Metacomputation-based Compiler Architecture

William L. Harrison and Samuel N. Kamin

University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
harrison@cs.uiuc.edu,kamin@cs.uiuc.edu,
WWW home page: http://www-sal.cs.uiuc.edu/"{harrison,kamin}

Abstract

This paper presents a modular and extensible style of language specification based
on metacomputations. This style uses two monads to factor the static and dy-
namic parts of the specification, thereby staging the specification and achieving
strong binding-time separation. Because metacomputations are defined in terms
of monads, they can be constructed modularly and extensibly using monad trans-
formers. A number of language constructs are specified: expressions, control-
flow, imperative features, and block structure. Metacomputation-style specifica-
tion lends itself to semantics-directed compilation, which we demonstrate by cre-
ating a modular compiler for a block-structured, imperative while language.

Keywords: Compilers, Partial Evaluation, Semantics-Based Compilation, Pro-
gramming Language Semantics, Monads, Monad Transformers, Pass Separation.

1 Introduction

Metacomputations—computations that produce computations—arise naturally
in the compilation of programs. Figure 1 illustrates this idea. The source lan-
guage program s is taken as input by the compiler, which produces a target
language program t. So, compiling s produces another computation—namely,
the computation of t. Observe that there are two entirely distinct notions of
computation here: the compilation of s and the execution of t. The reader will
recognize this distinction as the classic separation of static from dynamic. Thus,
staging is an instance of metacomputation.

The main contributions of this paper are: (1) Compiler architecture
based on metacomputations: Metacomputation-based compiler architecture yields
substantially simpler language definitions than in [8], while still retaining its
modular “mix and match” approach to compiler construction. Combining the
metacomputation-based “reusable compiler building blocks” is also much simpler
than combining those in [8] (as is proving their correctness). (2) A modular and
extensible method of staging denotational specifications based on metacomputa-
tions: A style of language specification based on metacomputation is proposed
in which the static and dynamic parts of a language specification are factored
into distinct monads[7, 14,18, 27]. (3) Direct-style specifications: instead of writ-
ing all specifications in continuation-passing style, here we write in direct style,

s:Source

compile

Parsing
Type Checking

Code Generation

Optimization

Target Interpreter

t:Target

Stack
Manipulation

Updating Store

Fig. 1. Handwritten compiler as metacomputation

invoking the CPS monad transformer only when needed. This naturally simpli-
fies many of the equations, and although less essential than (1) and (2), it also
helps to make the approach more practical.

1 1

Expressions M ml

M 1 essi
Existing I?wperamive E)%pr.- ?S New Compiler
Compiler 1l i Igperan#‘e for High—l(f,vel

. M M - Programming

Building Control Flow Control Flow Language
Blocks M M i 1 guag

1 1 Block Structure

Block Structure 1 1
1 1

Fig. 2. Modular compilers constructed with existing compiler building blocks

We believe this style of language specification may have many uses, but in
this paper we concentrate on one: modular compilation. Modular compilers are
compilers built from building blocks that represent language features rather than
compilation phases, as illustrated in Figure 2.

Espinosa [7] and Liang, Hudak, & Jones [14] showed how to construct mod-
ular interpreters using the notion of monads[7,14,18,27] — or, more precisely,
monad transformers.

The current authors built on those ideas to produce modular compilers in
[8]. However, there the notion of staging, though conceptually at the heart of the
approach, was not explicit in the compiler building blocks we constructed. As in
traditional monadic semantics, the monadic structure was useful in creating the
domains, but those domains, once constructed, were “monolithic;” that is, they
gave no indication of which parts were for dynamic aspects of the computation
and which for static aspects. The result was awkwardness in communicating

between these aspects of the domain, which meant that “gluing together” com-
piler blocks was sometimes delicate. However, metacomputation-based compiler
architecture completely alleviates this awkwardness, so that combining compiler
blocks is simply a matter of applying the appropriate monad transformers.

Indeed, metacomputation is purposely avoided in [7,14,8]. A key aspect of
that work is that monad transformers are used to create the single monad used to
interpret or compile the language. The problem that inspired it was that monads
don’t compose nicely. Given monads M and M', their composition M o M’
— corresponding to an M-computation that produces an M’ computation —
usually does not produce the “right” monolithic domain. However, there may
exist monad transformers Ty and Ty such that Ths |d = M and Ty Id =
M', where (T o T)ld does give the “right” domain. The difference between
composing monads and composing monad transformers is what makes these
approaches work — monad transformers are a way to avoid metacomputation.

In this paper, we show that, for some purposes, metacomputation may be
exactly what one wants: Defining a compiler block via the metacomputation of
two monads gives an effective representation of staging. We are not advocating
abandoning monad transformers: the two monads can be constructed using them,
with the attendant advantages of that approach. We are simply saying that
having two monads — what might be called the static and dynamic monads —
and composing them seems to give the “right” domain for modular compilation.

