
Semantics Driven Hardware Design,
Implementation, and Verification with ReWire

Adam Procter William L. Harrison
Ian Graves Michela Becchi

University of Missouri
procteram@missouri.edu
harrisonwl@missouri.edu

iangraves@mail.missouri.edu
becchim@missouri.edu

Gerard Allwein
U.S. Naval Research Laboratory

gerard.allwein@nrl.navy.mil

Abstract
There is no such thing as high assurance without high assurance
hardware. High assurance hardware is essential, because any and
all high assurance systems ultimately depend on hardware that con-
forms to, and does not undermine, critical system properties and in-
variants. And yet, high assurance hardware development is stymied
by the conceptual gap between formal methods and hardware de-
scription languages used by engineers. This paper presents ReWire,
a functional programming language providing a suitable founda-
tion for formal verification of hardware designs, and a compiler for
that language that translates high-level, semantics-driven designs
directly into working hardware. ReWire’s design and implementa-
tion are presented, along with a case study in the design of a secure
multicore processor, demonstrating both ReWire’s expressiveness
as a programming language and its power as a framework for for-
mal, high-level reasoning about hardware systems.

1. Introduction
This paper presents ReWire, a high level functional language for
designing, implementing and verifying high assurance hardware
systems. ReWire is a formally defined programming language for
expressing reactive, concurrent, and parallel computations. ReWire
is a computational λ -calculus [22] and, as such, is conducive to
formal verification [14] of, in particular, security and safety prop-
erties [15, 17]. ReWire is a subset of Haskell, where the subset
has been carefully chosen so that every ReWire program may be
compiled to working hardware implementations. In this work, we
outline the design of the ReWire language, and present a substantial
case study demonstrating that ReWire supports the rapid develop-
ment and implementation of provably secure hardware.

The philosophy driving the development of ReWire is the con-
viction that semantic archaeology is the bane of high assurance
computing. By “semantic archaeology”, we mean the process of
developing a formal specification for an existing computing arti-

Publication rights licensed to ACM. ACM acknowledges that this contribution was au-
thored or co-authored by an employee, contractor or affiliate of the United States gov-
ernment. As such, the United States Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for Government
purposes only.
LCTES’15, June 18–19, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3257-6//. . . $15.00.
http://dx.doi.org/10.1145/2670529.2754970

fact. Semantic archaeology is time-consuming and expensive, be-
cause such artifacts are rarely written with formal semantics in
mind, and, consequently, the formal methods scientist must attempt
a painstaking reconstruction of the system semantics from infor-
mal and often incomplete natural language documents (if, indeed,
such a reconstruction is even possible). ReWire aims to eliminate
the need for semantic archaeology by encouraging a “semantics-
first” design style. This is achieved by providing (1) a source lan-
guage with a clear semantic foundation, (2) a compiler that trans-
lates these source language programs directly into working imple-
mentations, and (3) a formal framework for expressing and proving
desired properties (including, but not limited to, security).

The semantics-aware design process supported by ReWire is es-
pecially valuable when semantically novel features are important,
as is increasingly the case with modern architectures. Consider, for
example, hardware-level support for the enforcement of secure in-
formation flow policies. Traditionally, information flow concerns
are handled in software by a separation kernel [28], which ensures
that the sharing of hardware resources by high- and low-security
processes does not result in unauthorized information flow. For em-
bedded systems, however, the overhead of such a software-based
solution may be cost prohibitive. Furthermore, moving this separa-
tion functionality at least partially into hardware [23, 33] can bring
great benefit with respect to reliability and verifiability; in high as-
surance applications, this fact alone may justify the expenditure of
a significant fraction of one’s transistor budget.

The technical burden of constructing and verifying a separating
processor is, however, quite substantial. Section 4 presents a case
study demonstrating that ReWire substantially lightens that burden.
Beginning with a ReWire-based implementation of a single-core
processor supporting an off-the-shelf instruction set architecture,
we will see that the extension of this design to a secure, verified
dual-core processor may be undertaken with no instrumentation or
modification of the original design, and that the proof of security is
concise and readable.

The point of departure for this work is the application of ideas
from monadic semantics (esp., monads of resumptions and state
and effect types) to the modeling and verification of concurrent
systems [15–17]. As design tools, these ideas have many virtues.
They are flexible and expressive, support formal analysis, and can
be readily simulated with any Haskell implementation. In this pa-
per we demonstrate that modular monadic semantics, previously
applied to software artifacts such as interpreters and compilers [21]
and operating system kernels [4, 15], is also useful in the realm of
hardware design. Previous work [26] presents an informal descrip-
tion of ReWire’s design in the form of a short paper. This paper

provides a substantial technical discussion of the design and imple-
mentation of ReWire not to be found in the earlier work.

In summary, the key contributions of this paper are as follows.
(1) A novel, semantics-driven, modular style of hardware specifi-
cation. We show that, in contrast with traditional design techniques
typified by mainstream hardware design languages like VHDL,
semantics-driven designs may easily be extended with new seman-
tic features without the need to rearchitect large portions of the de-
sign. (2) Techniques and tools (i.e., the ReWire compiler) for syn-
thesizing hardware circuits directly from these specifications. (3) A
semantics-guided approach to hardware verification wherein sepa-
rate semantic features may be reasoned about independently, thus
reducing the complexity of formal verification both for new designs
and for existing designs extended with new features.

The remainder of the paper proceeds as follows. The design of
the ReWire language is discussed in detail in Sec. 2. The imple-
mentation strategies taken by the ReWire compiler are presented
in Sec. 3. Sec. 4 discusses the implementation and verification of
a secure processor in ReWire. Finally, Sec. 5 presents conclusions
and outlines related and future work.

2. Design of ReWire
The approach to semantics-driven hardware design advocated here
centers on a computational λ -calculus and programming language
called ReWire, as well as the ReWire compiler which implements
this calculus. (We often refer to both the language and the com-
piler as “ReWire” for short.) As a programming language, ReWire
forms a subset of Haskell, including support for a certain class of
monads called reactive resumption monads which embody the se-
mantic essence of clocked, sequential, reactive computation. Sub-
setting Haskell has two major advantages: first, existing Haskell
programming environments and tools may be used for simulating
and testing ReWire designs in software, as ReWire designs are sim-
ply computations in a particular monad. Second, during the initial
design stage one may utilize the full range of Haskell features—
higher order functions, recursive algebraic data types, and so on—
to produce a high-level specification, then use semantics-preserving
source-to-source program transformations (either by hand or auto-
matically) to produce an implementable circuit specification in the
ReWire subset. Previous work [24] has seen the development of a
complete, formal denotational semantics of the ReWire language
independent of its embedding in Haskell, including its type system
and a complete specification of its restrictions on recursion.

The subset of Haskell embodied by ReWire has been carefully
selected to ensure synthesizability in hardware, especially on FP-
GAs. While a higher order functional language like Haskell has
a number of features that are appealing where hardware design is
concerned, it contains a number of features that are at best diffi-
cult to implement in hardware, and at worst antithetical to efficient
hardware design. We identify four main problems (Table 1) where
compiling Haskell to hardware is concerned: (1) heap allocation
and garbage collection; (2) stack allocation; (3) the existence of
undefined (diverging or “crashing”) computations; and (4) unpre-
dictable timing behavior. The challenge in designing ReWire is to
eliminate these runtime properties by placing suitable restrictions
on the semantic features of the language that cause them, while
maintaining as much of the expressiveness of Haskell as possible.

