
A Core Calculus for Secure Hardware:
Its Formal Semantics and Proof System

Thomas N. Reynolds∗, Adam Procter†, William L. Harrison∗, Gerard Allwein‡
∗Department of Computer Science, University of Missouri

†Intel Corporation, Hillsboro, Oregon, USA
‡US Naval Research Laboratory, Washington, DC

Abstract—Constructing high assurance, secure hardware re-
mains a challenge, because to do so relies on both a verifiable
means of hardware description and implementation. However,
production hardware description languages (HDL) lack the
formal underpinnings required by formal methods in security.
Still, there is no such thing as high assurance systems without
high assurance hardware. We present a core calculus of secure
hardware description with its formal semantics, security type
system and mechanization in Coq. This calculus is the core of the
functional HDL, ReWire, shown in previous work to have useful
applications in reconfigurable computing. This work supports a
full-fledged, formal methodology for producing high assurance
hardware.

I. INTRODUCTION

ReWire is a functional hardware description language
(HDL): it is a functional language—a subset of Haskell—from
which circuits are synthesized automatically. Previous work
has introduced ReWire’s language design and implementation
as well as its application to the construction of high assurance
hardware [1]–[4]. This paper describes the Coq formalization
of ReWire intended to support the verification of hardware de-
signs and, in particular, the sort of information flow properties
described in our previous work [1], [2], [5].

The aforementioned previous work, in panoramic view,
used “by-construction” properties of layered monads to verify
properties by hand. For the moment, we rely on the reader’s
intuition to explain the contributions of the present work at a
high level (Section II presents an overview of these concepts in
more detail). Assume, for example, that ReWire devices h and
l are written respectively in terms of state monad layers, StT Hi
and StT Lo. Then, device h (resp., l) only accesses internal
storage of type Hi (resp., Lo). In a composite device written in
terms of monad M = StT Hi (StT Lo Id), it is guaranteed by
semantic properties of the layers StT Hi and StT Lo to disallow
covert channels between the Hi and Lo storage.

The challenge is, then, the formalization of ReWire and,
in particular, ReWire’s underlying layered monad language
and its semantic properties within an automated proof system.
The contributions of this work are as follows. (1) A static
effect-type system (extending Wadler [6]) that disallows covert
storage channels in ReWire. This type system extends state
layers with effect labels, so that, continuing the example above,
h (resp., l) is written in monad StT RW Hi (StT 〈〉 Lo Id) (resp.,
StT 〈〉 Hi (StT RW Lo Id)). The effect label “RW” means h can
both read and write on the Hi layer and while “〈〉” means it

can do neither on the Lo layer (and, vice versa, for l). The
soundness of our type system (Theorems 6 and 7) guarantees
freedom from covert storage channels. (2) A small-step se-
mantics for ReWire formalized in Coq that justifies (3) a typed
equational logic (Figure 11) capturing the semantic properties
of monads and state layers used in by-hand proofs in our
previous work. Finally, (4) a number of related metatheorems
(e.g., progress, preservation, strong normalization, etc.) have
been proved in Coq. All of the definitions and theorems in this
paper have been checked with the Coq proof checker (Coq
scripts are available here).

The most direct approach to formalizing ReWire in Coq
would seem to be the transliteration of monad transformer
declarations from Haskell into Coq, but this quickly runs
afoul of Coq’s strict positivity requirement. ReWire relies on
reactive resumption monad transformers (see Section II) as
a model of synchronous parallelism and this transformer is
a coinductive construction, which can be tricky to formal-
ize, even with Coq’s coinduction library. Another approach
considers formalizing ReWire’s denotational semantics [7],
building on existing work by Huffman [8] or Schröder and
Mossakowski [9] in Isabelle/HOLCF. Instead, we chose to
formalize a small-step, operational semantics for ReWire in
Coq, in part, because the authors have more experience with
Coq than with HOLCF, but also because developing and
formalizing a small-step operational semantics seemed more
straightforward than mechanizing denotational semantics. The
semantic properties of ReWire’s underlying monads on which
the by-hand verifications of our previous work rely are then
captured as an typed equational logic whose rules are derived
from the formalized operational semantics.

The remainder of this section discusses related work. Sec-
tion II presents an overview of ReWire to motivate the syntax
and semantics of the formal calculus, RWC. Section III
defines the syntax and small-step operational semantics of
RWC. Section IV describes RWC’s metatheory and a number
of related metatheorems (e.g., progress, preservation, strong
normalization, etc.) are demonstrated. A type-directed equa-
tional logic for RWC is defined in Section V and Section VI
discusses conclusions and future work.

Related Work

Effect systems are a static semantics of effects while
monads [10] are a dynamic semantics of effects. Effect sys-

https://harrisonwl.github.io/assets/code/memocode17.tar.gz

tems [11] are commonly associated with impure, strongly-
typed functional languages in which the effect annotations
make explicit the side effects already present implicitly in
the language itself. Monads are used to mimic side-effecting
computations within pure, strongly-typed functional languages
(e.g., Haskell) in which there are no implicit side effects.

Layered monads—i.e., monads constructed by monad trans-
formers [12]—provide modularity to the semantics of compu-
tational effects and functional programs alike by integrating
multiple effects within a single monad. This modularity-via-
integration, however, has consequences for formal verification:
because its effects are all encapsulated within the single
monad, they are not distinguished syntactically within the
type system of a specification language itself. Wadler [6]
“married” effect types to monads, and previous work by the
authors [13] seems to be the first marriage of effect types to
layered monads. This latter marriage seems to be important
for exploiting monadic semantics in formal methods: layered
monads provide a modular semantics of effects including by-
construction properties and effect types allow the expression
of these properties in a formal proof system like Coq (e.g.,
Figure 11).

As a concept for formal (i.e., machine-checked) verification,
monads are less common, although not unheard of [9], [14]–
[16] and the use of both effect types and layered monads
distinguishes the current work from these.

Formal methods for secure hardware are generally spread
across two categories: (1) type-based approaches [17]–
[19]; and (2) logic-based approaches (including theorem-
proving [20], and BDDs and model-checking [21]), in which
a hardware design and desired properties are formulated in
a logic and scrutinized in a (semi-)automatic manner. Types-
based approaches have support for security concerns integrated
into a domain-specific language for hardware description. As
with any security type system, however, the question of its
permissiveness arises—i.e., does it reject secure designs? The
types-based approach offers no recourse to the rejection of a
secure design—you simply can’t argue with a type checker.
A logic-based approach avoids this pitfall, but comes with
overhead—e.g., your own theory of security—and, further-
more, it is not connected directly to any implementation path.

One language-based approach to hardware security is to
extend an existing HDL with security types. Caisson [17],
Sapper [18], and SecVerilog [19] each extend a subset of
Verilog with security types and annotations. The type systems
of Caisson and SecVerilog reject programs that violate infor-
mation flow policies, while Sapper uses static analysis to au-
tomatically insert dynamic checks to enforce information flow
policies at runtime. SecVerilog has an operational semantics,
albeit not one formalized in a theorem prover with a proof
system [22]. ReWire (or, RWC, rather) differs fundamentally
from these language- and type-based approaches in three
respects: (1) it is a pure functional language; (2) it possesses a
formal semantics mechanized in Coq; and (3) its type system
is based on effect types. We discuss the significance of item
(3) in Section VI.