The next section explains the advantages for modular compilation of meta-
computation-based language specification over the monolithic style. Section 3
reviews the most relevant related work. In Section 4, we review the theory of
monads and monad transformers and their use in language specification. Sec-
tion 5 presents a case study in metacomputation-style language specification; its
subsections present metacomputation-style specifications for expressions, control
flow, block structure, and imperative features, respectively. Section 6 shows how
to combine these compiler building blocks into a compiler for the combined lan-
guage, and presents a compiler and an example compilation. Section 7 discusses
the impact of metacomputation-based specification on compiler correctness. Fi-
nally, Section 8 summarizes this work and outlines future research.

2 Why Metacomputations?

In this section, we will describe at a high level why two monads are better
than one for modular compilation. Using metacomputations instead of a single
monolithic monad simplifies the use of the “code store” (defined below) in the
specification of reusable compiler building blocks.

In [8], we borrowed a technique from denotational semantics[26] for modeling
jumps, namely storing command continuations in a “code store” and denoting
“jump L” as “execute the continuation at label L in the code store.” Viewing
command continuations as machine code is a common technique in semantics-
directed compilation[28, 25]. Because our language specifications were in monadic
style, it was a simple matter to add label generator and code store states to

the underlying monad. Indeed, the primary use for monads in functional pro-
gramming seems to be that of adding state-like features to purely functional
languages and programs[27,22], and the fact that we structured our monads in
[8] with monad transformers made adding the new states simple.

The use of a code store is integral to the modular compilation technique de-
scribed in [8]. We use it to compile control-flow and procedures, and the presence
of the code store in our language specifications allowed us to make substantial
improvements over Reynolds[25] (e.g., avoiding infinite programs through jumps
and labels). Yet the mixing of static with dynamic data into one “monolithic”
monad causes a number of problems with using the code store. Consider the
program “if b then (if o’ then c)”. Compiling the outer “if” with initial contin-
uation halt and label 0 will result in the continuation “[if ¥’ then c]; halt” being
stored at label 0 and the label counter being incremented. The problem here is
that trying to compile this continuation via partial evaluation will fail. Why?
Because having been stored rather than ezecuted, the continuation stored at la-
bel 0 will not have access to the next label 1. Instead, the partial evaluator will
try to increment a (dynamic) variable rather than an actual (static) integer, and
this will cause an error (a partial evaluator can evaluate “14+1” but not “x+17).
In [8], the monolithic style specifications forced all static data to be explicitly
passed to stored command continuations, although this was at the expense of
modularity. In fact to compile if~then-else, the snapback operator[23] had to
be used. These complications also make reasoning about compilers constructed
in [8] difficult. We shall demonstrate in Section 5 that using metacomputations
results in vastly simpler compiler specifications and that this naturally makes
them easier to reason about.

3 Related work

Espinosa [7] and Hudak, Liang, and Jones [14] use monad transformers to create
modular, extensible interpreters. Liang [13, 15] addresses the question of whether
compilers can be developed similarly, but since he does not compile to machine
language, many of the issues we confront—especially staging—do not arise.

A syntactic form of metacomputation can be found in the two-level A-calculus
of Nielson[21]. Two-level A-calculus contains two distinct A-calculi—representing
the static and dynamic levels. Expressions of mixed level, then, have strongly
separated binding times by definition. Nielson[20] applies two-level A-calculus to
code generation for a typed A-calculus, and Nielson[21] presents an algorithm for
static analysis of a typed A-calculus which converts one-level specifications into
two-level specifications. Mogensen[16] generalizes this algorithm to handle vari-
ables of mixed binding times. The present work offers a semantic alternative to
the two-level A-calculus. We formalize distinct levels (in the sense of Nielson[21])
as distinct monads, and the resulting specifications have all of the traditional
advantages of monadic specifications (reusability, extensibility, and modularity).
While our binding time analysis is not automatic as in [21, 16], we consider a far
wider range of programming language features than they do.

Danvy and Vestergaard [5] show how to produce code that “looks like” ma-
chine language, by expressing the source language semantics in terms of machine
language-like combinators (e.g., “popblock”, “push”). When the interpreter is
closed over these combinators, partial evaluation of this closed term with respect
to a program produces a completely dynamic term, composed of a sequence of
combinators, looking very much like machine language. This approach is key to
making the monadic structure useful for compilation.

Reynolds’ [25] demonstration of how to produce efficient code in a compiler
derived from the functor category semantics of an Algol-like language was an
original inspiration for this study. Our approach to compilation improves on
Reynolds’s in two ways: it is monad-structured—that is, built from interchange-
able parts—and it includes jumps and labels where Reynolds simply allowed
code duplication and infinite programs.

4 Monads and Monad Transformers

In this section, we review the theory of monads [18,27] and monad transformers
[7,14]. Readers familiar with these topics may skip the section.