2.1 Hardware with Pure Functions and Monads
In this section we explore how to represent hardware circuits in
a functional/monadic style. Of necessity arising from space con-
straints, we assume that the reader has familiarity with Haskell,
monads, and monad transformers. Readers requiring more on this
topic may wish to refer to the references [21].

Runtime Property Culprit(s)
Heap allocation/GC HOF, RDS
Stack allocation NTR
Divergence/undefinedness GR, PMF
Unpredictable timing GR, HOF, RDS

Table 1. Undesirable runtime properties of Haskell, and their se-
mantic antecedents. Key: HOF = higher-order functions; RDS =
recursive data structures; NTR = non-tail recursion; GR = general
(non-total) recursion; PMF = pattern match failures.

Digital circuit design may be divided roughly into two broad do-
mains: combinational circuit design and sequential circuit design.
Combinational circuits consist only of unclocked logic gates that
map one or more binary input signals to one or more binary output
signals. Sequential circuits, by contrast, exhibit memory (i.e., the
mapping of inputs to outputs changes over time), and are usually
tied to a shared clock signal. At a low level, combinational circuits
may be implemented purely in terms of logic gates, and sequential
circuits may be implemented with a combination of gates and flip
flops. In a purely functional language like ReWire, however, we
will need higher level abstractions.

Combinational logic represented by pure functions For combi-
national logic, the choice of representation is straightforward: pure,
non-recursive, first-order functions operating on non-recursive
first-order data types. Pure functions, i.e., functions which do not
have any kind of side effect, are an natural model of combinational
circuitry. A binary AND gate, for example, may be expressed as
the function and in Haskell according to the defining equations:

and :: Bit -> Bit -> Bit
and 0 _ = 0
and 1 b = b

Sequential logic represented by monadic functions The picture
for sequential logic is considerably trickier. To narrow the problem
space, we will restrict our attention to circuits with only one clock
domain. This enables us to treat the problem somewhat more ab-
stractly, while still covering a very large class of realistic circuit
designs. A sequential logic circuit can be viewed as sampling a
stream of input values i0, i1, · · · of some type I at each rising (or
falling) edge of a clock signal, and producing a stream of output
values o0,o1, · · · of some type O in response. The situation is illus-
trated by the following timing diagram.

Clock

Input i0 i1 i2 i3 i4

Output o0 o1 o2 o3 o4

For our first attempt at modeling this situation in a functional
language, we might consider a simple function f : I→ O, but this
construction is clearly insufficient to represent sequential circuits
with memory, as the response of the circuit to a given input value
cannot change over time. As a second attempt, we might consider
modeling sequential circuits as functions mapping lists of I (i.e.,
input histories) to O, i.e. f : [I]→ O. As an abstract mathematical
model this does indeed suffice, but it is hard to implement directly
(will we need to store the entire input stream history in a RAM?)
and does not seem like a very nice structure to program with.

A more realistic possibility is to use a recursive type, something
like the Haskell type:

data Seql i o = Seql (o,i -> Seql i o)

A sequential circuit with inputs of type I and outputs of type O
consists of a current output value, and a function that maps an input
to a “new” sequential circuit; think of this as a continuation.

This exact structure is, in fact, a monad, but (to make a long
story short) the monad instance of this type is not very useful for
our particular needs. For ReWire, we will select a slightly different
structure, called a reactive resumption monad. Reactive resumption
monads may be defined in Haskell as follows.

newtype React i o a =
React (Either a (o,i -> React i o a))

return x = React (Left x)
React (Left x) >>= f = f x
React (Right (o,k)) >>= f =

React (Right (o,\ i -> k i >>= f))

The React monad generalizes cleanly to a monad transformer:
newtype ReactT i o m a =
ReactT (m (Either a (o,i -> ReactT i o m a)))

return x = ReactT (return (Left x))
ReactT m >>= f = ReactT (m >>= \ r ->

case r of
Left x -> deReactT (f x)
Right (o,k) -> return (Right

((o, \ i -> k i >>= f)))
where deReactT (ReactT m) = m
lift m = ReactT (m >>= return . Left)

That is, given a base monad m, a computation of type ReactT i o m a
will compute in m either a result value of type a, or an intermediate
output of type o paired with a continuation that is waiting for an
input of type i.

One useful convenience function, which we will actually take
as a primitive in ReWire, is called signal.
signal :: Monad m => o -> ReactT i o m i
signal o = ReactT (return (Right (o,return)))

This function produces a computation that signals its argument
value (type o) on the output, waits until the next input (type i) is
available, and returns that value to the caller.

In ReWire, we will use ReactT (henceforth abbreviated ReT) to
express sequential circuits. As with the pure functions we use for
combinational circuits, however, a number of restrictions must also
be imposed here to ensure compilability. This will be discussed in
more detail in Sec. 2.2.

Rounding out the menu of monads, ReWire further contains
support for the identity monad (which we will refer to as I), as well
as a state monad transformer (StT); these are equivalent Identity
and StateT in the standard Haskell monad transformer libraries.
The specific combination of reactive resumption monads and state
monads is provided to enable equational reasoning about informa-
tion flow, building on previous work that applies these techniques
to verifying information flow security [15].

As an aside, we should compare our choice of abstractions
to those made by Lava, which is almost certainly the most well-
known approach to generating hardware with Haskell. In (at least
some versions of) Lava, clock-driven sequential logic is handled
as a collection of lazy streams, i.e., infinite demand-driven lists,
whose definitions are in effect mutually recursive. If one wishes to
program at the level of interacting streams—i.e., to think in terms
of interacting signals—this will do the trick. Insofar as the goal
of ReWire is to enable monadic equational reasoning, however,
the stream-based approach does not suffice. It is not clear, for
example, how to leverage the reasoning power offered by layered
state monads in the setting of lazy streams. This style of reasoning
is essential to our approach to security, as demonstrated in Sec. 4.

2.2 Summary of Language Design
Space limitations preclude a complete, formal description of
ReWire’s syntax, type system, and semantics here; a full and formal

treatment is available in the first author’s Ph.D. dissertation [24].
Informally, however, we can define ReWire programs as follows:
a ReWire program is a single Haskell module containing (1) zero
or more data type declarations, where the data types are first or-
der (i.e., they do not have any fields of function type) and non-
recursive; (2) zero or more type synonym declarations; (3) zero
or more “pure” function definitions whose types are of the form
T1→ T2 · · · → Tn→ T where T1, · · · ,Tn,T do not contain function
arrows or ReT; (4) one or more reactive function definitions whose
types are of the form

T1→ T2 · · · → Tn→
ReT Tin Tout (StT T S

1 (StT T S
2 (· · ·(StT T S

m I) · · ·))) Tres

where T1, · · · ,Tn,T S
1 , · · ·T

S
m ,Tin,Tout,Tres do not contain function

arrows or ReT. For a program entry point, a ReWire program
must have a reactive function definition named start of type
ReT Tin Tout I Tres for some types Tin, Tout, and Tres.

Recursion is also restricted. “Pure” function definitions as de-
fined above are not allowed to be recursive at all. Reactive function
definitions are allowed to be recursive, but they must be tail re-
cursive (i.e., any recursive calls must occur at the very end of a
do-block), and all recursive calls must be guarded [12], which in
ReWire means that they must be preceded by a call to signal.