The SAFE project focuses on the clean slate design of a
provably secure computer system stack (e.g., hardware, operat-
ing system, etc.). In a recent publication [23], the SAFE team
describes an operational semantics of the SAFE hardware’s
instruction set and its role in the end-to-end verification in Coq
of a non-interference security property. The ReWire project
has complimentary, but orthogonal, goals to SAFE: developing
a verifiable toolchain for producing high assurance, secure
hardware. Interesting follow-on research would explore im-
plementations of the SAFE hardware in the ReWire language.

One traditional approach to hardware verification starts from
a design expressed in a production HDL, creates an abstract
specification “by hand” as it were, encodes this specification
in the logic of an automated theorem prover, and proceeds
towards formal verification [20]. This approach relies heavily
on the faithfulness of the abstraction step. One reason that this
approach must be accomplished “by hand” is that production
HDLs do not possess rigorous semantics. Although attempts
have been made in the past to define them semantically, none
of these projects were evidently completed [24], [25]. By
contrast with production HDLs like Verilog or VHDL, ReWire
possesses a rigorous semantics for which the present work
provides a Coq mechanization. ReWire becomes a vehicle
for expressing and implementing hardware designs and for
verifying them as well. In previous work [1], [2], we presented
several case studies in hardware verification based in ReWire,
but there the verifications were not machine-checked.

Goncharov and Schröder [26] extend Moggi’s computa-
tional λ-calculus with constructs for concurrency and shared
state; RWC’s design is inspired, in part, by their treatment of
corecursion. Crary et al. [27] consider a logical characteriza-
tion of information flow security that incorporates Moggi’s
computational λ-calculus at its core. With their approach,
monads are, in effect, logical modalities signifying the poten-
tial presence of effects at a security level. In contrast, Harrison
and Hook’s treatment of information flow security [5] is more
semantic and model-theoretic than Crary’s logical and type-
theoretic approach, relying as it does on structural properties of
monads and monad transformers to construct secure systems.
Security verifications of ReWire designs [1] are based on
Harrison and Hook’s approach, and the present work formally
supports that approach in Coq.

Ghica and Jung [28] provide a categorical semantics for
a class of digital circuits in terms of monoidal categories
and are motivated by the need for supporting syntactic, equa-
tional reasoning. ReWire specifications may be reasoned about
equationally in the usual manner of functional languages; this
was the approach taken in our previous ReWire verification
work [1], [2]. By contrast with Ghica and Jung’s work, ReWire
specifications are, more or less, ordinary functional programs
that are compiled into circuits.

II. BACKGROUND: REWIRE’S PROGRAMMING MODEL

The purpose of this section is twofold: (1) to make this
article as self-contained as possible by providing sufficient
background on ReWire and (2) to motivate RWC’s type

system and operational semantics. Throughout this section, we
explicitly link this background material to subsequent sections
on RWC. ReWire is a subset of Haskell and uses ideas from
monadic semantics as an organizing principle of the language.
It is, therefore, assumed of necessity that the reader is, at least,
somewhat familiar with functional programming and monads.
For those requiring more information about ReWire and its
programming model and language design, please consult the
references [1], [7].

ReWire is a subset of the Haskell functional programming
language [29]—i.e., ReWire programs are Haskell programs,
but not necessarily vice versa. All ReWire programs can be
compiled to synthesizable VHDL with the ReWire compiler.
The principal difference between Haskell and ReWire is that
recursion in ReWire is restricted to tail recursion so that
every ReWire program requires only a finite, bounded memory
footprint. Unbounded recursion requires an unbounded stack
or heap for compilation and such dynamic control structures
are anathema to hardware’s fixed storage.

ReWire has type constructors for devices where a device
represents a clocked computation that, for each clock cycle,
takes an input of type i, produces an output of type o, and
may possess internal storage of type s (see inset figure).

o

i

clk s

Device d

The type of d as shown would be
d :: ReT i o (StT s Id) (), where ReT and
StT are the reactive resumption and state
monad transformers and Id is the identity
monad (about all of which we say more
below in the next sections). Device d is
clocked, as illustrated in the inset figure,
although the clock is represented by the
underlying structure of reactive resumptions
rather than as an explicit parameter. A device is created in
ReWire by either iterating a function or through composition
of existing devices. Previous work [4] introduced operators
for constructing devices and composing them into larger,
interconnected devices; Section II-C presents a simple device
specification template in ReWire.

A. Background: Monads
A monad is a triple 〈M, return,>>=〉 consisting of a type

constructor M and two operations:

return : a→M a — “unit”
(>>=) : M a→ (a→M b)→M b — “bind”

These operations must obey the well-known monad laws [10],
[12] (these are (LEFT-UNIT), (RIGHT-UNIT), and (ASSOCIATIVITY)
in Figure 11). The return operator is the monadic analogue
of the identity function, injecting a value into the monad.
The >>= operator is a form of sequential application. The
“null bind” operator, >> : M a→M b→M b, is defined as:
x >> k = x >>= λ_.k. The binding (i.e., “λ_”) acts as a dummy
variable, ignoring the value produced by x.

B. Background: Monad Transformers
The organizing principle underlying ReWire are reactive re-

sumption monads with state [30] (RRMS), which encapsulate

a notion of computation appropriate to hardware—namely,
synchronous parallelism. RRMS support the expression of
structural hardware designs in a functional style [4]. RWC
is a computational λ-calculus whose syntax and semantics
formalizes RRMS in Coq. In particular, RWC’s type system
includes constructors that correspond to the state and reactive
resumption monad transformers. For the sake of being self-
contained, we provide the reader with Haskell definitions of
the StT and ReT monad transformers. This code is meant only
to aid the reader in comprehending the intended semantics
of RWC. If more background is required on RRMS, please
consult the references [30].

1) State Monad Transformer: The state monad transformer
is a well-documented structure in functional programming
and semantics [12]. The Haskell code for the state monad
transformer, StT, along with its lifting functions is below:
data StT s m a = StT (s -> m (a,s))
liftStT :: m a -> StT s m a
liftStT m

= StT (\ s -> m >>=m \ v -> returnm (v,s))
get :: StT s m s
get = StT (\ s -> returnm (s,s))
put :: s -> StT s m ()
put s = StT (\ _ -> returnm ((),s))

The lift converts or “lifts” an m a computation into an
StT s m a computation. The get operation returns the cur-
rent value of the s-store while the put s operation replaces
the current store with store s. In the definitions above, the
binds and returns for the m monad are affixed with a subscript
to disambiguate them from the operations being defined.