A monad is a type constructor M together with a pair of functions (obeying
certain algebraic laws that we omit here):

*M : M1 — (1 = M7') - M7/
unity : 7 — Mr

A value of type Mt is called a 7-computation, the idea being that it yields a
value of type 7 while also performing some other computation. The *,; opera-
tion generalizes function application in that it determines how the computations
associated with monadic values are combined. unity defines how a 7 value can
be regarded as a 7-computation; it is usually a trivial computation. To see how
monads are used, suppose we wish to define a language of integer expressions
containing constants and addition. The standard definition might be:

leit+ez] = [er] + [e2]

where [—] : Ezpression — int. However, this definition is inflexible; if expressions
needed to look at a store, or could generate errors, or had some other feature
not planned on, the equation would need to be changed.

Monads can provide this needed flexibility. To start, we rephrase the defini-
tion of [—] in monadic form (using infix bind *, as is traditional) so that [—]
has type Ezpression — M int:

[[61+62]] = [[61]] * ()\’L[[eg]] * ()\]unit(z—i—])))

The beauty of the monadic form is that the meaning of [—] can be reinter-
preted in a variety of monads. Monadic semantics separate the description of a
language from its denotation. In this sense, it is similar to action semantics[19]
and high-level semantics[12].

‘ Identity Monad Id: ‘ | Environment Monad Transformer Zgn,:

dr =7+ M'T = T EnvM 1 = Env — Mt
unityr ==z unity £ = A\p : Env. unity
Txg f=fzx z xw f=MXp:Env.(xp) *xu (Aa.fap)

liftyr—mrx=Ap: Env.x
rdEnv : M' Env

rdEnv = \p : Env. unitu(p)
inEnv : Env — M't — M'r

inEnvpz = A_ (zp): M'T

| CPS Monad Transformer Zcps: | | State Monad Transformer T,: |

M'T = Tpsans M = M'r = T, store M T = store — M(7 x store)
(r = Mans) - Mans unity z = Ao : store.unitu(z, o)

unity £ = Ak. k2 x v f = Aoo. (xoo) *m (AMa,o1).faor)

T xw f=Ak.z(Aa.fak) lifty, e © = A0. T *m Ay. unitu(y, o)

liftymr - @ = xm update : (store — store) — M'void

callee : ((a —» M'b) — M'a) — M'a updateA = Ao. unity (e, Ao)

callcc f = As.f(Aa.A_ka) K getStore : M'store

getStore = Ao. unitum (o, o)

Fig. 3. The Identity Monad, and Environment, CPS, and State Monad Transformers

The simplest monad is the identity monad, shown in Figure 3. Given the
identity monad, we can define add as ordinary addition. [—] would have type
Ezpression — int, and [ei+es] = [er] * (Mi.Jex] = (Aj.unit(i + j))).

Perhaps the best known monad is the state monad, which represents the
notion of a computation as something that modifies a store:

Mg;m = Sto — 7 x Sto

xx f = do.let (z',0') = zoin fi'o'
unitv = Ao.(v,0)

[er+ex] = [e1] * (Mi.Jea] * (Aj.unit(i + j)))

The % operation handles the bookkeeping of “threading” the store through the
computation. Now, [—] has type Expression — Sto — int x Sto. This might
be an appropriate meaning for addition in an imperative language. To define
operations that actually have side effects, we can define a function:

updateSto : (Sto — Sto) — Mgvoid
[Ac(e, f0)

getSto : Mg Sto
2 Mo.(0,0)

updateSto applies a function to the store and returns a useless value (we assume
a degenerate type void having a single element, which we denote o). getSto
returns the store.

Now, suppose a computation can cause side effects on two separate stores.
One could define a new “double-state” monad Msgy:

Msgi = Sto x Sto — 7 x Sto x Sto

that would thread the two states through the computation, with separate “up-
date” and “get” operations for each copy of Sto. One might expect to get Mag7
by applying the ordinary state monad twice. Unfortunately, Mg;(Mg;7) and
Myg:7 are very different types. This points to a difficulty with monads: they do
not compose in this simple manner.

Moggi[17] developed the notion of monad transformers (which he called
monad constructors) to solve this composition problem in a categorical set-
ting, and this work was extended in [7,14]. When applied to a monad M, a
monad transformer 7 creates a new monad M'. For example, the state monad
transformer, Tg; store, is shown in Figure 3. (Here, the store is a type argu-
ment, which can be replaced by any value which is to be “threaded” through
the computation.) Note that 7g; Stold is identical to the state monad, but here
we get a useful notion of composition: Tg; Sto (7Ts; Stold) is equivalent to the
two-state monad Mygy7. The state monad transformer also provides updateSto
and getSto operations appropriate to the newly-created monad. When compos-
ing 7g; Sto with itself, as above, the operations on the “inner” state need to be
lifted through the outer state monad; this is the main technical issue in [7, 14].

In our compiler specifications, there are multiple states and environments
added using the state and environment monad transformers. We distinguish the
additional combinators associated with each of these monad transformers by ap-
pending the data type name of the new state or environment to the combinator.
For example, there are Env (maps from variables to values) and Addr (free ad-
dress counter) environments, so there are separate “read” and “in” combinators
for both: rdEnv and inEnv for Env, and rdAddr and inAddr for Addr. Simi-
larly, there are separate “update” and “get” combinators for the value and code
states, Sto and Code. These are, respectively, updateSto and getSto for Sto
and updateCode and getCode for Code.