A ReWire program is not allowed to import outside packages
(including the standard Haskell prelude), but it is always assumed
that the following abstract monad operations are available.

get :: Monad m⇒ StT s m s
put :: Monad m⇒ s→ StT s m ()
signal :: Monad m⇒ o→ ReT i o m i
extrude :: Monad m⇒ ReT i o (StT s m) a

→ s→ ReT i o m (a,s)

The get and put operations are standard state monad operations.
Function signal is as defined above. As for extrude, this function
essentially allows us to supply an initial value to a state-monadic
computation; it is akin to runStT, but lifts the state monad trans-
former through ReT in the process.

Finally, ReWire programs are allowed to utilize foreign func-
tions written in an external VHDL file via an extended declara-
tion form (somewhat akin to Haskell’s foreign function interface).
The types of these functions are subject to the same restrictions as
“pure” function definitions.

Figure 1 is a complete ReWire program implementing a simple
two-function calculator; it will be used as a running example for
the discussion of compilation in Sec. 3.

3. Compiling ReWire to VHDL
The ReWire compiler produces circuit implementations from
ReWire programs by translating them to state machines imple-
mented in synthesizable VHDL. For the purpose of this discussion,
we will divide the process into three phases, illustrated in Fig. 2.
The front end (Fig. 2a) is responsible for parsing Haskell concrete
syntax and producing a ReWire abstract syntax tree. The current
implementation reuses an existing Haskell type checker [18], so
further discussion is omitted here. Phases (b) and (c) of Fig. 2 are
discussed in Secs. 3.1 and 3.2, respectively.

3.1 Code Generation
Ultimately, the goal of code generation is to produce VHDL code
implementing a two-process state machine. Such a machine essen-
tially requires a single loop, realized as a VHDL process of the
following form:

process(clk)
begin

module Calc where

data Oper = Add W8 | Sub W8 | Clr
type Calc = ReT Oper W8 (StT W8 I)

vhdl plusW8 :: W8 -> W8 -> W8
vhdl minusW8 :: W8 -> W8 -> W8

getVal :: Calc W8
getVal = lift get

putVal :: W8 -> Calc ()
putVal x = lift (put x)

loop :: Calc ()
loop = do x <- getVal

oper <- signal x
case oper of
Add y -> putVal (plusW8 x y)
Sub y -> putVal (minusW8 x y)
Clr -> putVal 0

loop

start :: Calc ((),W8)
start = extrude loop 0

Figure 1. Running example: a simple two-function calculator.

if clk’event and clk=’1’ then
loop body

end if;
end process;

where the loop body consists entirely of loop-free code. ReWire,
however, allows for nested loops (implemented via tail recursion),
and the code generation function works simply by emitting code
with goto (a construct that does not actually exist in VHDL, though
it can be eliminated in a favor of structured programming constructs
at a later pass [7]), which means that the single-loop structure we
want is not guaranteed to be present. Therefore a “loop flattening”
transformation is needed to bring the program into this form. To
ease the implementation of this and a few other minor optimiza-
tions, the code generation pass (Fig. 2b) generates programs in an
imperative intermediate language called PreHDL, whose syntax is
defined in Fig. 3. Targeting PreHDL instead of VHDL directly al-
lows us to implement the necessary code transformation passes on
a much smaller language than VHDL itself.

An example PreHDL program is given in Fig. 4, correspond-
ing to the compiler’s output for the example calculator program
of Fig. 1. The (informal) semantics of PreHDL’s basic imperative
features is standard, with the exception of the input, output, and
yield constructs. One may view input and output as special vari-
ables representing respectively the last sampled input value and the
current output value of the circuit. The informal meaning of yield is
to wait until the next clock tick, signaling the current output value
on the device output lines in the meantime.

Preliminaries Prior to code generation, the compiler emits a vari-
able declaration for each state monad layer. For example, if start
is typed in the monad ReT T T ′ (StT T ′′ (StT T ′′′ I)), two state
variables s1 and s0 will be generated, with sizes sizeof (T ′′) and
sizeof (T ′′′), resp. Each recursive reactive function is pre-assigned
a code label, as well as argument registers.

Haskell
Concrete
Syntax

Type-
Checked
ReWire

AST

PreHDL VHDL
(a) (b) (c)

Figure 2. ReWire Compilation Process.

Bit ::= 0 | 1
Int ::= (0 | · · · | 9)+
Header ::= IODecl (VarDecl ;)* FunDefn*
IODecl ::= input : Ty ; output : Ty ;
VarDecl ::= Name : Ty
Ty ::= boolean | bits [Int]
FunDefn ::= function Name (VarDecl , · · · , VarDecl) {

(VarDecl ;)* Stmt*
return Exp ;

}
| vhdl Name (Ty , · · · , Ty) : Ty;

LHS ::= Name | input
Stmt ::= LHS := Exp ; | if BExp { Stmt* } else { Stmt* }

| label Name : | goto Name ; | yield;
Exp ::= BExp | Name | Name (Exp , · · · , Exp)

| " Bit* " | Exp [Int : Int] | concat (Exp , · · · , Exp)
| output

BExp ::= BExp && BExp | BExp || BExp | ! BExp
| Exp == Exp | Name | true | false

Prog ::= Header Stmt*

Figure 3. PreHDL Syntax.

ReWire’s code generator is a function

d−e : Env→ ReWireExpr→ Reg× [PreHDLStmt]

where Env is a function mapping each ReWire variable currently
in scope to the PreHDL register that has been allocated for it. The
code generator returns both a sequence of PreHDL statements com-
puting a value, and the register (usually freshly generated) in which
the code will store the result. The type ReWireExpr represents typed
expressions, as a few of the compilation cases require type infor-
mation to resolve overloading of monadic operators. In the actual
implementation d−e is defined in terms of a monad, as it requires
support for fresh name generation, as well as some pre-computed
information about data type sizes and the temporary storage space
used for the arguments of reactive functions, but for the presenta-
tion here we will just treat these concerns informally. E.g., where a
name is required to be fresh we will note this as a side condition.

Example For reference, the PreHDL code that is produced by the
compiler for the example of Fig. 1 is presented in Fig. 4. The re-
sulting code has been cleaned up cosmetically for presentation pur-
poses. Note that variable entrypoint is introduced during the
loop flattening process discussed below; the values it may take are
in one-to-one correspondence with the yield statements occurring
in the unflattened program generated by the code generation phase.

Monadic operators ReWire’s monadic operators are simple to
compile, as illustrated in Fig. 5. The monadic return and lift
operators are essentially no-ops, and monadic “bind” expressions
are compiled exactly as one would compile let expressions. State
and resumption-monad operators are slightly more complicated.
The get and put operations are compiled in a type-directed fashion,
whereby the affected state register is determined by how many state
monad transformers are present in the monad transformer stack. A
similar scheme applies to extrude, which serves to initialize the
state monad store variables. The signal operator writes its argument
value to the output, yields until the next clock tick, and returns the
newly sampled input value.