2) Reactive Resumption Monad Transformer: Computa-
tions in ReT i o m a may be viewed intuitively as (potentially
infinite) sequences of m computations. If that sequence termi-
nates, it produces an a-value, otherwise it produces an o-output
value and a continuation. Both lift operations convert an m

computation into respective enriched computations. Computa-
tions in ReT over layered state monads correspond closely to
synchronous hardware as discussed in previous work [1].

The Haskell code for the reactive resumption monad trans-
former, ReT, along with its associated functions is below:
data ReT i o m a
= Pause (m (Either a (o,i -> ReT i o m a)))

liftReT :: m a -> ReT i o m a
liftReT m = Pause (m >>=m returnm . Left)
signal :: o -> ReT i o m i
signal o = Pause (returnm

(Right (o,returnm . returnReT)))
data Either a b = Left a | Right b

Recall that function composition (i.e., “.”) and sum types (i.e.,
Either) are built-in to Haskell. In terms of the device d

example above, the operation signal o represents the end
of a clock cycle and sets the output signal of d to o. RWC
includes a pause primitive in the term syntax (Fig. 2) as a
means of representing signal.

3) By-construction Properties of Layered Monads: Layered
state monads—monads with multiple StT applications (e.g.,
M = StT s1 (StT s2 Id))—have a number of useful proper-
ties by construction [5], including:

put s′ >> put s = put s

put s >> liftStT ϕ = liftStT ϕ >> put s

The first rule is an inter-layer property (a.k.a., “clobber”) while
the second is an inter-layer property (a.k.a., “atomic non-
interference”). Clobber states that the put s cancels earlier
effects on the same layer. By convention for a fixed state
s0, we define mask = put s0; the mask included in the term
syntax of RWC generalizes this idea. Atomic non-interference
states that effects from different state layers commute. The
equational logic derived in Coq for RWC presented in Sec-
tion V gives generalizations of both properties.

C. Defining Devices in ReWire

Simple ReWire devices are generally defined as tail recur-
sive functions whose codomain is written in terms of the
ReT layer. Assume that we have functions defined which
specify the internal and external behaviors of device d that
have function types: internal :: i -> StT s Id v and
external :: i -> v -> o. Function internal takes the
input i, performs some computation with the current internal
storage s, and produces an intermediate result v. Function
external takes the input i and the result v and produces the
next output signal for d.

Given an initial input i0, d = dev i0 where corecursive
function dev is defined as:

dev :: i -> ReT i o (StT s Id) ()
dev i = liftReT (internal i) >>= \ v ->

signal (external i v) >>= \ i’ ->
dev i’

At the beginning of a clock cycle, dev first consumes input, i,
then performs internal i computation on the internal storage
s, and then outputs the external i v signal at the end of the
clock cycle.

Device definitions are expressed with an explicit corecursion
operator, unfold; for example, device d would be written:

unfold i0
(\ i -> internal i >>= \ v ->

return (Right (external i v, id)))

For this reason, Figure 2 includes syntax for an unfold
primitive and its semantics are defined in subsequent sections.

D. Background: Goguen-Meseguer Non-interference

The essence of the Goguen-Meseguer noninterference in-
formation flow model [31] and its many descendants is
that systems, broadly construed, are state machines whose
inputs and outputs are partitioned by security level. The
definition of information flow is formulated in terms of
sequences of stateful operations of mixed security levels
and stipulates that high-level operations must not affect low-
level outputs. More concretely, for any mixed-level sequence,
s = (l1 ; h1 ; . . . ; ln ; hn), the low-level outputs of s must
be identical to those produced by (l1 ; . . . ; ln), which is the
result of filtering out from s all high-level operations.

E. The Marriage of Effects and Layered State Monads

“By construction” properties of layered state monads [5]
tell us that high- and low-security operations commute (a.k.a.,
atomic non-interference) and that maskH cancels high-level
operations (i.e., ϕH >>maskH = maskH). This cancelling
property is known as the “clobber rule” [5]. The atomic non-
interference and clobber rules are helpful in demonstrating that
monadic noninterference equations (like that of the previous
section) hold for particular software and hardware applica-
tions [1], [5].

The Goguen-Meseguer model was recast in monadic terms
previously [5], so that high-level effects must be cancellable
without affecting the low-level effects. Here, the utility of
the RWC effect type system becomes evident, because it can
statically distinguish computations occurring on distinct layers.
For the sake of concreteness, consider the case of a monad,
M, with a high- and low-security stores types, H and L. High
and low operations may be distinguished by the RWC effect
type system by annotating the layers with effect labels:

ϕH : StTRWH (StT 〈〉L Id)()
ϕL : StT 〈〉H (StT RWL Id)()

Note that ϕH (resp., ϕL) only has read-write effects (RW)
on the outer (resp., inner) state layer of M. Furthermore, we
assume the existence of an operation, maskH which initializes
the H state layer. The maskH operation can be assumed to be
put s0 on the H-layer, where s0 is an arbitrary, fixed value in
H . Then, the monadic formulation of non-interference boils
down to demonstrating that equations like the following hold:

ϕH >> ϕL >> maskH = ϕL >> maskH

Put simply, this means that reinitializing the H layer cancels
the effects of high-security operations like ϕH . This is the
monadic analogy of Goguen and Meseguer’s filtering out of
high-security operations.

III. RWC: THE REWIRE CORE CALCULUS

This section introduces the syntax (Section III-A), type sys-
tem (Section III-B) and operational semantics (Section III-C)
of the ReWire Calculus (RWC). RWC is a computational
λ-calculus that extends the functional features of a typed
lambda calculus with support for stateful effects and reactive
parallelism. These effects are encapsulated through the use
of monads [10], enabling us to provide a useful equational
theory in the presence of effects. The addition of effects to a
computational λ-calculus was examined in [6].

A. Syntax

This section introduces the syntax of RWC, which is a
variety of computational λ-calculus extended with operations
for synchronous, stateful parallelism. Here, the stateful com-
ponent is organized as layered state monads—i.e., monads cre-
ated by multiple applications of the state monad transformer.
Layered state monads have by-construction properties that
support information flow security verification [1], [5]; we defer
presenting the general formalization of these by-construction

` ∈ EffectLabel ::= 〈〉 | R | W | RW
S ∈ StateMonad ::= Id | StT ` τ S

M ∈ Monad ::= S | ReT τ τ ′ S

τ, τ ′ ∈ Type ::= τ → τ ′ | τ × τ ′ | τ + τ ′ | () | M τ

Figure 1: Syntax of RWC types

Identifier ::= x | y | z | w | etc.

t ∈ Term ::= x | t t′ | λx : τ.t | () | 〈t, t′〉 | proj t t′ |
| inlτ t | inrτ t | case t t′ t′′ | returnM t | t >>= t′

| liftM t | elevateS t | getS | put t | pauseM,τ t

| runSt t t′ | runId t | unfoldM,τ,τ′ t t
′ | runReτ t

v, s ∈ Value ::= λx : τ.t | () | 〈v, v′〉 | inlτ v | inrτ v | returnM v

| v >>= v′ | liftM v | elevateM v | getS | put v
| pauseM,τ v | runSt v v′ | runReτ v

| unfoldM,τ,τ′ v v
′

Σ ∈ Store ::= nil | s :: Σ

c ∈ Config ::= 〈t,Σ〉
D ∈ DoneConfig ::= 〈 returnM v,Σ〉 | 〈 pauseM,τ v,Σ〉

Figure 2: Syntax of terms, stores, and configurations

properties until Section V. Section II provides the reader with
some background on monad transformers, although readers
requiring more should consult the references.