In our work in [8], we found it convenient to factor the state monad into
two parts: the state proper and the address allocator. This was really a “staging
transformation,” with the state monad representing dynamic computation and
the address allocator static computation, but, as mentioned earlier, it led to
significant complications. In the current paper, we are separating these parts
more completely, by viewing compilation as metacomputation.

4.1 A Semantics for Metacomputation

We can formalize this notion of metacomputation using monads[7,14,18,27] and
use the resulting framework as a basis for staging computations. Given a monad

M, the computations of type a is the type Ma. So given two monads M and N,
the metacomputations of type a is the type M(N a), because the M-computation
produces as a value an N-computation. This definition is not superfluous; as we
have noted, M o N is not generally a monad, so metacomputations are generally
a different notion altogether from computations.

Standard:

Dynam = Id [—e] : Dynam(int) = [e] *p Aé.unitp (—i)

‘ Implementation-oriented /Monolithic: ‘
Dynam = Zgny Addr (% Stold)

Addr = int, Sto = Addr — int Mono[—e] : Dynam(int) =
Thread : int X Addr — Dynam(int) Monole] *p Ai.
Thread(i,a) = rdAddr *p Aa.
updateSto[a — i] *p A_rdloc(a) inAddr (a + 1)
rdloc : Addr — Dynam(int) (Thread(i,a) *p Av.unitp (—v))

rdloc(a) = getSto *p Ac.unitp(ca)

‘ Metacomputation: ‘
Dynam = %, Stold, Static = Zg. Addr|d

C[—e] : Static(Dynam(int)) = Negate(pe,a) = ¢ *p Ai.
rdAddr *s Aa. Thread(i,a) *xp Av.
inAddr (a + 1) unitp(—v)

(Cle] *s Ade : Dynam(int).
units (Negate(de,a))

Fig. 4. Negation, 3 ways

5 A Case Study in Metacomputation-based Compiler
Architecture: Modular Compilation for the While
Language

In this section, we present several compiler building blocks. In section 6, they
will be combined to create a compiler. For the first two of these blocks, we also
give monolithic versions, drawn from [8], to illustrate why metacomputation
is helpful. Of particular importance to the present work, Section 5.4 presents
the reusable compiler building block for control flow, which demonstrates how
metacomputation-based compiler architecture solves the difficulties with the
monolithic approach we outlined in Section 2.

5.1 Integer Expressions Compiler Building Block

Consider the standard monadic-style specification of negation[7, 14, 27] displayed
in Figure 4. To use this as a compiler specification for negation, we need to make
a more implementation-oriented version, which might be defined informally as:

[—e] =[e] *p Ai. “Store i at a and return contents of a” *p Av.unitp (—v)

Let us assume that this is written in terms of a monad Dynam with bind and
unit operations *xp and unitp. Observe that this implementation-oriented
definition calculates the same value as the standard definition, but it stores the
intermediate value i as well. But where do addresses and storage come from?
In [8], we added them to the Dynam monad using monad transformers[7,14] as
in the “Implementation-oriented” specification in Figure 4. In that definition,
rdAddr reads the current top of stack address a, inAddr increments the top of
stack, and Thread stores 7 at a. The monad (Dynam) is used to construct the
domain containing both static and dynamic data.

In Figure 4, the definition of Thread uses updateSto : Dynam(void), which
has been lifted[14] through the (Zg,, Addr) monad transformer (i.e., redefined for
Teny Addr (& Stold)). Thus, we could have written lift 4 4,4, (updateSto[a — i])
instead in the definition of Thread in Figure 4, but for the sake of readabil-
ity, we assume throughout this paper that the combinators added by monad
transformers are lifted appropriately.

C[n] = units (unitp(n))

Cle1 + e2] : Static(Dynam(int)) = Add(¢1, ¢, a) =
rdAddr *s Aa. é1 *p Ai.
inAddr (a + 2) b2 *xp .
(Cle1] *s A¢1 : Dynam(int). Thread(i,a) *p Avi.
(C[e2] *s A¢2 : Dynam(int). Thread(i,a + 1) *p Avs.
unit s (Add(¢17 ¢27 a)) lll’litD(’U1 + ’Uz)

Fig. 5. Specification for Constants and Addition

In the “metacomputation”-style specification, we use two monads, Static,
to encapsulate the static data, and Dynam to encapsulate the dynamic data.
The meaning of the phrase is a metacomputation—the Static monad produces
a computation of the Dynam monad. Clear separation of binding times is thus
achieved.

Figure 5 displays the specification for addition, which is similar to negation.
Multiplication and subtraction are defined analogously.