Loop flattening The penultimate compiler pass, following Pre-
HDL generation and preceding VHDL generation, transforms a
PreHDL program which may contain yield statements at arbitrary
program points to a single infinite loop suitable for implementation
as a process in VHDL. The basic process is to convert the PreHDL
program into a control-flow graph, where yield is considered to be

input : bits[10]; output : bits[8];
s0 : bits[8];
entrypoint : bits[1];
vhdl plusW8 (bits[8], bits[8]) : bits[8];
vhdl minusW8 (bits[8], bits[8]) : bits[8];

entrypoint := "0";
label LOOP:
if (entrypoint == "0")

{ s0 := "00000000"; }
else if (entrypoint == "1") {
if ("00" == input[0:1])
{ s0 := plusW8 (s0,input[2:9]); }

else if ("01" == input[0:1])
{ s0 := minusW8 (s0,input[2:9]); }

else
{ s0 := "00000000"; }

}
output := s0; ep := "1"; yield; goto LOOP;

Figure 4. PreHDL output for the calculator example.

dreturn eeρ = deeρ⌈
do {x← e ; e′}

⌉
ρ

= 〈re′ ,Ke;Ke′〉
where 〈re,Ke〉= deeρ

〈re′ ,Ke′〉=
⌈
e′
⌉
(ρ[x 7→ re]).

dlift eeρ = deeρ
dget : (StT Tn (· · ·(StT T0 I))) Tn)eρ

= 〈r,r := sn;〉
where r is fresh.

dput e : StT Tn (· · ·(StT T0 I)) ()eρ
= 〈r,Ke; sn := re;〉

where 〈re,Ke〉= deeρ and r is fresh.⌈
extrude (e : ReT T T ′ (StT Tn (· · ·(StT T0 I))) T ′′) e′

⌉
ρ

= 〈re,Ke′; sn := re′; Ke〉
where 〈re,Ke〉= deeρ and 〈re′ ,Ke′〉=

⌈
e′
⌉

ρ .
dsignal eeρ = 〈r, Ke;

output:=re;
yield;
r := input;〉

where 〈re,Ke〉= deeρ and r is fresh.

Figure 5. Compiling monad operations to PreHDL.

a control flow instruction and thus ends a basic block. Given a state-
ment sequence of the form “s1; yield; s2”, s2 is assigned to a
separate basic block from s1, with a specially marked yield edge
inserted between them. Due to the guardedness criterion, any well-
typed ReWire program will result in a control flow graph in which
every cycle contains at least one yield edge. It is therefore possi-
ble to flatten the control flow graph, i.e., rewrite it into a semanti-
cally equivalent graph where there is only one yield edge, and that
yield edge is the only back edge in the control flow graph. This flat-
tened control flow graph is translated back into program text. The
resulting text may contain goto statements, so we run a final pass
to convert those newly introduced goto statements into a structured
program [7], resulting in a single infinite loop (possibly preceded
by some loop-free initialization code) which contains a single yield
statement at the very end. This final form is very easy to translate
into a VHDL process.

Functions, function calls, and tail calls ReWire functions of
“pure”—that is, non-monadic—codomain are simply compiled to
functions in PreHDL. For recursive reactive functions, the picture

is somewhat more complicated. Each such function is associated
with a precomputed label, as well as pre-generated registers that are
used to store the argument values (if any). A call to such a function
first stores argument values in the function’s argument registers,
then jumps to its label. This scheme suffices because only tail calls
are allowed where reactive-monadic functions are concerned, and,
therefore, no stack calling convention is needed.

Pattern matching and data types Since data types are not allowed
to be recursive, values of any given data type may be represented by
a fixed-width bit vector. Therefore case expressions are compiled to
bit vector slicing and inspection, and data constructor application to
bit vector concatenation. Suppose that data type D has n construc-
tors C1 : t1 → D, · · · ,Cn : tn → D. (Here we may assume without
loss of generality that all data constructors are uncurried.) Then the
bit vector used to represent values of type D has two parts. The first
part of the vector, the tag, carries a distinct value corresponding to
data constructor Ci. Tag values are assigned starting from zero in
increasing order, so C1 has tag 0, C2 has tag 1, and so on. The tag is
d log2 ne bits wide. The second part of the vector contains the data
value supplied with the constructor. For example, if Ci : Bit→ D,
the data field must be large enough to contain a single bit. If there
also exists a constructor C j : Bit×Bit→ D, the data field needs to
be large enough to hold two bits. The overall width of the data field,
then, is max0≤i≤n(sizeof (ti)), and the total space needed to store a
D value is the sum of the tag width and the data width.

The following table gives a concrete example, corresponding
to the Oper type of Fig. 1. Here the three constructors require
two bits of tag space, and the data field must be eight bits wide
to accommodate the W8 fields for Add and Sub.

Tag Data
b0 b1 b2 b3 · · · b8 b9

Add x 0 0 x
Sub x 0 1 x
Clr 1 0 (don’t care)
(invalid) 1 1 (don’t care)

It is worth noting two things: (1) for constructors that do not use
the entire data field, the unused portions of the data field are marked
“don’t care”, meaning that there may be more than one bit vector
representation for some values (such as Clr in this example), and
(2) if the number of data constructors is not a power of 2, there are
bit vectors of the proper size that do not represent any valid value
of the type. Point (1) is not a problem in practice, as a well-typed
ReWire program, by construction, will never inspect the unused
bits, and the code we generate will always zero out the unused bits
when producing a value (thus eliminating the hazard of information
leakage when a “long” value is only partially overwritten with a
“short” one, and the result copied to the output channel). Point
(2) is only an issue where circuit input types are concerned, as the
implementation’s behavior is undefined if fed an invalid bit string.
In practice there are two possible workarounds for this issue: (a)
require the user to write a thin wrapper (in ReWire itself or, say,
VHDL) that guards against invalid inputs; or (b) ensure that the
number of constructors for any input type (as well as the types of
all of its data fields, and of its data fields’ data fields, and so on)
is a power of 2. Option (b) can be implemented as a simple static
check; we intend to add a compiler flag to enable this check in the
next version of ReWire.

3.2 Generating VHDL from PreHDL
Once a PreHDL program has been converted to the final form
exemplified by Fig. 4, translation to VHDL is straightforward. The
loop structure of Fig. 4 is replaced with a VHDL process, but
the loop body is identical except for shallow syntactic differences.

4. Case Study: A Secure Multicore Processor
This section describes the design of a secure dual-core processor
in ReWire, complete with a formal statement and proof of a sep-
aration policy. The case study illustrates several advantages of the
ReWire design paradigm. First, the processor design is abstract and
concise: the monadic design style frees us from the complexity of
working with structural hardware primitives. Second, our design is
extensible: the dual-core version of the processor can be derived
from a single-core design in a modular fashion, without any modi-
fication or instrumentation of the original design. Third, the design
is formally verified: the power of equational reasoning, combined
with previously published results on the construction and verifica-
tion of separation kernels in monadic style, allows us to furnish a
concise and readable proof of separation. Finally, the ReWire com-
piler produces an implementation directly from a high-level specifi-
cation: modulo the application of some well-understood semantics-
preserving program transformations, the input to the compiler is
exactly the artifact we verify in our separation proof; thus there is
no semantic gap between the domains of specification, verification,
and implementation.

The instruction set architecture of the processor is borrowed
from the PicoBlaze 8-bit soft microcontroller from Xilinx [1],
specifically its kcpsm3 iteration that was designed for implemen-
tation on Spartan-3 series FPGAs. We selected PicoBlaze primar-
ily to set an ambitious baseline for speed and area comparison:
the original PicoBlaze design is constructed in terms of low-level
structural primitives that are native to the Spartan-3 architecture
(e.g., 2- and 4-input LUTs, and distributed and block RAMs), and
its logic was intensively hand-optimized by a highly experienced
Xilinx engineer. While it is to be expected that a design imple-
mented in a still-experimental high-level language will fall short of
the highly optimized original, we believe that the speed and area
tradeoff (discussed in more detail in Sec. 4.1.4) is often acceptable
in exchange for the expressive power, extensibility, and ease of
formal verification that ReWire provides.

