
Metacomputation�based Compiler Architecture

William L� Harrison and Samuel N� Kamin

University of Illinois at Urbana�Champaign� Urbana IL ������ USA
harrison�cs�uiuc�edu�kamin�cs�uiuc�edu�

WWW home page� http���www�sal�cs�uiuc�edu��fharrison�kaming

Abstract

This paper presents a modular and extensible style of language speci�cation based

on metacomputations� This style uses two monads to factor the static and dy�

namic parts of the speci�cation� thereby staging the speci�cation and achieving

strong binding�time separation� Because metacomputations are de�ned in terms

of monads� they can be constructed modularly and extensibly using monad trans�

formers� A number of language constructs are speci�ed� expressions� control�

�ow� imperative features� and block structure� Metacomputation�style speci�ca�

tion lends itself to semantics�directed compilation� which we demonstrate by cre�

ating a modular compiler for a block�structured� imperative while language�

Keywords� Compilers� Partial Evaluation� Semantics�Based Compilation� Pro�
gramming Language Semantics� Monads� Monad Transformers� Pass Separation�

� Introduction

Metacomputations�computations that produce computations�arise naturally
in the compilation of programs� Figure � illustrates this idea� The source lan�
guage program s is taken as input by the compiler� which produces a target
language program t� So� compiling s produces another computation�namely�
the computation of t� Observe that there are two entirely distinct notions of
computation here� the compilation of s and the execution of t� The reader will
recognize this distinction as the classic separation of static from dynamic� Thus�
staging is an instance of metacomputation�

The main contributions of this paper are� ��� Compiler architecture

based on metacomputations�Metacomputation�based compiler architecture yields
substantially simpler language de	nitions than in 
��� while still retaining its
modular mix and match� approach to compiler construction� Combining the
metacomputation�based reusable compiler building blocks� is also much simpler
than combining those in 
�� �as is proving their correctness�� ��� A modular and

extensible method of staging denotational speci�cations based on metacomputa�

tions� A style of language speci	cation based on metacomputation is proposed
in which the static and dynamic parts of a language speci	cation are factored
into distinct monads
�� ��� ��� ���� ��� Direct�style speci�cations� instead of writ�
ing all speci	cations in continuation�passing style� here we write in direct style�



Parsing

Type Checking

Code Generation

compile

Optimization

Target Interpreter

Updating Store

Stack
Manipulation

s:Source
t:Target

Fig� �� Handwritten compiler as metacomputation

invoking the CPS monad transformer only when needed� This naturally simpli�
	es many of the equations� and although less essential than ��� and ���� it also
helps to make the approach more practical�

for High-level
New Compiler

Blocks
Building
Compiler
Existing

Language
Programming 

Control Flow

Imperative

Expressions

Block Structure

Control Flow

Imperative

Expressions

Block Structure

Fig� �� Modular compilers constructed with existing compiler building blocks

We believe this style of language speci	cation may have many uses� but in
this paper we concentrate on one� modular compilation� Modular compilers are
compilers built from building blocks that represent language features rather than
compilation phases� as illustrated in Figure ��

Espinosa 
�� and Liang� Hudak� � Jones 
��� showed how to construct mod�
ular interpreters using the notion of monads
�� ��� ��� ��� � or� more precisely�
monad transformers�

The current authors built on those ideas to produce modular compilers in

��� However� there the notion of staging� though conceptually at the heart of the
approach� was not explicit in the compiler building blocks we constructed� As in
traditional monadic semantics� the monadic structure was useful in creating the
domains� but those domains� once constructed� were monolithic�� that is� they
gave no indication of which parts were for dynamic aspects of the computation
and which for static aspects� The result was awkwardness in communicating



between these aspects of the domain� which meant that gluing together� com�
piler blocks was sometimes delicate� However� metacomputation�based compiler
architecture completely alleviates this awkwardness� so that combining compiler
blocks is simply a matter of applying the appropriate monad transformers�

Indeed� metacomputation is purposely avoided in 
�� ��� ��� A key aspect of
that work is that monad transformers are used to create the single monad used to
interpret or compile the language� The problem that inspired it was that monads
don�t compose nicely� Given monads M and M �� their composition M � M �

� corresponding to an M �computation that produces an M � computation �
usually does not produce the right� monolithic domain� However� there may
exist monad transformers TM and TM � such that TM Id � M and TM � Id �
M �� where �TM � TM ��Id does give the right� domain� The di�erence between
composing monads and composing monad transformers is what makes these
approaches work � monad transformers are a way to avoid metacomputation�

In this paper� we show that� for some purposes� metacomputation may be
exactly what one wants� De�ning a compiler block via the metacomputation of

two monads gives an e�ective representation of staging� We are not advocating
abandoning monad transformers� the two monads can be constructed using them�
with the attendant advantages of that approach� We are simply saying that
having two monads � what might be called the static and dynamic monads �
and composing them seems to give the right� domain for modular compilation�

The next section explains the advantages for modular compilation of meta�
computation�based language speci	cation over the monolithic style� Section �
reviews the most relevant related work� In Section �� we review the theory of
monads and monad transformers and their use in language speci	cation� Sec�
tion � presents a case study in metacomputation�style language speci	cation� its
subsections present metacomputation�style speci	cations for expressions� control
�ow� block structure� and imperative features� respectively� Section � shows how
to combine these compiler building blocks into a compiler for the combined lan�
guage� and presents a compiler and an example compilation� Section � discusses
the impact of metacomputation�based speci	cation on compiler correctness� Fi�
nally� Section � summarizes this work and outlines future research�

� Why Metacomputations�

In this section� we will describe at a high level why two monads are better
than one for modular compilation� Using metacomputations instead of a single
monolithic monad simpli	es the use of the code store� �de	ned below� in the
speci	cation of reusable compiler building blocks�

In 
��� we borrowed a technique from denotational semantics
��� for modeling
jumps� namely storing command continuations in a code store� and denoting
jump L� as execute the continuation at label L in the code store�� Viewing
command continuations as machine code is a common technique in semantics�
directed compilation
��� ���� Because our language speci	cations were in monadic
style� it was a simple matter to add label generator and code store states to



the underlying monad� Indeed� the primary use for monads in functional pro�
gramming seems to be that of adding state�like features to purely functional
languages and programs
������� and the fact that we structured our monads in

�� with monad transformers made adding the new states simple�

The use of a code store is integral to the modular compilation technique de�
scribed in 
��� We use it to compile control��ow and procedures� and the presence
of the code store in our language speci	cations allowed us to make substantial
improvements over Reynolds
��� �e�g�� avoiding in	nite programs through jumps
and labels�� Yet the mixing of static with dynamic data into one monolithic�
monad causes a number of problems with using the code store� Consider the
program if b then �if b� then c��� Compiling the outer if� with initial contin�
uation halt and label � will result in the continuation 

if b� then c���halt� being
stored at label � and the label counter being incremented� The problem here is
that trying to compile this continuation via partial evaluation will fail� Why�
Because having been stored rather than executed� the continuation stored at la�
bel � will not have access to the next label �� Instead� the partial evaluator will
try to increment a �dynamic� variable rather than an actual �static� integer� and
this will cause an error �a partial evaluator can evaluate ���� but not x�����
In 
��� the monolithic style speci	cations forced all static data to be explicitly
passed to stored command continuations� although this was at the expense of
modularity� In fact to compile if�then�else� the snapback operator
��� had to
be used� These complications also make reasoning about compilers constructed
in 
�� di�cult� We shall demonstrate in Section � that using metacomputations
results in vastly simpler compiler speci	cations and that this naturally makes
them easier to reason about�

� Related work

Espinosa 
�� and Hudak� Liang� and Jones 
��� use monad transformers to create
modular� extensible interpreters� Liang 
��� ��� addresses the question of whether
compilers can be developed similarly� but since he does not compile to machine
language� many of the issues we confront�especially staging�do not arise�

A syntactic form of metacomputation can be found in the two�level ��calculus
of Nielson
���� Two�level ��calculus contains two distinct ��calculi�representing
the static and dynamic levels� Expressions of mixed level� then� have strongly
separated binding times by de	nition� Nielson
��� applies two�level ��calculus to
code generation for a typed ��calculus� and Nielson
��� presents an algorithm for
static analysis of a typed ��calculus which converts one�level speci	cations into
two�level speci	cations� Mogensen
��� generalizes this algorithm to handle vari�
ables of mixed binding times� The present work o�ers a semantic alternative to
the two�level ��calculus� We formalize distinct levels �in the sense of Nielson
����
as distinct monads� and the resulting speci	cations have all of the traditional
advantages of monadic speci	cations �reusability� extensibility� and modularity��
While our binding time analysis is not automatic as in 
��� ���� we consider a far
wider range of programming language features than they do�



Danvy and Vestergaard 
�� show how to produce code that looks like� ma�
chine language� by expressing the source language semantics in terms of machine
language�like combinators �e�g�� popblock�� push��� When the interpreter is
closed over these combinators� partial evaluation of this closed term with respect
to a program produces a completely dynamic term� composed of a sequence of
combinators� looking very much like machine language� This approach is key to
making the monadic structure useful for compilation�

Reynolds� 
��� demonstration of how to produce e�cient code in a compiler
derived from the functor category semantics of an Algol�like language was an
original inspiration for this study� Our approach to compilation improves on
Reynolds�s in two ways� it is monad�structured�that is� built from interchange�
able parts�and it includes jumps and labels where Reynolds simply allowed
code duplication and in	nite programs�

� Monads and Monad Transformers

In this section� we review the theory of monads 
��� ��� and monad transformers

�� ���� Readers familiar with these topics may skip the section�

A monad is a type constructor M together with a pair of functions �obeying
certain algebraic laws that we omit here��

�M � M� � �� � M� ��� M� �

unitM � � � M�

A value of type M� is called a ��computation� the idea being that it yields a
value of type � while also performing some other computation� The �M opera�
tion generalizes function application in that it determines how the computations
associated with monadic values are combined� unitM de	nes how a � value can
be regarded as a � �computation� it is usually a trivial computation� To see how
monads are used� suppose we wish to de	ne a language of integer expressions
containing constants and addition� The standard de	nition might be�



e��e��� � 

e��� � 

e���

where 

��� � Expression � int� However� this de	nition is in�exible� if expressions
needed to look at a store� or could generate errors� or had some other feature
not planned on� the equation would need to be changed�

Monads can provide this needed �exibility� To start� we rephrase the de	ni�
tion of 

��� in monadic form �using in	x bind �� as is traditional� so that 

���
has type Expression� M int�



e��e��� � 

e��� � ��i�

e��� � ��j�unit�i� j���

The beauty of the monadic form is that the meaning of 

��� can be reinter�
preted in a variety of monads� Monadic semantics separate the description of a
language from its denotation� In this sense� it is similar to action semantics
���
and high�level semantics
����



Identity Monad Id�

Id � � �

unitId x � x

x �Id f � f x

Environment Monad Transformer TEnv�

M�� � TEnv EnvM � � Env � M�

unitM� x � �� � Env�unitM x

x �M� f � �� � Env� 	x�
 �M 	�a�f a �


lift
M��M��

x � �� � Env� x

rdEnv � M�Env

rdEnv � �� � Env�unitM	�


inEnv � Env � M�� � M��

inEnv �x � � � 	x�
 � M��

CPS Monad Transformer TCPS�

M�� � TCPS ansM � �
	� � M ans
� M ans

unitM� x � ��� � x

x �M� f � ��� x	�a�f a�


lift
M��M��

x � x �M

callcc � 		a� M�b
� M�a
� M�a

callcc f � ���f	�a�� �� a
�

State Monad Transformer TSt�

M�� � TSt storeM � � store� M	� � store


unitM� x � �� � store�unitMhx� �i

x �M� f � ���� 	x��
 �M 	�ha� ��i�f a ��


lift
M��M��

x � ��� x �M �y�unitMhy� �i

update � 	store� store
� M�void

update	 � ���unitMh�� 	�i
getStore � M�store

getStore � ���unitMh�� �i

Fig� �� The Identity Monad� and Environment� CPS� and State Monad Transformers

The simplest monad is the identity monad� shown in Figure �� Given the
identity monad� we can de	ne add as ordinary addition� 