5.2 Generating Code with Type-Directed Partial Evaluation

Scheme output from partial evaluator:

(lambda (store add negate read)
(lambda (a0)
(lambda (stol)
(cons nil
((store "Acc" (negate (read 0)))
((store 0 (negate (read 1))) ((store 1 7) stol)))))))

Pretty printed version:

1 :=7; 0 := -[1]; Acc := -[0];
Fig. 6. Compiling “— — 7"

Code is generated via type-directed partial evaluation[4] using the method
of Danvy and Vestergaard[5]. An example of code generation is presented in
Figure 6. The code produced takes the form of a number of stores and reads
from storage (underlined in the figure). For the sake of readability, we present a
pretty-printed version of this code as well (and from now on, we show only the
pretty-printed versions). To be more precise, we generate code for the expression
e by partially evaluating;:

Astore.Aplus.\negate.Aread.
(inAddr 0 C[e]) *s Ade.
units (¢ *p Ai.updateSto([Acc — i]))

(inAddr 0 C[e]) compiles e with the initial free store address of 0. The dynamic
part of C[e], ¢., is then executed, producing an integer ¢, which is then stored in
a register Acc. Before submitting the compilation semantics in Figures 4 and 5 to
the partial evaluator, we must first translate the definitions of the compiler blocks
and the Static and Dynam monads into Scheme, which is the input language
of the type-directed partial evaluator. It should be clear that the definitions
presented in this paper can be translated in a completely straightforward manner
into Scheme. We replace “updateSto[a — i]” by “updateSto(store(a,i))” in
the definition of Thread(i,a) in Figure 4, “(c a)” by “(reada)” (leaving the
Sto argument out for readability’s sake) in the definition of rdLoc in Figure 4,
“(—v)” by “(negatewv)”, and “(v; + v2)” by “(pluswv; v2)” in Figures 4 and 5,
respectively. The abstraction of the combinators store, plus, negate, and read
ensures that these names will be left in residual code; in other words, their
definitions are intentionally omitted to make the residual code look like machine
language. The result of partial evaluation is as shown in Figure 6. This code
generation technique is a monadic version of Danvy and Vestergaard’s [4, 5].

5.3 Constant-Folding Integer Expressions Compiler Building Block

There is a code optimization technique in traditional compilers known as cons-
tant-folding[1], which recognizes constant expressions (e.g., “1 + 2”) and eval-
uates them at compile-time, thereby eliminating some run-time computation.
Constant-folding fits quite naturally and easily into the metacomputation set-
ting as a reusable compiler building block, which is presented in Figure 7. If
an expression e is constant (i.e., contains no variables), then it can be evalu-
ated using the standard semantics for expressions [e] in the Static monad, and
the value v produced thereby can be “boosted” to the dynamic phase with
unitgs (unitp(v)). This has the same effect as constant-folding. The standard
semantics for expressions in the Static monad are:

[n] = unitg (n)
[—e] = [e] *s Ai.units (—i)
[er + e2] = [e1] *s Ai.[ea] *xs Aj.units (i + j)

5.4 Control-flow Compiler Building Block

We now present an example where separating binding times in specifications
with metacomputations has a very significant advantage over the monolithic
approach. Consider the three definitions of the conditional if~then statement
in Figure 8. The first is a dual continuation “control-flow” semantics, found
commonly in compilers[2]. If B is true, then the first continuation, [¢] *p &, is
executed, otherwise ¢ is skipped and just & is executed. A more implementation-
oriented (informal) specification might be:

[if b then c] =
[[b]] *D AB.
“oet two new labels L., L,” *p A(L., Ly)-
callcc (Ak.
“store k at L, then ([¢] *p (“jump to L.”)) at L.” *xp A_.
B(“jump to L.”, “jump to L;”})

To formalize this specification, we use a technique from denotational semantics
for modeling jumps. We introduce a continuation store, C'ode, and a label state
Label. A jump to label L simply invokes the continuation stored at L. The
second definition in Figure 8 presents an implementation-oriented specification
of if-then in monolithic style (that is, where Code and Label are both added to
Dynam). Again, this represents our approach in [8].

One very subtle problem remains: what is “newSegment”? One’s first impulse
is to define it as a simple update to the Code store (i.e., updateCode[L,
ke]), but here is where the monolithic approach greatly complicates matters.
Because the monolithic specification mixes static and dynamic computation, the
continuation k may contain both kinds of computation. But because it is stored
and not ezecuted, k will not have access to the current label count and any other

Static = Zeny Addrld Dynam = %, Stold

constexp(—) : Exp + Var — {true,false}

constexp(e) = case e of = true
e1 + e2 = constexp(e1) & constexp(ez)
—e’ = constexp(e')
T —> false

CF[n] = units (unitp(n))
CF[—e] = case constexp(e) of
true = [—e] x5 Ai.units (unitp (7))

false = rdAddr x5 Aa.inAddr (a + 1)
(CFle] *s Ade.units (Negate(pe,a))

CF[[€1 —+ 62]] =
case (constexp(e1), constexp(ez)) of
(true, true) = [e1 + e2] *s Ai.units (unitp (7))

(true, false) =

([ex] *s Xi.CF[ez] *s A¢2.units | Thread(j,a) *p Avs.