4.1 Single-core Processor
The PicoBlaze ISA is a load/store architecture featuring sixteen 8-
bit general purpose registers, a 64-byte scratchpad RAM, and a
built-in 32-address control flow stack suitable for procedure calls
and interrupt handling [1]. Programs are generally stored in a ROM
with a 10-bit address space, and somewhat unusually, instruction
words in PicoBlaze are 18 bits wide. I/O is handled via separate
8-bit input and output buses, which are paired with an 8-bit port
selection output signal; the actual details of port selection must be
handled by a separate circuit outside the PicoBlaze itself.

Figure 6 illustrates the general structure of the ReWire-based
PicoBlaze clone. Our design assumes that the register file, the
scratchpad RAM, and the control flow stack are implemented as
distributed or block RAMs (dual-port in the case of the register file,
otherwise single-port) elsewhere on the FPGA. These memories
are connected to the ReWire-based module via VHDL port map-
ping. Input and output signals that cross the outer, dashed block
are equivalent to the external interface of the original PicoBlaze.
The other signals are connected to the VHDL-instantiated RAMs,
which (while not pictured) lie inside the dashed outer block but
outside the solid inner block. These RAMs are the only design
elements that are implemented outside of ReWire; all instruction
processing logic is handled by ReWire. The ReWire-based design
presented here diverges somewhat from the original PicoBlaze in
terms of instruction cycle timing. In the original implementation,
all instructions take precisely two instructions to execute; in the
ReWire based design, execution time varies from one to three cy-
cles, with the most commonly used instructions (e.g., arithmetic
instructions) taking two cycles.

instruc(on	 [17:0]	
in_port	 [7:0]	
reset	
interrupt	

reg_di	 [7:0]	
reg_di2	 [7:0]	

stk_di	 [9:0]	

sp_di	 [7:0]	

address	 [9:0]	
port_id	 [7:0]	
write_strobe	
out_port[7:0]	
read_strobe	

interrupt_ack	

reg_do	 [7:0]	
reg_addr	 [3:0]	
reg_addr2	 [3:0]	

reg_we	

stk_do	 [9:0]	
stk_addr	 [4:0]	

stk_we	

sp_do	 [9:0]	
sp_addr	 [4:0]	

sp_we	

to	 reg.	 file	

to	 stack	 buf.	

to	 scratch	 RAM	

to	 reg.	
file	

to	 stack	 buf.	

to	 scratch	 RAM	

Figure 6. Block diagram of the single core version of the ReWire-
based processor. The inner box is the portion implemented in
ReWire. Block and distributed RAMs for the register file, stack
buffer, and scratchpad RAM are instantiated in VHDL and con-
nected via port mapping.

The remainder of this subsection outlines the design for the
single-core processor as written in Haskell. Most of the language
features we will be using are also present in ReWire, but the in-
struction decoder will make light use of function-typed values. For
synthesis, this will require a straightforward program transforma-
tion called defunctionalization [27], which allows us to convert this
program into an equivalent first-order program.

4.1.1 The Monad
The ReWire source code for the processor design, which is avail-
able online [25], begins with preliminary type definitions. First, we
define a reactive monad for the processor called CPUM.
type CPUM = ReT Inputs Outputs (StT CPUState I)

In other words, the PicoBlaze design lives in a reactive monad
with inputs/outputs of type Inputs and Outputs, and a mutable
internal state of type CPUState. The Input and Output types are
defined as single-constructor record types, corresponding exactly
to the block diagram of Fig. 6 except for the clock signal (which is
always implicitly present in ReWire).
data Inputs = Inputs { instruction_in :: W18,
in_port_in :: W8, interrupt_in :: Bit,
reset_in :: Bit, reg_data_in :: W8,
reg_data2_in :: W8, stk_data_in :: W10,
sp_data_in :: W8 }
data Outputs = Outputs { address_out :: W10,
port_id_out :: W8, write_strobe_out :: Bit,
out_port_out :: W8, read_strobe_out :: Bit,
interrupt_ack_out :: Bit, reg_data_out :: W8,
reg_addr_out :: W4, reg_addr2_out :: W4,
reg_write_out :: Bit, stk_data_out :: W10,
stk_addr_out :: W5, stk_write_out :: Bit,
sp_data_out :: W8, sp_addr_out :: W6,
sp_write_out :: Bit }

(Here types of the form Wn refer to n-bit words.) It will sometimes
be convenient to have an output record of all zeros, which we will
refer to as out0.
out0 = Outputs { address_out = 0, port_id_out = 0, ... }

Finally, the internal state of the processor is a record containing
the program counter, the stack pointer, the zero/carry/interrupt-
enable flags, and “save” slots for the zero and carry flags (used
to temporarily save the flag values when an interrupt occurs).
data CPUState = CPUState {
pc :: W10, sp :: W5,
zFlag :: Bit, cFlag :: Bit, ieFlag :: Bit,
zSave :: Bit, cSave :: Bit }

We omit the definition of various “getter and setter” methods for
the individual state fields, as well as convenience functions incrPC
and incrSP to increment the program counter and stack pointer.

4.1.2 Instruction Decoding
The instruction decoder takes the form of a pure function decode
from instruction words of type W18 to an algebraic data type Instr,
which provides a semantically structured representation of each
instruction’s action:
data Instr =

Binop Binop Reg Rand | Branch Bit Cond W10
| Return Cond | Returni Bit
| IEnable Bit | Fetch Reg Rand
| Store Reg Rand | Input Reg Rand
| Output Reg Rand | Invalid
type Binop = W8 -> W8 -> Bit -> Bit -> (W8,Bit,Bit)
data Rand = ConstRand W8 | RegRand Reg
data Cond = NoCond | CCond | NCCond | ZCond | NZCond
type Reg = W4

The constructors respectively represent arithmetic/logical instruc-
tions such as ADD; branch instructions (possibly conditional); return
instructions (again, possibly conditional); the return-from-interrupt
instruction; the interrupt-enable instruction; fetch/store instruc-
tions; input/output instructions; and a catch-all case for any invalid
instruction words. Note that the type Binop, which represents the
particular operation being requested, has function type; specifi-
cally, an arithmetic/logical operation is represented by a function
taking two W8-typed operands and the initial value of the Z and C
flags as arguments, and returning the W8-typed result along with
the new value for Z and C. Since the definition of decode consists
entirely of routine pattern matching on bit vectors and construction
of Instrs, we shall omit it here.

4.1.3 Main Loop and Startup
The processor’s execution is structured as a loop. The argument of
type Inputs threads through the last received input value.
loop :: Inputs -> CPUM ()

The basic form of the loop is as follows:
loop i = case reset_in i of

1 -> - - ... h a n d l e r e s e t ...

0 -> do
ie <- getIEFlag
case (ie,interrupt_in i) of
(1,1) -> - - ... h a n d l e i n t e r r u p t ...

_ -> case decode (instruction_in i) of
BinopInstr ... -> - - ... h a n d l e a r i t h i n s t r ... (*)

BranchInstr ... -> - - ... h a n d l e b r a n c h i n s t r ...

...
OutputInstr ... -> - - ... h a n d l e o u t p u t i n s t r ...

InvalidInstr ... -> - - ... h a n d l e i n v a l i d i n s t r ...

where each of the elided codepaths ultimately results in a guarded
tail call back to loop.

For space reasons, we shall examine only the case of arith-
metic/logical instructions (i.e., the line marked (*) in the above
code listing). In the first clock cycle, we increment the value of the
program counter, and signal the needed register indices on the reg-
ister file address lines. Note that we assume a dual-port RAM for
the register file; we may therefore fetch both the registers rx and
ry in one clock cycle.