1) Types: Figure 1 shows the syntax of types.
As a computational λ-calculus, RWC extends the simply-

typed λ-calculus with unit, sum, and product types along with
a notion of computational types: if M is a monad and τ is
a type, then M τ is the type of computations in the monad
M with a result value of type τ . Exactly which monad stands
in for M will determine what sort of computational effects
are possible. RWC permits the use of monads built in terms
of the Id (identity) monad and the ReT (reactive resumption),
and StT (state) monad transformers, where ReT must be the
outermost monad transformer application (if it is present).
RWC’s monads encompass the combination of resumption and
layered state monads found in [30] with the addition of effect
labels attached to each StT. The presence of an effect label `
at a given layer certifies that the computation has at most the
effects ` at that layer. For example, the effect label W reflects
the possibility that a computation will write, not the necessity,
and certifies that the computation will not read.

We note in passing that the denotational semantics of these
monads corresponds exactly to the semantics of their Haskell
equivalents, up to the erasure of the effect labels and with
the considerable simplification that lifted domains are not
necessary due to the absence of general recursion; see [7] for
further details.

2) Terms: Figure 2 shows the syntax of terms. Note the
widespread use of type and monad subscripts. These are
necessary to ensure that every term has a unique type, and to
handle overloading of monadic operations. We will sometimes

omit these subscripts, as long as doing so does not introduce
ambiguity.

We will not remark on the standard λ-calculus machinery,
other than to note that the constructs used for destructing pairs
and elements of sum type are slightly nonstandard. The term
constructor proj, used for destructing pairs, takes two sub-
terms: the first corresponding to the pair being deconstructed—
suppose it has type τ × τ ′—and the second corresponding
to a function of type τ → τ ′ → τ ′′ that produces a value
from the pair’s elements. (Note that the conventional left- and
right-projection operators can be constructed in terms of the
proj operator.) The term constructor case, used for destructing
elements of sum type, takes three subterms: the first is the
scrutinee of type τ + τ ′, the second to a function f1 of type
τ → τ ′′, and the third to a function f2 of type τ ′ → τ ′′. If
the scrutinee evaluates to inl v (resp., inr v), then v will be
passed to f1 (resp., f2).

Computations are defined in terms of certain primitives.
The (overloaded) term constructors return and ? correspond
respectively to the unit and bind operations of the monads,
and lift to the lift operation of each monad transformer. Terms
typed in a state monad may read and write to the store using
the get and put operations. The term constructor elevate adds
effect labels – e.g., W or R – to the effect labels, if any, on
a state monad computation; thereby, converting state monad
computations with a less permissive types to a more permissive
type (where “permissiveness” is understood as in Figure 4).
For example, a term t of type StT R τ Id τ ′ can be typecast
into the more permissive type StT RW τ Id τ ′ via elevate,
essentially de-certifying that t does not write. (A cast in the
“other direction”, to StT 〈〉 τ Id τ ′, is not permitted by the type
system.) Reactive computations are defined in terms of the
primitives pause and unfold. The term pause t is essentially a
suspended computation that is waiting for an input value, and
unfold can be used to produce “looping” computations; we
postpone a discussion of their exact semantics until we have
discussed the type system in greater detail. Finally, the term
constructors runRe, runSt, and runId allow the effects of a
given monad transformer to be reflected into the base monad.
It may be helpful to view runRe as executing a single step
of a resumption-monadic computation, runSt as supplying the
initial state for the uppermost state layer, and runId as moving
from the effect-free Id monad into the universe of non-monadic
terms.

3) Stores and Configurations.: Figure 2 (bottom) shows
the syntax of stores and configurations, which will be used
to specify the semantics of computations. A store is a list
of terms, each of which corresponds semantically to a state
monad transformer, and a configuration 〈t,Σ〉 pairs a term t
with a state Σ. Generally, we use the metavariables s, s′, s′′

to refer store values.

B. Type System

Typing rules for terms are given in Figure 3. Typing
judgments take the form Γ ` t : τ , where Γ is a set of
assumptions (i.e., a mapping of variables to types). For the

Γ ` t : τ
Γ ` returnM t : M τ

(RETURN)
Γ ` t : M τ Γ ` t′ : τ → M τ ′

Γ ` t >>= t′ : M τ ′
(BIND)

Γ ` t : S τ

Γ ` lift(StT`τ′S) t : StT ` τ ′ S τ
(LIFTST)

Γ ` t : S τ

Γ ` lift(ReTτ′τ′′S) t : ReT τ ′ τ ′′ S τ
(LIFTRE)

R ≤ `
Γ ` get(StT`τS) : StT ` τ S τ

(GET)
Γ ` t : τ W ≤ `

Γ ` put t : StT ` τ S ()
(PUT)

Γ ` t : StT ` τ ′ S τ Γ ` t′ : τ ′

Γ ` runSt t t′ : S (τ×τ ′)
(RUNST) Γ ` t : Id τ

Γ ` runId t : τ
(RUNID)

Γ ` t : S (τ ′ × (τ → ReT τ τ ′ S τ ′′))

Γ ` pause(ReTττ′S,τ′′) t : ReT τ τ ′ S τ ′′
(PAUSE)

Γ ` t : τ ′′′ Γ ` t′ : τ ′′′ → S (τ ′′+(τ ′×(τ → τ ′′′)))

Γ ` unfold(ReT τ τ′ S,τ′′,τ′′′) t t
′ : ReT τ τ ′ S τ ′′

(UNFOLD)

Γ ` t : ReT τ τ ′ S τ ′′

Γ ` runReτ t : S (τ ′′+(τ ′×(τ → ReT τ τ ′ S τ ′′)))
(RUNRE)

Γ ` t : S τ S ≤ S′

Γ ` elevateS′ t : S′ τ
(ELEVATE)

Figure 3: Typing judgments for terms. Rules for λ-calculus
are omitted.

RW

R W

〈〉

Id ≤ Id
(L-ID)

` ≤ `′ S ≤ S′

StT ` τ S ≤ StT `′ τ S′
(L-STT)

Figure 4: Ordering on effect labels (given by the diagram) and
on state monads.

empty context, we write {}. Many of the rules are standard,
reflecting the rules of computational λ-calculus. The rules for
get, put, and elevate require special attention, as they directly
involve effect labels. Rule T-GET restricts the effect label on
the top monad transformer to include a read label, and T-
PUT restricts it to include a write label. These restrictions are
expressed in terms of an ordering on effect labels (which is
really nothing more than the subset relation) given in Figure 4
at left. For rule T-ELEVATE, we require that the target monad
S′ has (non-strictly) more effect labels than the source monad
S; the precise meaning of this is expressed in Figure 4 at
right. The intuition is that elevate permits us to decertify that
a computation does not read or write at any given state layers,
but not to remove existing effect labels.