rdAddr *s Aa.inAddr (a + 1) o2 *p Aj.
)
(unitp (7 + v2))

(false, true) =

(CFle1] *s A¢2.[ez] *s Aj.units | Thread(i,a) *p Avi.

rdAddr *s Aa.inAddr (a + 1) ¢1 *D M.
unitp (v1 + j)

(false, false) =

rdAddr *s Aa.inAddr (a + 2)
(CFH61]I *xS A¢1CF|I€2]] *S A(ﬁz.ul’litg (Add(¢1,¢2,a)))

Fig. 7. Constant-Folding Compilation Semantics for Integer Expressions

Control-Flow:

Dynam = Tcps void Id [if b then ¢] =
Bool =Va.ax a— « [b] *p AB: Bool.callcc (Ak.B([c] *p k,K))

‘ Implementation-oriented /Monolithic: ‘

Dynam = Zcps void (%, Label (T Codeld)) newlabel : Dynam(Label)

Label = int, Code = Dynam void newlabel =

jump : Label — Dynamvoid getLabel %p Al: Label.

jump L = getCode xp (M : Code.IT L) updateLabel[L — L + 1] *p A_.
unitp (1)

Monol[if b then ¢] : Dynam(void) =

Mono[b] *p AB : Bool.

newlabel xp AL,.

newlabel xp ALe..

callcc (k.
newSegment (L,,k®) *p A_.
newSegment (L., Mono[c] *p A-.jump L.) *p A_.

B(junp Lo, jump L))

‘ Metacomputation: ‘

Dynam = Zcps void (7%, Code Id), Static = T, Label Id
IfThen : Dynam(Bool) x Dynam(void) X Label x Label — Dynam(void)
IfThen(é5, de; Le, L) = ¢5 *p AB : Bool.
callcc (Ak.
updateCode[L, — ko] *p A_.
updateCode[L; — ¢ *p A_.jump L.] *p A-.
B(junp Le, jump L))

C[if b then] : Static(Dynam void) =
C[[b]] *xS)\qﬁB.
C[[c]] *xS)\(ﬁc.
newlabel *s AL..
newlabel *s ALj.
units (IfThen(¢s, dc, Le, L))

Fig. 8. if-then: 3 ways

static data necessary for proper staging. Therefore, newSegment must explicitly
pass the current label count and any other static intermediate data structure to
the continuation it stores'.

Cle1 < e2] : Static(Dynam Bool) =
rdAddr *s Aa.
inAddr (a + 2)
C[[€1]| *S /\¢el.
C[[eg]l *S)\¢32.
¢e, *D i :int.
¢ey, *D Aj :int.
Thread(i,a) *p Avi.
Thread(j, (a + 1)) *p Ava.
)\(KT,KF).)

((v1 Lv2) — KT,kF)

unitg

unitp

C[while b do] : Static(Dynam void) =
Clb] *s A¢s.
C[[c]] *S /\¢c.
newlabel x5 ALest.
newlabel *s AL..
newlabel *s AL,.

callcc Ak.
updateCode[L, — K] *p A_.

unitg updateCode[Lc — ¢ *p (jump Liest)] *p

updateCode[Licst — ¢ *p AB.((B(jump L., jump L.)e)] *p
jump Liest

Fig. 9. Specification for < and while

The last specification in Figure 8 defines if-then as a metacomputation and
is much simpler than the monolithic-style specification. Observe that Dynam
does not include the Label store, and so the continuation x now includes only
dynamic computations. Therefore, there is no need to pass in the label count to
K, and so, k may simply be stored in Code. This is a central advantage of the
metacomputation-based specification: because of the separation of static
and dynamic data into two monads, the complications outlined in Section 2
associated with storing command continuations in [8] (e.g., explicitly passing
static data and use of a snapback operator[23]) are completely unnecessary.

Figure 9 contains the specifications for < and while, which are very similar to
the specifications of addition and if-then, respectively, that we have seen already.

1A full description of newSegment is found in [8].

(In Figures 9, 10, and 11, we have set the dynamic parts of the computation in
a box for emphasis.)

5.5 Block Structure Compiler Building Block

Dynam = %, Stold C[new z in (] : Static(Dynam void) =
Static = Zeny Env (Fnv Addr1d) rdAddr *s Aa.

set : Addr — Dynam(void) inAddr (a + 1)

seta = Av.updateSto(a — v) rdEnv xs Ap.

get : Addr — Dynam(int) inEnv (p[z — units (seta, get a)]) C[c]
geta = getSto *p Ac.unitp(ca) C[z] = rdEnv xs Ap.(pz)

Fig. 10. Compiler Building Block for Block Structure

The block structure language includes new z in ¢, which declares a new
program variable z in ¢. The compiler building block for this language appears
in Figure 10. The static part of this specification allocates a free stack location
a, and the program variable z is bound to an accepter-expresser pair[24] in the
current environment p. In an accepter-expresser pair {acc, exp), acc accepts an
integer value and sets the value of its variable to the value, and the expresser
exp simply returns the current value of the variable. set and get set and re-
turn the contents of location a, respectively. ¢ is then compiled in the updated
environment and larger stack (a + 1).