BinopInstr o rx rand -> do
incrPC
i <- signal (out0 { reg_addr_out = rx,

reg_addr2_out = case rand of
ConstRand _ -> 0
RegRand ry -> ry })

In the second cycle, we must first compute the result values from
the operation. After fetching the current value of the zero and carry
flags (zf and cf) and the operand values (vx and vy) from the
input lines (or from the instruction word if the vy is a constant),
we feed these values to the function o, producing a result value r
and new values zf’ and cf’ for the zero and carry flags.

zf <- getZFlag
cf <- getCFlag
let vx = reg_data_in i

vy = case rand of
ConstRand k -> k
_ -> reg_data2_in i

(r,zf’,cf’) = o vx vy zf cf

We then write back the new values of the Z and C flags.

putZFlag zf’
putCFlag cf’

Finally, we signal for the next instruction, simultaneously writing
the new value for register rx back to the register file, and tail-
recursively return to the top of the loop.

pc <- getPC
i <- signal (out0 { address_out = pc,

reg_addr_out = rx,
reg_write_out = 1,
reg_data_out = r })

loop i

Now with the loop defined, the top-level entry point is start,
which signals an “empty” output, and enters the loop.

start :: ReT Inputs Outputs I ((),CPUState)
start = do i <- signal out0

extrude (loop i)

4.1.4 Synthesis
Defunctionalization As mentioned above, the Haskell version of
the processor specification contains a handful of higher-order func-
tional constructs. This is not allowed in ReWire, so we must trans-
form the program into a first-order form before we can synthesize a
circuit. As it happens, there exists a program transformation due to
Reynolds [27] called defunctionalization that allows us to do just
this in a straightforward, mechanical way. In this example, the up-
shot of defunctionalization is that all functions of type Binop will
be replaced with values in a data type that represents all Binop
functions used in the program, and any calls to such functions are
replaced with calls to an interpretation function. This suffices to
produce a program that is compilable by ReWire.

Synthesis results To evaluate performance, both the ReWire-
based processor described here and the original PicoBlaze from
Xilinx were synthesized using the XST synthesis tool for a Xilinx
Spartan-3E XC3S500E, speed grade -4. XST was configured to
optimize for speed (as opposed to area), with normal optimization
effort. Synthesis estimates for device utilization and Fmax follow.

Slices Flip Flops 4-LUTs Fmax (MHz)
PicoBlaze 99 76 181 139.919
ReWire 451 110 866 69.956

Put another way, the ReWire-based processor is approximately
4.6 times as large as the original (as measured in slices), and is
capable of operating at about half the maximum clock speed. We
believe these performance results, within an order of magnitude of

the original, are quite promising for two reasons. First, PicoBlaze
is a very low-level design that was heavily optimized by an experi-
enced engineer employed by Xilinx. Thus it is to be expected that
any design of a high-level behavioral flavor will fall short of the
original on performance. Second, the ReWire compiler is still in a
very early development stage and does virtually no optimization of
the resulting VHDL before handing it off to XST. As work proceeds
on more aggressive optimization, we expect that the complexity of
the combinational logic emitted by ReWire will be reduced sub-
stantially. This should bring the size and performance overhead into
a range that will be quite acceptable for many users in exchange for
the high assurance capabilities of ReWire.

4.2 Secure Multi-domain Processor
We now demonstrate how the single-core processor of Sec. 4.1
may be converted into a dual-core processor with secure shared
state. In particular, we will extend the design of Sec. 4.1 essentially
by instantiating two copies of the processor core, and wrapping
them with a secure harness whose design is akin to a software-
based monadic separation kernel [15]. One of these cores will be
designated as the “high” core and the other as the “low” core,
reflecting different security levels in a lattice. We also insert a
shared 8-bit register mapped to I/O port 0xFF, which the low
core may write to and the high core may read (but not write).
Any attempt by the individual cores to access port 0xFF will be
mediated by the harness, which will ignore write requests from the
high core.

4.2.1 The Dual-Core Harness
The dual-core harness serves to “lift” the individual cores into a
layered state monad [15]. As will become clear in Sec. 4.3, the
application of multiple state monad transformers provides a useful
basis for reasoning about the separation of state domains. For the
dual-core harness we will provide three layers of state: one (of type
W8) for the shared register, one for the high core’s internal state, and
one for the low core’s internal state. We will also provide separate
input and output channels for the high and low cores, meaning that
the input and output types become pairs. Thus we arrive at the
“dual-core monad” (DCM), where the harness lives:

type DCM = ReT (Inputs,Inputs) (Outputs,Outputs) K
type K = StT W8 (StT CPUState (StT CPUState I))

The harness will operate in a tail recursive fashion, taking two
CPUM computations reflecting the execution current state of the high
and low cores respectively, and producing a computation in DCM.
(Note that the definition of harness utilizes a number of helper
functions that will be explained below.) The harness proceeds by
running each core for a single step against its respective state layer.
If either of the cores has halted execution (which never actually
happens with the cores we are considering), we halt the overall
system as well. Otherwise, the harness forwards the output signals
of the individual cores to the outside world via a signal call. When
the next input signal is obtained, the helper functions checkHiPort
and checkLoPort serve to filter requests for the shared register; if
the low core attempts to write, the request value will be written
to the shared register, and if the high core attempts to read the
shared register, the value on its input port will be overwritten with
the value of the shared register. The harness then feeds the filtered
inputs to the cores and returns (via tail recursion) to the top of the
loop.

harness :: CPUM a -> CPUM b -> DCM (Either a b)
harness lo hi = do
r_lo <- lift (liftKL (deReT lo))
r_hi <- lift (liftKH (deReT hi))
case (r_lo,r_hi) of
(Left a,_) -> return (Left a)

(_,Left b) -> return (Right b)
(Right (o,k_lo),Right (o_hi,k_hi)) -> do
(i_lo,i_hi) <- signal (o_lo,o_hi)
i_hi’ <- checkHiPort i_hi o_hi
checkLoPort o_lo
harness (k_lo i_lo) (k_hi i_hi’)

The helper functions liftKL and liftKH allow state actions of
the individual cores to be mapped onto a single state domain in the
layered monad. They are defined as follows.

liftKL :: StT CPUState I a -> K a
liftKL m = lift (lift m)

liftKH :: StT CPUState I a -> K a
liftKH m = lift (do
s <- get
let (a,s’) = runI (runStT m s)
put s’
return a)

For checkHiPort, we pattern match on the output value of the
high core; if it contains a read request for address 0xFF, we pull the
value out of the shared register and overwrite the data input for the
high core with that value. Otherwise the input is left unmodified.

checkHiPort :: Inputs -> Outputs -> DCM Inputs
checkHiPort = lift (
case (port_id_out o_hi,read_strobe_out o_hi) of
(0xFF,1) -> do

v <- get
return (i_hi { in_port_in = v })

_ -> return i_hi)

Dually, checkLoPort translates write requests from the low
core into a write on the shared register.

checkLoPort :: Outputs -> DCM ()
checkLoPort o_lo = lift (
case (port_id_out o_lo,write_strobe_out o_lo) of
(0xFF,1) -> put (out_port_out o_lo)
_ -> return ())

This completes the design of the secure dual-core processor.

4.2.2 Synthesis
The dual-core processor makes much more extensive use of higher-
order language features than the single-core. In particular, the har-
ness loop takes two monadic computations as arguments. Neverthe-
less, defunctionalization still suffices to transform this specification
into a first-order, compilable form. The fully defunctionalized ver-
sion of the processor and harness are available in the code reposi-
tory [25].