Stores and configurations also have a notion of type, defined
by the rules of Figure 5. A store Σ is said to match a monad
M if the types of its elements correspond, in order, to the
state types of the state monad transformers in M . For this, we
simply write that Σ matches M . A configuration 〈t,Σ〉, then,
has type M τ if and only if Σ matches M and {} ` t : M τ .
We write this 〈t,Σ〉 . M τ .

Theorem 1 (Uniqueness of Types): If Γ ` t : τ and Γ ` t :
τ ′, then τ = τ ′. Also, if 〈t,Σ〉.τ and 〈t,Σ〉.τ ′, then τ = τ ′.

Σ matches S

Σ matches ReT τ τ ′ S
(M-RET)

{} ` s : τ Σ matches S

s :: Σ matches StT ` τ S
(M-STT)

{} ` t : M τ Σ matches M

〈t,Σ〉 .M τ
(T-CONFIG)

Figure 5: Typing judgments for stores (top) and configurations
(bottom).

C. Small-Step Operational Semantics

In this section we describe the semantics of RWC in a
small-step operational style. As a computational λ-calculus,
RWC contains both functional features (functional abstraction
and application) as well as effectful ones (mutable state and
reactive parallelism). The operational semantics is structured
around this dichotomy, with two interdefined notions of reduc-
tion: pure and effectful reduction. Pure reduction reflects the
notion of effect-free evaluation. A pure reduction judgment
takes the form t t′; note that this makes no mention of any
store. Effectful reduction provides semantics to computational
terms which may have effects. Thus an effectful reduction
judgment takes the form 〈t,Σ〉 〈t′,Σ′〉.

The rules for pure and effectful reduction are given in
Figures 6 and 7, respectively. We adopt a call-by-value eval-
uation strategy, as this is (we feel) simpler to work with
metatheoretically than call-by-name or -need. This may seem
strange in light of ReWire’s antecedents in Haskell (which
is a non-strict language), but since ReWire is a strongly
normalizing subset of Haskell, it does not matter whether we
choose an eager or lazy evaluation strategy from a “backwards
compatibility” point of view: since there is no “bottom” value,
strictness is not a concern.

A few of the rules require close inspection. To begin with,
we note that pure and effectful reduction are interdefined. Rule
STM-ST of Figure 7 allows pure reduction to be “lifted” into
the universe of effectful reduction: if the term component t of
a configuration 〈t,Σ〉 still has not been evaluated to a value,
we will continue to evaluate it without changing the store.
Dually, if less obviously, the rule ST-RUNIDMO in Figure 6
allows monadic evaluation in the identity monad (and only
in the identity monad) to be reified in a pure setting. If we
wish to run a computation in a more complex monad, we may
use runRe and runSt to “peel off” one monad transformer at a
time, until we reach the Id monad at the core. In the runSt case,
we must supply an initial value for the corresponding state
layer, producing a computation in the base monad which will
return the post-value for that layer. The runRe operator will
produce a computation in the base monad that either returns a
final result value, or an output value paired with a continuation
waiting on more input.

Note also the interaction between the rule STM-LIFTST,
STM-GET, and STM-PUT. The get and put operations
always operate on the ‘head’ (leftmost) item in the store.
Applying liftStT to these operations allows us to access items
deeper in the store, by executing the underlying computation
against the “tail” of the store and leaving the “head” item
unchanged.

(λx : τ.t)v t[x := v]
(ST-APPABS) t t′′

t t′ t′′ t′
(ST-APP1)

t t′

v t v t′
(ST-APP2)

t t′

inlτ t inlτ t′
(ST-INL)

〈v, nil〉 〈t, nil〉
runId v runId t

(ST-RUNIDMO)

Figure 6: Reduction Rules for Lambda Calculus Reduction.
These rules, mostly omitted, specify a call-by-value evaluation
strategy on RWC.

The rule STM-UNFOLD may be justified directly by the
Haskell definition of unfold. Rule STM-PAUSE is more subtle.
The basic idea, however, is that if a pause arises to the left of
a ?, we should “absorb” what comes to the right of the ? into
the pause’s continuation, guaranteeing that we make progress
towards a “done” configuration.

As stated in Theorem 2, the reduction relation the results
from the rules for pure and effectful reduction is deterministic.

Theorem 2 (Evaluation is Deterministic): If t t′ and
t t′′, then t′ = t′′. Also, if 〈t,Σ〉 〈t′,Σ′〉 and 〈t,Σ〉
〈t′′,Σ′′〉, then 〈t′,Σ′〉 = 〈t′′,Σ′′〉.

IV. METATHEORY

In this section we discuss the metatheory of RWC, in
particular type safety (Section IV-A), strong normalization
(Section IV-B), and soundness of effect labels (Section IV-C).

A. Type Safety

As is standard in operational semantics, we take type safety
to be the conjunction of progress, meaning that any well-
typed term (resp. configuration) that is not a value (resp. is
not “done”) always reduces to something, and preservation,
meaning that reduction preserves the types of terms (and
configurations). Together, these properties imply that well-
typed programs can’t go wrong—i.e., evaluation of well-typed
programs never “gets stuck”.

Theorem 3 (Progress): If {} ` t : τ , then either t is a value
or there exists t′ such that t t′. Also, if 〈t,Σ〉 . M τ ,
then either 〈t,Σ〉 is done, or there exist t′ and Σ′ such that
〈t,Σ〉 〈t′,Σ′〉.

Theorem 4 (Preservation): If {} ` t : τ and t t′, then
{} ` t′ : τ . Also, if 〈t,Σ〉 . M τ and 〈t,Σ〉 〈t′,Σ′〉, then
〈t′,Σ′〉 . M τ .

Perhaps surprisingly, the addition of computational features
does not substantially complicate the proof of type safety
relative to a pure λ-calculus.