5.6 Imperative Features Compiler Building Block

Dynam = 7%, Stold, Static = Zn Envld Clz :=¢€] : Static(Dynam void) =
Cler;e2] : Static(Dynamvoid) = rdEnv xs Ap.
Cler] *s Ade, - Clz] *s A acc,-).
C[[CQ]I *S)\(1362. C[[e]] *S /\¢e.
unitg ‘ (Pey *D Aepcy) ‘ unitg ‘ (¢e *p Ai:int.(acci)) ‘

Fig. 11. Compiler Building Block for Imperative Features

The simple imperative language includes assignment (:=) and sequencing
(). The compiler building block for this language appears in Figure 11. For se-
quencing, the static part of the specification compiles ¢; and ¢s in succession,
while the dynamic (boxed) part runs them in succession. For assignment, the

static part of the specification retrieves the accepter[24] acc for program vari-
able = from the current environment p and compiles ¢, while the dynamic part
calculates the value of ¢ and passes it to acc.

6 Combining Compiler Building Blocks

Block Structure Control-flow Block Structure + Control-flow

Label

Static
+ =
CPS
Dynam e
Eq uations: EqBlock EqCF EqBlock v EqCF

Fig. 12. Combining Compiler Building Blocks

Figure 12 illustrates the process of combining the compiler building blocks
for the block structure and control-flow languages. It is important to emphasize
that this is much simpler than in [8], in that there is no explicit passing of static
data needed. The process is nothing more than applying the appropriate monad
transformers to create the Static and Dynam monads for the combined language.
Recall that for the block structure language:

Static = T Env (Teny Addr 1d), and Dynam = Id
For the control flow language:
Static = %; Label Id, and Dynam = Zcps void (% Code (%; Stold))

To combine the compiler building blocks for these languages, one simply com-
bines the respective monad transformers:

Static = Ty Env (Teny Addr (%, Label Id))
Dynam = Tcps void (% Code (%, Stold))

Now, the specifications for both of the smaller languages, Eqpoc, and Eqcr,
apply for the “larger” Static and Dynam monads, and so the compiler for the
combined language is specified by Eqpiockt UEqcF-

Compiler:
Dynam = Tcps void (Z; Code (T Stold)), Static = Teny Env (Teny Addr (%, Label Id))
Language = Expressions + Imperative + Control-flow + Block structure + Booleans

Equations = Eqgypr U Eqimper Y £4Control-flow Y E4Block Y £4Bool

Source Code: new z in new y in

r =05 y:=1;
while (1 < z) do
y = y¥*x; x 1= z-1;
0 :=5; 2: 2 := [1]; 3: halt;
1 :=1; 3 := [0];
jump 1; 1 := [2] * [3];
2 := [0];
1 2 :=1; 3 :=1;
3 := [0]; 0 := [2] - [3];
BRLEQ [2] [3] 2 3; jump 1;

Fig. 13. Compiler for While language and example compilation

Figure 13 contains the compiler for the while language, and an example
program and its pretty-printed compiled version.

7 Correctness

In this section, we outline an example correctness specification for a reusable

compiler building block written in metacomputation style. In particular, we illus-

trate the advantages with respect to compiler correctness of metacomputation-

based compiler specifications over the monolithic style specifications of [8] and

also of the general usefulness of monads and monad transformers with respect to

compiler correctness. Although lack of space makes a full exposition of metacomputation-

based compiler correctness impossible here, we hope to convey the basic issues?.
The correctness of a reusable compiler building block for a source language

feature is specified by comparing the compilation semantics C[—] with the stan-

dard semantics [—] for that feature. Let us take as an example the conditional

if-then. Its standard and compilation semantics are presented in Figure 8. A

(slightly informal) specification of if~then is: If L, # L, and L., L, are unbound

2 The interested reader may consult [9].

in the code store, then
IfThen([o], [e], Les L) *p A-.initCode = [if b then ¢] xp A_.initCode

where initCode = updateCode(_.IT) for arbitrary constant II : Code. Be-
cause [fThen([8],[c],Lc,Lx) will affect the code store and [if b then ¢] will not,
IfThen([b], [c], Le, L) # [if b then ¢]. But by “masking out” the code store
state on both sides with initCode—which sets the code store to constant II—
we require that both sides of the above equation have the same action on the
value store Sto.

The above specification is easier to prove than the analogous one in mono-
lithic style because the metacomputation-based definition in Figure 8 just stores
the continuation s while the monolithic-style definition manipulates k as was
outlined in Sections 2 and 5.4. Furthermore, here is an example of how monad
transformers help with compiler correctness proofs. Although the above equa-
tion holds in Dynam = Zcps Void (% Label (T, Stold)), other monad transform-
ers could be applied to Dynam for the purposes of adding new source language
features and the specification would still hold®. So, the use of monad transform-
ers in this work yields a kind of proof reuse for metacomputation-based compiler
correctness[15].

