programs that mix CPU and FPGA-based
computation. A mixed-mode compiler would take the non-
synthesizable portions of the program and compile them for
use on a CPU-based system containing an FPGA, with the
two parts of the program communicating over the PCI-E
bus. In combination with existing work [21] on coordinating
resumptions with software schedulers, this may present a
powerful framework for hybrid computing in a high level
language.

Further optimization to the generated state machines should
be possible. In particular, partial evaluation may result in
an unnecessary propagation of control states—if the same
function is inlined in two places, a duplicated control state
may result. The layout of the data-variable register may also
be a target for optimization. As it is currently implemented,
data variables are simply given space within the state register
in order from left to right as they occur in the program text.
This sometimes results in unduly complex next-state logic as
unchanged values must sometimes be moved over to make
room for new state elements at state transition time. We expect
that standard compiler techniques such as liveness analysis [6]
will be fruitful here.

Recent research has demonstrated the value of monadic
semantics to the formal specification and verification of x86-



and ARM-based systems [22], [23]. The besetting challenge
for all such formal methods research is that the systems
under consideration are formalized post facto to their con-
struction and consequently the formal methods scientist must
engage in a painstaking reconstruction of the system semantics
from informal and sometimes incomplete natural language
documents. The formal methods effort must face a difficult
dilemma. Should the systems be formalized post facto in all
their complex glory or should some simplified abstract model
be pursued instead?

With ReWire, the text of the design is verified as-is and the
compiler transforms that same design into hardware, thereby
unifying the languages of specification, design and imple-
mentation. This may alleviate the necessity of reconstructing
system semantics as they design and formal specification are
one and the same.

Recent work by the several of the authors applies effects
systems to fault isolation for kernels written in a resumption
monad-based language akin to ReWire [21]. Kernels that
type check in this system isolate faults, meaning that a fault
occuring in one kernel thread domain do not interfere with
other domains. Information flow security properties have also
been formulated as effect systems [24]. As part of an ongoing
project investigating security in the setting of many core
computers, the authors are extending and adapting their fault
isolation effect system to ReWire to enforce security prop-
erties. ReWire, being a strongly typed, functional language,
may provide a vector for adapting a range of language-based
security techniques [25] to hardware.
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APPENDIX

A. Functional Programming in Haskell

This section provides a quick primer on functional pro-
gramming in Haskell. A program in a functional language is
nothing more than a function in the ordinary mathematical
sense—that is, a mapping from inputs to outputs.

A Haskell function is written in much the same way that
one might in high school algebra; the function inc that takes
an integer and adds one to it is:
inc :: Int -> Int - - t y p e s i g n a t u r e

inc n = n + 1

The type signature for inc declares that it has type Int ->

Int. That is, inc is a function that takes an Int input to
an Int output (the double colon “::” is pronounced “has
type”). An anonymous function or λ-abstraction is a way of
defining a function without giving it a name. The λ-abstraction,
\ n -> n + 1, is literally the same function as inc except that
it is nameless.

Haskell possesses flexible and powerful means for defining
and programming with new data types. We could define a type
of security modes for a CPU with support for a security kernel:
data Mode = Hi | Lo

The new type, Mode, possesses two constructors, Hi and Lo.
The Haskell type system automatically enforces the proper use
of newly defined data types—i.e., the only way of creating a
value of type Mode is with its constructors. Any value of type
Mode will have one of the prescribed forms, Hi or Lo.

Haskell has an expression resembling C’s switch state-
ments called a “case” expression. If e :: Mode, then the
following is a case expression that checks the form of e and,
evaluates e1 (e2) if it is Hi (Lo):
case e of

Hi -> e1
Lo -> e2

Haskell is higher-order, which means that functions are
first-class values (just like Int or Char). Functional programs
can be composed using ordinary function composition. The
composition of two functions f and g, is defined in Haskell:
(f . g) x = f (g x)). Higher-order also means that partial
application of a function is also possible; inc’ below is a
perfectly legal and equivalent means of defining increment by
partial application of add:
add :: Int -> Int -> Int inc’ :: Int -> Int
add i j = j + i inc’ = add 1

Consider the following function fib which takes a non-
negative integer and returns the corresponding element of the
Fibonacci sequence (i.e., 0, 1, . . . , fi−2, fi−1, fi−2+fi−1, . . .).
This can be written as a recursive functions fib or trfib:
fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n-2) + fib (n-1)
trfib n = fibacc (0,1) n - - t a i l r e c u r s i v e

where
fibacc (a,b) 0 = a
fibacc (a,b) n = fibacc (b,a+b) (n-1)

Implementing fib as-is requires a potentially unbounded stack
while a tail recursive version does not. Many compilers would
attempt to transform fib into trfib to enable tail-call elim-
ination [6] to be performed. Tail-call elimination replaces a
recursive function with a loop. In the context of ReWire, tail-
recursion allows us put a finite upper bound on the memory
required by a function.