B. Normalization

Unlike Haskell, RWC enjoys the property of strong nor-
malization, which means that all well-typed terms (resp.
configurations) will eventually reduce to some value (resp.
done configuration). This property is especially important in
hardware applications for the reason that hardware cannot be
allowed to “loop forever” between clock ticks.The computa-
tion time between clock ticks must have a static, finite upper
bound—this issue is discussed in detail in the references [1],
[7]. Strong normalization also makes defined equality easier

nil
Id(W)
= nil

(SWNW-ID)
Σ
S(W)
= Σ′

Σ
ReT τ τ′ S(W)

= Σ′
(SWMW-RE)

Σ
S(W)
= Σ′

(s : : Σ)
StT τ〈〉S(W)

= (s : : Σ′)

(SWNW-N)
Σ
S(W)
= Σ′

(s : : Σ)
StT τ〈R〉S(W)

= (s : : Σ′)

(SWNW-R)

Σ
S(W)
= Σ′

(s : : Σ)
StT τ〈W〉S(W)

= (s′ : : Σ′)

(SWNW-W)

Σ
S(W)
= Σ′

(s : : Σ)
StT τ〈RW〉S(W)

= (s′ : : Σ′)

(SWNW-RW)

Figure 8: The ‘same where no write’ relation.

nil
Id(W)
= nil

(SWR-ID)
Σ
S(W)
= Σ′

Σ
ReT τ τ′ S(W)

= Σ′
(SWR-RE)

Σ
S(W)
= Σ′

(s : : Σ)
StT τ〈〉S(W)

= (s′ : : Σ′)

(SWR-N)
Σ
S(W)
= Σ′

(s : : Σ)
StT τ〈R〉S(W)

= (s : : Σ′)

(SWR-R)

Σ
S(W)
= Σ′

(s : : Σ)
StT τ〈W〉S(W)

= (s′ : : Σ′)

(SWR-W)

Σ
S(W)
= Σ′

(s : : Σ)
StT τ〈RW〉S(W)

= (s : : Σ′)

(SWR-RW)

Figure 9: The ‘same where read’ relation.

to work with, as it eliminates the need to account for equality
of diverging computations.

We shall write ∗ for the multistep reduction relation, i.e.
the reflexive, transitive closure of . We say that a term t halts
if and only if there exists a (not necessarily distinct) value v ,
such that t ∗ v . In a similar fashion, a configuration 〈t,Σ〉
halts if and only if there exists a done configuration D such
that 〈t,Σ〉 ∗ D.

Theorem 5 (Normalization): If {} ` t : τ , then t halts. Also,
if 〈t,Σ〉 . M τ , then 〈t,Σ〉 halts.
The proof of Theorem 5 uses an adaptation of the standard
logical relations technique [32]. Given a property P, a logical
relation, R{T∈T } (with respect to P), is a collection of type-
indexed relations such that for every RT ∈ R{T∈T }, every
element t ∈ RT, either has, or preserves P. In the case of
strong normalization, halting is the property of interest.

Proving Theorem 5 in Coq required developing novel
techniques. Because resumptions involve potentially infinite
computations, proving that strong normalization holds for
configurations requires the use of proofs by coinduction. The
use of coinduction allows the R property to be appropriately
applied over potentially infinite computations. The use of
coinduction and the corresponding notion of bisimulation have
been attributed to David Park [33].

C. Soundness of Effect Labels

Since effect labels are meant to track effects and their
potential propagation, soundness of effect labels (roughly)
corresponds to preservation of security levels indicated by
the label, and that stores track such features accordingly.
Thus, given well-typed configurations, establishing soundness
of effect labels amounts to verifying that monadic-reduction

t t′

〈t,Σ〉 〈t′,Σ〉
(STM-ST)

〈v,Σ〉 〈t,Σ′〉
〈v >>= v′,Σ〉 〈t >>= v′,Σ′〉

(STM-BIND)
〈 returnM v >>= v′,Σ〉 〈v′ v,Σ〉

(STM-BINDRET)

〈v,Σ〉 〈t,Σ′〉
〈lift(StT ` τ S) v, s :: Σ〉 〈lift(StT ` τ S) t, s :: Σ′〉

(STM-LIFTST)
〈v,Σ〉 〈t,Σ′〉

〈lift(ReT τ τ′ S) v,Σ〉 〈lift(ReT τ τ′ S) t,Σ
′〉

(STM-LIFTRE)

〈liftM (returnM′ v),Σ〉 〈returnM v,Σ〉
(STM-LIFTRET)

〈getS, s :: Σ〉 〈returnS s, s :: Σ〉
(STM-GET)

〈put v, s :: Σ〉 〈returnS (), v :: Σ〉
(STM-PUT)

〈t,Σ〉 〈t′,Σ′〉
〈elevateS t,Σ〉 〈elevateS t′,Σ′〉

(STM-ELEVATE)
〈elevateS′ (returnS v),Σ〉 〈returnS′ v,Σ〉

(STM-ELEVATERET)

〈v, s :: Σ〉 〈t, s′ :: Σ′〉
〈runSt v s,Σ〉 〈runSt t s′,Σ′〉

(STM-RUNST)
〈runSt (return(StT ` τ S) v) v′,Σ〉 〈returnS 〈v, v′〉,Σ〉

(STM-RUNSTRET)

〈v,Σ〉 〈t,Σ′〉
〈runReτ v,Σ〉 〈runReτ t,Σ′〉

(STM-RUNRE)
〈runReτ′′ (pause(ReT τ τ′ S) v),Σ〉 〈v ? λx.return (inrτ′′ x),Σ〉

(STM-RUNREPAUSE)

〈runReτ′′ (return(ReT τ τ′ S) v),Σ〉 〈returnS (inl(τ→(τ′×(ReT τ τ′ S τ′′))) v),Σ〉
(STM-RUNRERET)

〈unfold v v′,Σ〉
〈
lift (v′ v) >>= λu.

(
caseu (λw. return w)

(λw.proj w (λx.λy. pause(return〈x, λz. unfold (y z) v′〉))

)
,Σ

〉 (STM-UNFOLD)

〈(pause v) ? v′,Σ〉
〈
pause

(
v >>= λw.

(
proj w (λx.λy. return〈x, λz.(y z) >>= v′)〉

))
,Σ

〉 (STM-PAUSEBIND)

Figure 7: Evaluation rules for monadic reduction. For the sake of readability, type annotations in STM-UNFOLD and STM-
PAUSEBIND are elided.

〈nil, nil〉 wc 〈nil, nil〉
(WC-ID)

〈Σ1,Σ2〉 wc 〈Σ′1,Σ
′
2〉

〈s1 :: Σ1, s2 :: Σ2〉wc 〈s1 :: Σ′1, s2 :: Σ′2〉
(WC-UNCHANGED)

〈Σ1,Σ2〉 wc 〈Σ′1,Σ
′
2〉

〈s1 :: Σ1, s2 :: Σ2〉wc 〈s :: Σ′1, s :: Σ′2〉
(WC-CHANGED)

Figure 10: The write consistency relation.

does not alter stores where no writes are allowed (Theorem 6);
and moreover, that monadic-reduction does not reveal any
changes to stores relative to monads with effect labels where
only reads are allowed (Theorem 7). To that end, we make
use of three relations: “same where no writes”, “same where
read”, and “write consistency”, written M(W)

= , M(R)
= , and wc –

and defined in Figure 8, Figure 9, and Figure 10 – respectively.
Stores (semantically) correspond to state monad transform-

ers. Given a well-typed configuration, the associated store will
contain appropriate elements relative to each layer in the state
monad transformer stack. In order to update a store, its state
monad must contain a write label.

Theorem 6 (No Forbidden Updates): If 〈t,Σ〉 . M τ , then
〈t,Σ〉 〈t′,Σ′〉 implies Σ

M(W)
= Σ′.

Similarly, reading from a store takes place only relative to
state monads that have a read label. This is reflected in the
type judgments for put (resp., get) that require a write (resp.,
read) label in order to be well-typed.