Synthesis results Synthesis estimates for device utilization and
maximum clock speed of the dual-core processor were obtained by
the same process used for the single-core processor in Sec. 4.1.4.
The following table illustrates the results; slice utilization, flip flop
utilization, LUT utilization, and Fmax are given for the dual-core
processor in the first row, with the prior results for the single-core
processor given in the second row. The third row reports the ratio
for each metric between the dual- and single-core processors.

Slices Flip Flops 4-LUTs Fmax (MHz)
2-Core 907 258 1735 67.867
1-Core 451 110 866 69.956
Ratio 2.011 2.345 2.003 0.970

The results suggest nearly ideal scaling. Slice and LUT utiliza-
tion for the dual core processor are almost exactly twice as much as
the single core processor, while flip flop utilization suffers a slight
penalty attributable to the extra state registers required for the har-
ness to track its own internal state. The timing burden imposed by
dual core support is also minimal: maximum frequency of the dual-
core processor is within 3% of the single-core processor.

4.3 Proof of Separation
To specify the security of the harness, we apply a security model
developed for modular monadic semantics called take separa-
tion [15]. With this approach, the operation of the (harness lo hi)
is compared to the operation of (harness lo skip), where skip
is a “nop” core. The basic standard of security requires that both
systems, when executed on the same finite input traces, should pro-
duce identical lo outputs. The following defines the “nop” core:

skip :: Outputs -> Inputs -> ReT Inputs Outputs K a
skip o i = ReT (return (Right (o,skip o)))

N.b., that the core (skip o i) produces a constant output and en-
tirely ignores its input.

The pull function runs a system on a finite list of dual inputs:

pull :: [Outputs] -> [(Inputs,Inputs)] ->
ReT (Inputs,Inputs) (Outputs,Outputs) K [Outputs] ->
K [Outputs]

pull os [] _ = return os
pull os (i:is) phi = next phi >>= \ (Right (o,k)) ->

pull (os ++ [fst o]) is (k i)
where next = deReT

The function call, (pull os is (harness lo hi)), executes the
two core system on input is and accumulates each lo output in
order on the first argument. N.b., that we are assuming, without
loss of generality, that the system (i.e., pull’s third argument)
never terminates (i.e., always returns a Right). When the input list
is exhausted, the accumulated lo outputs are returned.

Theorem 1 states the security specification of the harness sys-
tem. In it, the operation of (harness lo hi) is compared to that
of (harness lo (skip o0 i0)) within the context of “ . . . >>= κ0”.
The purpose of the initial continuation κ0 is to screen out any of
hi’s effects on both sides of the equation while still returning lo’s
outputs. This is analogous to the role of projecting out high level
operations in a conventional, event based security model [13]. The
full proof of Theorem 1 is available in an online supplement to this
paper [25].

Theorem 1 (Harness Security). For any appropriately typed i0,
o0, os, finite is, lo and hi,

pull os is (harness lo hi) >>= κ0
= pull os is (harness lo (skip o0 i0)) >>= κ0

where
κ0 = λos. maskH >> return os

5. Conclusions and Future Work
This paper has presented ReWire, a functional programming lan-
guage and compiler for synthesizing efficient hardware circuits
from modular, high-level, semantics-directed designs. ReWire is
both a computational λ -calculus suitable for writing formal spec-
ifications and an expressive functional language and compiler for
generating efficient hardware artifacts. The hypothesis of this work
is that this duality will position ReWire to avoid the pitfalls of se-
mantic archaeology without sacrificing performance. With ReWire,
the text of a design is verified (rather than a reconstructed model
of the design) and the compiler transforms that same design into
hardware, thereby unifying the languages of specification, design
and implementation. As the case study of Sec. 4 demonstrates, this
design paradigm brings great benefits with respect to the modular
construction and formal verification of hardware.

Related Work. Delite is a compiler framework and runtime for
parallel embedded domain-specific languages (EDSLs) that has
been retargeted to produce hardware [9]. Like Delite, ReWire is
a DSL embedded in a functional language—in our case, Haskell;

in theirs, Scala. Both ReWire and Delite are virtualized DSLs,
meaning that they reuse substantial portions from their respective
host language’s front ends. As virtualized DSLs, both Delite and
ReWire exhibit what Delite’s creators call “the three P’s” [19]:
productivity, performance and portability. But ReWire is based
in modular monadic semantics [21] applied to concurrency [16],
and so it exhibits a fourth “P”: provability. Previous work [15,
17] demonstrates the utility of monadic types and structures to
verifying security and safety properties.

Edwards [5] has commented on the difficulty of compiling
from a C like language to hardware. This has led him to pursue
Haskell as a source [6]. The use of functional abstractions, such as
monads, greatly speeds the construction of complex circuits, and
makes their specifications more extensible. Lazy pure functional
languages readily accommodate parallelism; e.g., in (e1,e2), the
subexpressions e1 and e2 may be safely evaluated in parallel due to
the absence of side effects. Reactive resumption monads as used in
ReWire refine this inherent parallelism with a notion of interactiv-
ity and a notion of lock-step or clocked sequentiality. C, possessing
no inherent notion of timing granularity, does not lend itself to the
notions of computation found in hardware.

Other projects have explored the use of Haskell as a source lan-
guage for hardware synthesis. CλaSH [2] is a compiler for a subset
of Haskell to VHDL. Like ReWire, CλaSH uses Haskell itself as
a source language and requires some limits be placed on the kinds
of algebraic data types used as well as the basic operating types.
ForSyDe is a platform to compile models of hardware written in
Haskell to circuitry [29]. Neither CλaSH nor ForSyDe, however,
makes use of the modular monadic abstractions that are essential to
ReWire’s verification approach.

Hardware description languages (HDL) have been, and continue
to be, an area of active research. Lava is a family of domain-specific
languages for hardware specification embedded in Haskell [3, 10].
Primitives in Lava are structural and specify circuits at the level of
signals. ReWire, by contrast, compiles a subset of Haskell itself
to hardware circuits, including control flow constructs that are
difficult to capture in deeply embedded DSLs [11], and relies on
an abstract set of behavioral primitives.

Caisson [20] is based on a classic security type system [32]
for a Verilog-like hardware definition language. Therefore, secu-
rity in Caisson inherits the strengths and weaknesses of the type-
based approach; i.e., security is statically checkable, but some se-
cure programs are excluded. Caisson programs can be transliterated
into Verilog and thereby synthesized to hardware. ReWire’s design
adheres to the DSL philosophy: its design is flexible and agile.
ReWire is a functional monadic language and inherits the advan-
tages of that style from Haskell: modularity and extensibility of the
language itself. Specifications structured with monads come with
“by-construction” properties useful for formal verification [15].

Recent research has demonstrated the value of monadic seman-
tics to the formal specification and verification of x86- and ARM-
based systems [8, 30]. These efforts are not, however, focused on
producing synthesizable artifacts; monads are used purely as a ve-
hicle for reasoning.

Future Work. One benefit of the functional-language approach
to hardware is that functional languages are generally amenable to
formal specification. However, a drawback of the approach is that
hardware engineers are not typically well-versed in functional lan-
guages (there are exceptions, of course). While this drawback is so-
cial in nature, it is still significant. Hardware engineers frequently
view designs in graphical terms. We are planning to build a graph-
ical front end to ReWire to aid hardware engineers and encourage
adoption of the ReWire tools.