B. Source Code for Simple CPU
type InpSig = (Bit, - - e x t e r n a l r e s e t s i g n a l

W16) - - i n p u t w o r d f r o m a d d r e s s bus

type OutSig = (Bit, - - LED off / on

Addr) - - o u t p u t a d d r e s s to bus

type Addr = W8
type RegF = (W8,W8,W16) - - ( r1 , r2 , pc )

type Re = ReT OutSig InpSig I
type U = StT RegF Re
type CPU = StT CPUState U
type CPUState = OutSig

put :: RegF -> CPU ()
put rf = liftStT $ u (const rf)

get :: CPU RegF
get = liftStT $ g

putPC :: W16 -> CPU ()
putPC pc = get >>= \ (r1,r2,_) -> put (r1,r2,pc)

putR1 :: W8 -> CPU ()
putR1 r1 = get >>= \ (_,r2,pc) -> put (r1,r2,pc)

putR2 :: W8 -> CPU ()
putR2 r2 = get >>= \ (r1,_,pc) -> put (r1,r2,pc)

getPC :: CPU W16
getPC = get >>= \ (_,_,pc) -> return pc

getR1 :: CPU W8
getR1 = get >>= \ (r1,_,_) -> return r1

getR2 :: CPU W8
getR2 = get >>= \ (_,r2,_) -> return r2

getOutSig :: CPU OutSig
getOutSig = g

putOutSig :: OutSig -> CPU ()
putOutSig sigs = u (const sigs)

getAddr :: CPU Addr
getAddr = getOutSig >>= return . snd

putAddr :: W16 -> CPU ()
putAddr a = getOutSig >>= \ (l,_) -> putOutSig (l,a)

putLED :: Bit -> CPU ()
putLED l = getOutSig >>= \ (_,a) -> putOutSig (l,a)

- - D e c o d e d i n s t r u c t i o n s .

data Instr = Branch0 W8 - - b r a n c h to a b s o l u t e t a r g e t if r0

=0

| LoadR1 W8 - - l o a d r1 f r o m a d d r e s s

| LoadR2 W8 - - l o a d r2 f r o m a d d r e s s

| Add - - r1 := r1 + r2

| SetLED - - my led := lsb [ r1 ]

| Invalid - - i n v a l i d i n s t r u c t i o n

deriving Show

split16 :: W16 -> (W8,W8)
split16 (W16 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf

) = (byt1,byt2)
where byt1 = W8 b0 b1 b2 b3 b4 b5 b6 b7

byt2 = W8 b8 b9 ba bb bc bd be bf

decode :: W16 -> Instr
decode w = case split16 w of

(0x80,byt) -> Branch0 byt
(0x81,byt) -> LoadR1 byt
(0x82,byt) -> LoadR2 byt



(0x83,_) -> Add
(0x84,_) -> SetLED
(_,_) -> Invalid

liftRe :: Re a -> CPU a
liftRe = liftStT . liftStT

resetIf :: Bit -> CPU () -> CPU ()
resetIf 0 r = r
resetIf 1 _ = machine_reset

sigCPU :: CPU InpSig
sigCPU = onSig id

where onSig :: (InpSig -> a) -> CPU a
onSig k = getOutSig >>= \ req ->

liftRe (stepRe req (I . k))

skip = sigCPU >> return ()

start :: CPU ()
start = do putPC 0

putLED 0
putOutSig (0,0)
fetch

fetch :: CPU ()
fetch = do pc <- getPC

putAddr pc
putPC (pc+1)
(r,w) <- sigCPU
resetIf r (exec (decode w))

exec :: Instr -> CPU ()
exec (Branch0 pc’) = do pc <- getPC

putPC pc’
(r,_) <- sigCPU
resetIf r fetch

exec i@(LoadR1 a) = do putAddr a
(r,_) <- sigCPU
resetIf r (exec_2 i)

exec i@(LoadR2 a) = do putAddr a
(r,_) <- sigCPU
resetIf r (exec_2 i)

exec Add = do r1 <- getR1
r2 <- getR2
putR1 (r1+r2)
(r,_) <- sigCPU
resetIf r fetch

exec SetLED = do r1 <- getR1
putLED (lsb r1)
(r,_) <- sigCPU
resetIf r fetch

where lsb :: W8 -> Bit
lsb (W8 _ _ _ _ _ _ _ b) = b

exec Invalid = do skip
reset

trim (W16 _ _ _ _ _ _ _ _ b8 b9 ba bb bc bd be bf) = byte
where byte = W8 b8 b9 ba bb bc bd be bf

exec_2 :: Instr -> CPU ()
exec_2 (LoadR1 _) = do (r,w) <- sigCPU

putR1 (trim w) >>
resetIf r fetch

exec_2 (LoadR2 _) = do (r,w) <- sigCPU
putR2 (trim w)
resetIf r fetch

go = deST (deST machine_reset cpu0) regf0
where cpu0 = (0,0)

regf0 = (0,0,0)

- - s i m u l a t i o n c o d e for s i m p l e cpu e x a m p l e

simulate (D v) _ is os = zip os is
simulate _ 0 is os = zip os is
simulate (P q k) i is os = do

let (_,addr) = q
simulate (deId $ k (0,mem addr))

(i-1) (is ++ [q]) (os ++
[(0,mem addr)])

where mem a = fromMaybe 0 $ lookup a tbl
tbl = [(0x0000,0x8180), - - r1 := mem [0 x80 ]

(0x0001,0x8400), - - s e t l e d

(0x0002,0x8181), - - r1 := mem [0 x81 ]

(0x0003,0x8400), - - s e t l e d

(0x0004,0x8000),
(0x0080,0xFFFF),
(0x0081,0x0000)]