Theorem 7 (No Forbidden Reads): Suppose Σ1
M(R)

= Σ2 and
that 〈t,Σ1〉 . M τ and 〈t,Σ2〉 . M τ . Then if 〈t,Σ1〉
〈t′1,Σ′1〉 and 〈t,Σ2〉 〈t′2,Σ′2〉, it follows that t′1 = t′2 and
〈Σ1,Σ2〉 is write consistent with 〈Σ′1,Σ′2〉.
The intuition underlying write consistency is that when con-
sidering a pair of stores Σ1 and Σ2, prior to a reduction and
a pair of matching stores Σ′1 and Σ′2, after a reduction it is
either the case that the pre-reduction stores do not differ from

their corresponding post-reduction stores (i.e. because no write
takes place) or are equal to each other (i.e., because the same
value was written to both Σ1 and Σ2).

V. TYPE-DIRECTED EQUATIONAL LOGIC FOR REWIRE
CALCULUS

The rules provided in Figure 11 represent the properties
of monads present in RWC. Rules (LEFT-UNIT), (RIGHT-UNIT),
and (ASSOCIATIVITY) are the well-known “monad laws” and
Rules (LIFT-RETURN) and (LIFT-?) are the “lifting laws” of
Liang [12]. Rules (PUT-PUT), (PUT-GET), and (GET-GET), specify
the interaction of stateful operations and are drawn from
previous work [5]. The ≤ relation on state monads is defined
in Figure 4. We defer discussion of the remaining rules until
the next section.

The equational logic of RWC has both atomic noninter-
ference and clobber formalized as consequences of the RWC
semantics in Coq; here, we refer to the last three rules of
Figure 11. These are particular instances for a two layer state
monad of the more general rules found in the Coq script
repository. Note that, in its Coq formalization, mask computes
the appropriate definition from a monad type term taken as an
argument. The exact details of this definition need not concern
us here, and the interested reader may consult the repository.

VI. CONCLUSIONS AND FUTURE WORK

The ReWire methodology differs fundamentally from the
type-based approach to secure hardware (e.g., that of Cais-
son [17], Sapper [18], and SecVerilog [19]) in three important
respects. Firstly, ReWire is a functional language (a subset of
Haskell) and has the benefit, we would argue, of the expres-
siveness of functional languages. Secondly, ReWire possesses
a formal semantics and equational theory mechanized in the
Coq theorem proving system, allowing security verification

https://harrisonwl.github.io/assets/code/memocode17.tar.gz

t = t′ : τ ∈ Γ

Γ ` t = t′ : τ
(AXIOM)

Γ ` t = t′ : τ

γ,Γ ` t = t′ : τ
(WEAKENING) Γ `M : τ

Γ ` t = t : τ
(REFL)

Γ ` t′ = t : τ

Γ ` t = t′ : τ
(SYM)

Γ ` t = t′ : τ Γ ` t′ = t′′ : τ

Γ ` t = t′′ : τ
(TRANS)

y /∈ FV(t)

Γ ` λx : τ.t = λy : τ.t[x := y] : τ → τ ′
(α)

Γ ` λx : τ.t : τ → τ ′ Γ ` t′ : τ

Γ ` (λx : τ.t)t′ = t[t′ := x] : τ ′
(β)

Γ ` t′ : τ Γ ` t : τ → M τ ′

Γ ` (returnM t′) >>= t = t t′ : M τ ′
(LEFT-UNIT)

Γ ` t : M τ

Γ ` t >>= λx : τ.(returnM x) = t : M τ
(RIGHT-UNIT)

Γ ` t : M τ Γ ` t′ : τ → M τ ′ Γ ` t′′ : τ ′ → M τ ′′ x 6∈ FV (t′)

Γ ` (t >>= t′) >>= t′′ = t >>= (λx : τ.t′x >>= t′′) : M τ ′′
(ASSOCIATIVITY-?)

Γ ` returnM t : M τ

Γ ` liftM′ (returnM t) = returnM′ t : M′ τ
(LIFT-RETURN)

Γ ` t : M τ Γ ` t′ : τ → M τ ′ x 6∈ FV (t′)

Γ ` liftM′(t >>= t′) = (liftM′ t) >>= (λ(x : τ). liftM′ (t
′ x))

(LIFT-?)

Γ ` put t : StT ` τ S () Γ ` put t′ : StT ` τ S ()

Γ ` (put t >> put t′) = put t′ : StT ` τ S ()
(PUT-PUT)

Γ ` t : τ

Γ ` (put t >> get(StT RW τ S)) = put t >> return(StT RW τ S) t : StT RW τ S τ
(PUT-GET)

〈R〉 ≤ `, such that M = StT ` τ S

Γ ` getM >>=λx : τ. getM >>=λy : τ. returnM〈x, y〉 = getM >>=λz : τ. returnM〈z, z〉 : M (τ×τ)
(GET-GET)

Γ ` t : S τ S is StT RW τ (StT〈〉 τ ′ Id)

Γ ` t >> (mask S) = mask S : S ()
(CLOBBER-LO)

Γ ` liftS t : S () S is StT 〈〉 τ (StT RW τ ′ Id)

Γ ` liftS t >> (mask S) = (mask S) >> liftS t : S ()
(ATOMIC NONINTERFERENCE)

Figure 11: Type-directed Equational Logic for RWC

to be automatically checked with the attendant increased as-
surance. Thirdly, and most importantly, ReWire’s type system
is not a security type system in the usual sense [34]. Security
verification in ReWire is not fully automatic via a security type
system, but, rather, the equational style of security verification
of our previous work [1], [5] is supported by an effects type
system based on the marriage of effects and monads [6].
However, we believe that ReWire’s being a pure functional
language will support the adaptation of ideas from language-
based security to the construction of high assurance, secure
hardware via extensions to the ReWire type system.

The ReWire methodology, therefore, occupies a middle
ground between the security-via-typechecking approach of
Caisson and SecVerilog and traditional hardware verification
with theorem provers [20]. It combines the advantages of
both—static checking on the one hand and deductive reasoning
on the other—with the expressive power of functional lan-
guages. Our previous work [1]–[3] demonstrates that ReWire
possesses what the creators of the Delite framework refer to as
“the three P’s” [35]: productivity, performance and portability.
The current work shows ReWire also possesses a fourth “P”:
provability. Follow-on articles will present the formalizations
of previously published verifications of ReWire devices [1],
[2].

The CompCert [36] project mechanizes both a source lan-
guage’s semantics and compiler in Coq, thereby providing the
foundation for (1) verifying properties of C source programs
and (2) compiling those programs to efficient implementations
in a verifiably property-preserving manner. One particular
strength of the CompCert approach is that other tools may
be mechanized in Coq as well (e.g., static analysis tools,
etc., from the Verified Software Toolchain [37]) to provide
increased automation and trust to the whole workflow. The
current work is motivated by the goal of producing trusted
hardware in the same manner as CompCert supports trusted

C implementations. This is, admittedly, a very ambitious goal,
but the current work is an early, yet important, step in this
program. The current work also provides an important first
step towards the formal verification of the ReWire compiler.