Other future research directions we are pursuing have to do
with increasing the expressiveness of the type system to support

metaprogramming, as well as type-based enforcement of informa-
tion flow policies. There are type systems for staged programming
(e.g., MetaML [31]) that we believe will improve programmer pro-
ductivity further while maintaining type safety. Staging annotations
enable programmers to safely encode source-level transformations
and optimizations. Previous work has focused on type systems
for enforcing fault isolation in calculi based on reactive resump-
tions [17]; we believe that a similar strategy may be employed to
enforce information flow security.

Another avenue of future work is to adapt the ReWire compiler
to enable programs that mix CPU and FPGA-based computation.
A sizable portion of the Haskell language—basically anything in-
volving recursion at runtime—is not synthesizable with ReWire. A
mixed-mode compiler could take the non-synthesizable portions of
the program and compile them for use on a CPU-based system con-
taining an FPGA, with the two parts of the program communicating
over the system bus. We anticipate that reactive resumptions would
provide a powerful tool for tackling the coordination challenges in-
herent to such heterogeneous systems.

6. Acknowledgements
This research has been supported by the Office of the Assis-
tant Secretary of Defense for Research and Engineering, by the
U.S. Department of Education under GAANN grant number
P200A100053, and by NSF CAREER Award 00017806.

References
[1] PicoBlaze 8-bit Embedded Microcontroller User Guide. Xilinx, Inc.,

2011.
[2] C. Baaij and J. Kuper. Using rewriting to synthesize functional lan-

guages to digital circuits. In Trends in Fun. Prog., volume 8322 of
LNCS, pages 17–33, 2014.

[3] P. Bjesse, K. Claessen, and M. Sheeran. Lava: Hardware design in
Haskell. In ICFP ’98, pages 174–184, 1998.

[4] D. Cock, G. Klein, and T. Sewell. Secure microkernels, state monads
and scalable refinement. In Proceedings of the 21st International
Conference on Theorem Proving in Higher Order Logics, TPHOLs
’08, pages 167–182, 2008.

[5] S. A. Edwards. The challenges of synthesizing hardware from C-like
languages. IEEE Design and Test of Computers, 23(5):375–386, 2006.

[6] S. A. Edwards. A finer functional Fibonacci on a fast FPGA. Technical
Report CUCS-005-13, Department of Computer Science, Columbia
University, February 2013.

[7] A. Erosa and L. J. Hendren. Taming control flow: A structured
approach to eliminating goto statements. In In Proceedings of 1994
IEEE International Conference on Computer Languages, pages 229–
240. IEEE Computer Society Press, 1994.

[8] A. Fox and M. O. Myreen. A trustworthy monadic formalization of
the ARMv7 instruction set architecture. In Proceedings of the First
International Conference on Interactive Theorem Proving, ITP’10,
pages 243–258, 2010.

[9] N. George, H. Lee, D. Novo, T. Rompf, K. Brown, A. Sujeeth,
M. Odersky, K. Olukotun, and P. Ienne. Hardware system synthesis
from domain-specific languages. In Proc. of 24th Int. Conf. on Field
Prog. Logic and App. (FPL ’14).

[10] A. Gill. Declarative FPGA circuit synthesis using Kansas Lava. In
ERSA ’11, 2011.

[11] A. Gill. Domain-specific languages and code synthesis using Haskell.
ACM Queue, 12(4):30:30–30:43, Apr. 2014.

[12] C. E. Giménez. Un Calcul De Constructions Infinies Et Son Appli-
cation A La Verification De Systemes Communicants. PhD thesis,
L’École Normale Supérieure de Lyon, 1996.

[13] J. A. Goguen and J. Meseguer. Security policies and security models.
In Proc. of the 1982 Symposium on Security and Privacy (SSP ’82),
pages 11–20. IEEE Computer Society Press, 1990.

[14] S. Goncharov and L. Schröder. A coinductive calculus for asyn-
chronous side-effecting processes. In Proceedings of the 18th Inter-
national Conference on Fundamentals of Computation Theory, pages
276–287, 2011.

[15] W. L. Harrison and J. Hook. Achieving information flow security
through monadic control of effects. Journal of Computer Security,
17(5):599–653, 2009.

[16] W. L. Harrison and A. Procter. Cheap (but functional) threads. 44
pages. Accepted for publication in Higher-Order and Symbolic Com-
putation.

[17] W. L. Harrison, A. Procter, and G. Allwein. The confinement problem
in the presence of faults. In Proceedings of the 14th International
Conference on Formal Engineering Methods, ICFEM’12, pages 182–
197, 2012.

[18] M. P. Jones. Typing Haskell in Haskell. In Proceedings of the 1999
Haskell Workshop, pages 68–78, Paris, France, 21–24 Oct. 1999.

[19] H. Lee, K. Brown, A. Sujeeth, H. Chafi, T. Rompf, M. Odersky, and
K. Olukotun. Implementing domain-specific languages for hetero-
geneous parallel computing. IEEE Micro, 31(5):42–53, Sept. 2011.
ISSN 0272-1732.

[20] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf. Caisson: a hardware description language for
secure information flow. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’11, pages 109–120, New York, NY, USA, 2011. ACM.

[21] S. Liang. Modular Monadic Semantics and Compilation. PhD thesis,
Yale University, 1998.

[22] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, July 1991.

[23] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable
third generation architectures. Commun. ACM, 17(7):412–421, July
1974.

[24] A. Procter. Semantics-Driven Design and Implementation of High-
Assurance Hardware. PhD thesis, University of Missouri, 2014.

[25] A. Procter, W. L. Harrison, I. Graves, M. Becchi, and G. Allwein.
Online supplement accompanying “Semantics-driven hardware de-
sign, implementation, and verification with ReWire”. URL http:
//adamprocter.com/lctes15.

[26] A. Procter, W. L. Harrison, I. Graves, M. Becchi, and G. Allwein.
Semantics-directed machine architecture in ReWire. In Proceedings
of the International Conference on Field-Programmable Technology
(ICFPT’13), pages 446–449, December 2013.

[27] J. Reynolds. Definitional interpreters for higher order programming
languages. ACM Conference Proceedings, pages 717–740, 1972.

[28] J. Rushby. Design and verification of secure systems. In Proceedings
of the ACM Symposium on Operating System Principles, volume 15,
pages 12–21, 1981.

[29] I. Sander and A. Jantsch. System modeling and transformational
design refinement in ForSyDe. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 23(1):17–32, 2004.

[30] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant,
M. O. Myreen, and J. Alglave. The semantics of x86-CC multiproces-
sor machine code. In Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’09, pages 379–391, 2009.

[31] W. Taha and T. Sheard. MetaML and multi-stage programming with
explicit annotations. Theoretical Computer Science, 248(12):211–
242, 2000.

[32] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure
flow analysis. Journal of Computer Security, 4(2–3):167–187, 1996.

[33] M. Wilding, D. Greve, R. Richards, and D. Hardin. Formal verification
of partition management for the AAMP7G microprocessor. In D. S.
Hardin, editor, Design and Verification of Microprocessor Systems for
High-Assurance Applications, pages 175–191. 2010.

http://adamprocter.com/lctes15
http://adamprocter.com/lctes15

	Introduction
	Design of ReWire
	Hardware with Pure Functions and Monads
	Summary of Language Design

	Compiling ReWire to VHDL
	Code Generation
	Generating VHDL from PreHDL

	Case Study: A Secure Multicore Processor
	Single-core Processor
	The Monad
	Instruction Decoding
	Main Loop and Startup
	Synthesis

	Secure Multi-domain Processor
	The Dual-Core Harness
	Synthesis

	Proof of Separation

	Conclusions and Future Work
	Acknowledgements