8 Conclusions and Future Work

Metacomputations are a simple and elegant structure for representing staged
computation within the semantics of a programming language. This paper presents
a modular and extensible style of language specification based on metacomput-
ation. This style uses two monads to factor the static and dynamic parts of the
specification, thereby staging the specification and achieving strong binding-time
separation. Because metacomputations are defined in terms of monads, they can
be constructed modularly and extensibly using monad transformers. We exploit
this fact to create modular compilers.

Future work focuses on two areas: specifying other language constructs like
objects, classes, and exceptions; and exploring the use of metacomputations in
the semantics of two-level languages.

Acknowledgements

The authors would like to thank Uday Reddy and the rest of the functional
programming research group at UTUC for offering many helpful suggestions that
led to significant improvements in the presentation.

3 Given certain fairly weak conditions on the order of monad transformer application.
See [13-15] for details.

References

1.

2.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. V. Aho, R. Sethi, and J. D. Ullman Compilers: Principles, Techniques, and
Tools, Addison-Wesley, 1986.

A. Appel, Modern Compiler Implementation in ML, Cambridge University Press,
New York, 1998.

A. Appel, Compiling with Continuations, Cambridge University Press, New York,
1992.

O. Danvy, “Type-Directed Partial Evaluation,” Proceedings of the ACM Confer-
ence on the Principles of Programming Languages, 1996.

O. Danvy and R. Vestergaard, “Semantics-Based Compiling: A Case Study in
Type-Directed Partial Evaluation,” Fighth International Symposium on Program-
ming Language Implementation and Logic Programming, 1996, pages 182-197.

R. Davies and F. Pfenning, “A Modal Analysis of Staged Computation,” Proceed-
ings of the ACM Conference on the Principles of Programming Languages, 1996.

D. Espinosa, “Semantic Lego,” Doctoral Dissertation, Columbia University, 1995.
W. Harrison and S. Kamin, “Modular Compilers Based on Monad Transformers,”
Proceedings of the IEEE International Conference on Programming Languages,
1998, pages 122-131.

W. Harrison, “Modular Compilers and Their Correctness Proofs,” Doctoral Thesis
(forthcoming), University of Illinois at Urbana-Champaign, 2000.

N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation and Automatic
Program Generation, Prentice-Hall 1993.

U. Jorring and W. Scherlis, “Compilers and Staging Transformations,” Proceedings
of the ACM Conference on the Principles of Programming Languages, 1986.

P. Lee, Realistic Compiler Generation, MIT Press, 1989.

S. Liang, “A Modular Semantics for Compiler Generation,” Yale University De-
partment of Computer Science Technical Report TR-1067, February 1995.

S. Liang, P. Hudak, and M. Jones, Monad Transformers and Modular Interpreters.
Proceedings of the ACM Conference on the Principles of Programming Languages,
1995.

S. Liang, “Modular Monadic Semantics and Compilation,” Doctoral Thesis, Yale
University, 1997.

T. Mogensen. “Separating Binding Times in Language Specifications,” Proceedings
of the ACM Conference on Functional Programming and Computer Architecture,
pp 12-25, 1989.

E. Moggi. An Abstract View of Programming Languages. Technical Report ECS-
LFCS-90-1183, Laboratory for Foundations of Computer Science, University of Ed-
inburgh, Edinburgh, Scotland, 1990.

E. Moggi, “Notions of Computation and Monads,” Information and Computation
93(1), pp. 55-92, 1991.

P. Mosses, Action Semantics, Cambridge University Press, 1992.

H. Nielson and F. Nielson, “Code Generation from two-level denotational meta-
languages,” in Programs as Data Objects, Lecture Notes in Computer Science 217
(Springer, Berlin, 1986).

H. Nielson and F. Nielson, “Automatic Binding Time Analysis for a Typed A-
calculus,” Science of Computer Programming 10, 2 (April 1988), pp 139-176.

S. L. Peyton-Jones and Philip Wadler. “Imperative Functional Programming,”
Twentieth ACM Symposium on Principles of Programming Languages, 1993.

23

24.

25.

26.

27.

28.

. U. Reddy. “Global State Considered Unnecessary: Semantics of Interference-free
Imperative Programming,” ACM SIGPLAN Workshop on State in Programming
Languages, pp. 120-135, 1993.

J. Reynolds. “The Essence of Algol,” Algorithmic Languages, Proceedings of the
International Symposium on Algorithmic Languages, pp. 345-372, 1981.

J. Reynolds, “Using Functor Categories to Generate Intermediate Code,” Proceed-
ings of the ACM Conference on the Principles of Programming Languages, pages
25-36, 1995.

J. E. Stoy, Denotational Semantics: the Scott-Strachey Approach to Programming
Language Theory, MIT Press, 1977.

P. Wadler, “The essence of functional programming,” Proceedings of the ACM
Conference on the Principles of Programming Languages, pages 1-14, 1992.

M. Wand, “Deriving Target Code as a Representation of Continuation Semantics,”
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, pp.
496-517, 1982.