REFERENCES

[1] A. Procter, W. Harrison, I. Graves, M. Becchi, and G. Allwein, “A
principled approach to secure multi-core processor design with ReWire,”
ACM TECS, vol. 16, no. 2, pp. 33:1–33:25, Feb. 2017.

[2] I. Graves, W. Harrison, A. Procter, and G. Allwein, “Provably correct
development of reconfigurable hardware designs via equational reason-
ing,” in IEEE Inter. Conf. on Field-Programmable Technology (ICFPT),
2015, pp. 160–171.

[3] I. Graves, A. Procter, W. Harrison, M. Becchi, and G. Allwein, “Hard-
ware synthesis from functional embedded domain-specific languages: A
case study in regular expression compilation,” in Applied Reconfigurable
Computing, ser. LNCS, vol. 9040, 2015, pp. 41–52.

[4] W. Harrison, A. Procter, I. Graves, M. Becchi, and G. Allwein, “A
programming model for reconfigurable computing based in functional
concurrency,” in 11th Inter. Symp. on Reconfigurable Communication-
centric Systems-on-Chip, 2016.

[5] W. Harrison and J. Hook, “Achieving information flow security through
monadic control of effects,” JCS, vol. 17, pp. 599–653, Oct 2009.

[6] P. Wadler, “The marriage of effects and monads,” in ICFP, 1998, pp.
63–74.

[7] A. Procter, “Semantics-driven design and implementation of high-
assurance hardware,” Ph.D. dissertation, University of Missouri, 2014.

[8] B. Huffman, “HOLCF ’11: A definitional domain theory for verify-
ing functional programs,” Ph.D. dissertation, Portland State University,
2012.

[9] L. Schröder and T. Mossakowski, “Hascasl: Integrated higher-order
specification and program development,” Theoretical Computer Science,
vol. 410, no. 12, pp. 1217 – 1260, 2009.

[10] E. Moggi, “Notions of computation and monads,” Information and
Computation, vol. 93, no. 1, pp. 55–92, July 1991.

[11] F. Nielson, H. Nielson, and C. Hankin, Principles of Program Analysis,
1999.

[12] S. Liang, P. Hudak, and M. Jones, “Monad transformers and modular
interpreters,” in POPL, 1995, pp. 333–343.

[13] A. P. W. Harrison and G. Allwein, “The confinement problem in the
presence of faults,” in ICFEM, 2012, pp. 182–197.

[14] D. Cock, G. Klein, and T. Sewell, “Secure microkernels, state monads
and scalable refinement,” in TPHOLs, 2008, pp. 167–182.

[15] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal,
“Ynot: Dependent types for imperative programs,” in ICFP, 2008, pp.
229–240.

[16] W. Swierstra, “A hoare logic for the state monad,” in TPHOLs, 2009,
pp. 440–451.

[17] X. Li, M. Tiwari, J. Oberg, V. Kashyap, F. Chong, T. Sherwood, and
B. Hardekopf, “Caisson: a hardware description language for secure
information flow,” in PLDI, 2011, pp. 109–120.

[18] X. Li, V. Kashyap, J. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kastner,
T. Sherwood, B. Hardekopf, and F. Chong, “Sapper: A language for
hardware-level security policy enforcement,” in ASPLOS, 2014.

[19] D. Zhang, Y. Wang, G. E. Suh, and A. Myers, “A hardware design
language for efficient control of timing channels,” Dept. of Computer
Science, Cornell University, Tech. Rep. 2014-04-10, 2014, extended
version of the authors’ ASPLOS15 paper.

[20] T. Melham, Higher Order Logic and Hardware Verification, ser. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1993, vol. 31.

[21] G. Cabodi and M. Murciano, “BDD-based hardware verification,” in
6th Inter. Conf. on Formal Methods for the Design of Computer,
Communication, and Software Systems, ser. SFM’06, 2006, pp. 78–107.

[22] A. Myers, personal communication, Mar. 2017.
[23] A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange, C. Hriţcu,

D. Pichardie, B. Pierce, R. Pollack, and A. Tolmach, “A verified
information-flow architecture,” in POPL, 2014, pp. 165–178.

[24] M. Gordon, “The semantic challenge of Verilog HDL,” in Logic in
Computer Science, 1995. LICS ’95. Proceedings., Tenth Annual IEEE
Symposium on, Jun 1995, pp. 136–145.

[25] C. Kloos and P. Breuer, Eds., Formal Semantics for VHDL. Kluwer
Academic Publishers, 1995.

[26] S. Goncharov and L. Schröder, “A coinductive calculus for asynchronous
side-effecting processes,” in Proc. of the 18th International Conf. on
Fundamentals of Computation Theory, 2011, pp. 276–287.

[27] K. Crary, A. Kliger, and F. Pfenning, “A monadic analysis of information
flow security with mutable state,” JFP, vol. 15, no. 2, pp. 249–291, Mar.
2005.

[28] D. Ghica and A. Jung, “Categorical semantics of digital circuits,” in
FMCAD, 2016.

[29] S. Peyton Jones, Ed., Haskell 98 Language and Libraries, the Revised
Report. Cambridge University Press, 2003.

[30] W. Harrison, “The essence of multitasking,” in Algebraic Methodology
and Software Technology, 2006, pp. 158–172.

[31] J. Goguen and J. Meseguer, “Unwinding and inference control,” in IEEE
Symp. on Security and Privacy, 1984, pp. 75–86.

[32] J. Mitchell, Foundations for Programming Languages. MIT Press
Cambridge, 1996.

[33] D. Sangiorgi, “On the origins of bisimulation and coinduction,” ACM
Trans. Program. Lang. Syst., vol. 31, no. 4, pp. 15:1–15:41, May 2009.

[34] A. Sabelfeld and A. Myers, “Language-based information-flow security,”
IEEE Journ. on Sel. Areas in Commun., vol. 21, no. 1, Jan. 2003.

[35] H. Lee, K. Brown, A. Sujeeth, H. Chafi, T. Rompf, M. Odersky, and
K. Olukotun, “Implementing domain-specific languages for heteroge-
neous parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 42–53, Sep.
2011.

[36] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, no. 7, pp. 107–115, Jul. 2009.

[37] “Verified Software Toolchain,” http://vst.cs.princeton.edu.

http://vst.cs.princeton.edu

	Introduction
	Background: ReWire's Programming Model
	Background: Monads
	Background: Monad Transformers
	State Monad Transformer
	Reactive Resumption Monad Transformer
	By-construction Properties of Layered Monads

	Defining Devices in ReWire
	Background: Goguen-Meseguer Non-interference
	The Marriage of Effects and Layered State Monads

	RWC: The ReWire Core Calculus
	Syntax
	Types
	Terms
	Stores and Configurations.

	Type System
	Small-Step Operational Semantics

	Metatheory
	Type Safety
	Normalization
	Soundness of Effect Labels

	Type-directed Equational Logic for ReWire Calculus
	Conclusions and Future Work
	References