��� would have type
Expression � int � and 

e��e��� � 

e��� � ��i�

e��� � ��j�unit�i� j����

Perhaps the best known monad is the state monad� which represents the
notion of a computation as something that modi	es a store�

MSt� � Sto� � � Sto

x � f � ��� let �x�� ��� � x� in fx���

unit v � ����v� ��


e��e��� � 

e��� � ��i�

e��� � ��j�unit�i� j���

The � operation handles the bookkeeping of threading� the store through the
computation� Now� 

��� has type Expression � Sto � int � Sto� This might
be an appropriate meaning for addition in an imperative language� To de	ne
operations that actually have side e�ects� we can de	ne a function�

updateSto � �Sto� Sto�� MStvoid

� f �� ������ f��
getSto � MStSto

� ������ ��



updateSto applies a function to the store and returns a useless value �we assume
a degenerate type void having a single element� which we denote ��� getSto
returns the store�

Now� suppose a computation can cause side e�ects on two separate stores�
One could de	ne a new double�state� monad M�St�

M�St� � Sto� Sto� � � Sto� Sto

that would thread the two states through the computation� with separate up�
date� and get� operations for each copy of Sto� One might expect to get M�St�

by applying the ordinary state monad twice� Unfortunately� MSt�MSt�� and
M�St� are very di�erent types� This points to a di�culty with monads� they do
not compose in this simple manner�

Moggi
��� developed the notion of monad transformers �which he called
monad constructors� to solve this composition problem in a categorical set�
ting� and this work was extended in 
�� ���� When applied to a monad M� a
monad transformer T creates a new monad M�� For example� the state monad
transformer� TSt store� is shown in Figure �� �Here� the store is a type argu�
ment� which can be replaced by any value which is to be threaded� through
the computation�� Note that TSt Sto Id is identical to the state monad� but here
we get a useful notion of composition� TSt Sto �TSt Sto Id� is equivalent to the
two�state monad M�St� � The state monad transformer also provides updateSto
and getSto operations appropriate to the newly�created monad� When compos�
ing TSt Sto with itself� as above� the operations on the inner� state need to be
lifted through the outer state monad� this is the main technical issue in 
�� ����

In our compiler speci	cations� there are multiple states and environments
added using the state and environment monad transformers� We distinguish the
additional combinators associated with each of these monad transformers by ap�
pending the data type name of the new state or environment to the combinator�
For example� there are Env �maps from variables to values� and Addr �free ad�
dress counter� environments� so there are separate read� and in� combinators
for both� rdEnv and inEnv for Env� and rdAddr and inAddr for Addr� Simi�
larly� there are separate update� and get� combinators for the value and code
states� Sto and Code� These are� respectively� updateSto and getSto for Sto
and updateCode and getCode for Code�

In our work in 
��� we found it convenient to factor the state monad into
two parts� the state proper and the address allocator� This was really a staging
transformation�� with the state monad representing dynamic computation and
the address allocator static computation� but� as mentioned earlier� it led to
signi	cant complications� In the current paper� we are separating these parts
more completely� by viewing compilation as metacomputation�

��� A Semantics for Metacomputation

We can formalize this notion of metacomputation using monads
�� ��� ��� ��� and
use the resulting framework as a basis for staging computations� Given a monad



M� the computations of type a is the type M a� So given two monads M and N�
the metacomputations of type a is the type M�N a�� because the M�computation
produces as a value an N�computation� This de	nition is not super�uous� as we
have noted� M �N is not generally a monad� so metacomputations are generally
a di�erent notion altogether from computations�

Standard�

Dynam � Id ���e�� � Dynam	int
 � ��e�� �D �i�unitD 	�i


Implementation�orientedMonolithic�

Dynam � TEnv Addr 	TSt Sto Id

Addr � int� Sto � Addr� int

Thread � int�Addr� Dynam	int

Thread	i� a
 �
updateSto�a �� i� �D � �rdloc	a


rdloc � Addr� Dynam	int

rdloc	a
 � getSto �D ���unitD	�a


Mono���e�� � Dynam	int
 �
Mono��e�� �D �i�

rdAddr �D �a�

inAddr 	a� �

	Thread	i� a
 �D �v�unitD 	�v



Metacomputation�

Dynam � TSt Sto Id� Static � TEnv Addr Id

C���e�� � Static	Dynam	int

 �
rdAddr �S �a�

inAddr 	a� �

	C��e�� �S �
e � Dynam	int
�

unitS 	Negate	
e� a



Negate	
e� a
 � 
e �D �i�

Thread	i� a
 �D �v�

unitD	�v


Fig� �� Negation� � ways

� A Case Study in Metacomputation�based Compiler

Architecture� Modular Compilation for the While

Language

In this section� we present several compiler building blocks� In section �� they
will be combined to create a compiler� For the 	rst two of these blocks� we also
give monolithic versions� drawn from 
��� to illustrate why metacomputation
is helpful� Of particular importance to the present work� Section ��� presents
the reusable compiler building block for control �ow� which demonstrates how
metacomputation�based compiler architecture solves the di�culties with the
monolithic approach we outlined in Section ��



��� Integer Expressions Compiler Building Block

Consider the standard monadic�style speci	cation of negation
�� ��� ��� displayed
in Figure �� To use this as a compiler speci	cation for negation� we need to make
a more implementation�oriented version� which might be de	ned informally as�



�e�� � 

e�� �D �i� Store i at a and return contents of a� �D �v�unitD ��v�

Let us assume that this is written in terms of a monad Dynam with bind and
unit operations �D and unitD� Observe that this implementation�oriented
de	nition calculates the same value as the standard de	nition� but it stores the
intermediate value i as well� But where do addresses and storage come from�
In 
��� we added them to the Dynam monad using monad transformers
�� ��� as
in the Implementation�oriented� speci	cation in Figure �� In that de	nition�
rdAddr reads the current top of stack address a� inAddr increments the top of
stack� and Thread stores i at a� The monad �Dynam� is used to construct the
domain containing both static and dynamic data�

In Figure �� the de	nition of Thread uses updateSto � Dynam�void�� which
has been lifted
��� through the �TEnv Addr� monad transformer �i�e�� rede	ned for
TEnv Addr �TSt Sto Id��� Thus� we could have written liftAddr�updateSto
a �� i��
instead in the de	nition of Thread in Figure �� but for the sake of readabil�
ity� we assume throughout this paper that the combinators added by monad
transformers are lifted appropriately�

C��n�� � unitS 	unitD	n



C��e� � e��� � Static	Dynam	int

 �
rdAddr �S �a�

inAddr 	a� �

	C��e��� �S �
� � Dynam	int
�
	C��e��� �S �
� � Dynam	int
�
unitS 	Add	
�� 
�� a



Add	
�� 
�� a
 �

� �D �i�


� �D �j�

Thread	i� a
 �D �v��

Thread	i� a� �
 �D �v��

unitD	v� � v�


Fig� �� Speci�cation for Constants and Addition

In the metacomputation��style speci	cation� we use two monads� Static�
to encapsulate the static data� and Dynam to encapsulate the dynamic data�
The meaning of the phrase is a metacomputation�the Static monad produces
a computation of the Dynam monad� Clear separation of binding times is thus
achieved�

Figure � displays the speci	cation for addition� which is similar to negation�
Multiplication and subtraction are de	ned analogously�



��� Generating Code with Type�Directed Partial Evaluation

Scheme output from partial evaluator�

�lambda �store add negate read	

�lambda �a
	

�lambda �sto�	

�cons nil

��store �Acc� �negate �read 
			

��store 
 �negate �read �			 ��store � 	 sto�							

Pretty printed version�

� �� � 
 �� ����� Acc �� ��
��

Fig� �� Compiling ��� ��

Code is generated via type�directed partial evaluation
�� using the method
of Danvy and Vestergaard
��� An example of code generation is presented in
Figure �� The code produced takes the form of a number of stores and reads
from storage �underlined in the 	gure�� For the sake of readability� we present a
pretty�printed version of this code as well �and from now on� we show only the
pretty�printed versions�� To be more precise� we generate code for the expression
e by partially evaluating�

�store��plus��negate��read�

�inAddr � C

e��� �S ��e�

unitS ��e �D �i�updateSto�
Acc �� i���

�inAddr � C

e��� compiles e with the initial free store address of �� The dynamic
part of C

e��� �e� is then executed� producing an integer i� which is then stored in
a register Acc� Before submitting the compilation semantics in Figures � and � to
the partial evaluator� we must 	rst translate the de	nitions of the compiler blocks
and the Static and Dynam monads into Scheme� which is the input language
of the type�directed partial evaluator� It should be clear that the de	nitions
presented in this paper can be translated in a completely straightforward manner
into Scheme� We replace updateSto
a �� i�� by updateSto�store�a� i��� in
the de	nition of Thread�i� a� in Figure �� �� a�� by �reada�� �leaving the
Sto argument out for readability�s sake� in the de	nition of rdLoc in Figure ��
��v�� by �negatev��� and �v� � v��� by �plusv� v��� in Figures � and ��
respectively� The abstraction of the combinators store� plus� negate� and read

ensures that these names will be left in residual code� in other words� their
de	nitions are intentionally omitted to make the residual code look like machine
language� The result of partial evaluation is as shown in Figure �� This code
generation technique is a monadic version of Danvy and Vestergaard�s 
�� ���



��� Constant�Folding Integer Expressions Compiler Building Block

There is a code optimization technique in traditional compilers known as cons�
tant�folding
��� which recognizes constant expressions �e�g�� � � ��� and eval�
uates them at compile�time� thereby eliminating some run�time computation�
Constant�folding 	ts quite naturally and easily into the metacomputation set�
ting as a reusable compiler building block� which is presented in Figure �� If
an expression e is constant �i�e�� contains no variables�� then it can be evalu�
ated using the standard semantics for expressions 

e�� in the Static monad� and
the value v produced thereby can be boosted� to the dynamic phase with
unitS �unitD�v��� This has the same e�ect as constant�folding� The standard
semantics for expressions in the Static monad are�



n�� � unitS �n�


�e�� � 

e�� �S �i�unitS ��i�


e� � e��� � 

e��� �S �i�

e��� �S �j�unitS �i� j�

��� Control�	ow Compiler Building Block

We now present an example where separating binding times in speci	cations
with metacomputations has a very signi	cant advantage over the monolithic
approach� Consider the three de	nitions of the conditional if�then statement
in Figure �� The 	rst is a dual continuation control��ow� semantics� found
commonly in compilers
��� If B is true� then the 	rst continuation� 

c�� �D �� is
executed� otherwise c is skipped and just � is executed� A more implementation�
oriented �informal� speci	cation might be�



if b then c�� �


b�� �D �B�

get two new labels Lc� L�� �D �hLc� L�i�
callcc ����

store � at L�� then �

c�� �D �jump to L���� at Lc� �D � �

Bhjump to Lc�� jump to L��i�

To formalize this speci	cation� we use a technique from denotational semantics
for modeling jumps� We introduce a continuation store� Code� and a label state
Label� A jump to label L simply invokes the continuation stored at L� The
second de	nition in Figure � presents an implementation�oriented speci	cation
of if�then in monolithic style �that is� where Code and Label are both added to
Dynam�� Again� this represents our approach in 
���

One very subtle problem remains� what is newSegment�� One�s 	rst impulse
is to de	ne it as a simple update to the Code store �i�e�� updateCode
L� ��
����� but here is where the monolithic approach greatly complicates matters�
Because the monolithic speci	cation mixes static and dynamic computation� the
continuation � may contain both kinds of computation� But because it is stored
and not executed� � will not have access to the current label count and any other



Static � TEnv Addr Id Dynam � TSt Sto Id

constexp	�
 � Exp� Var� ftrue� falseg
constexp	e
 � case e of i �� true

e� � e� �� constexp	e�
� constexp	e�

�e� �� constexp	e�

x �� false

CF��n�� � unitS 	unitD	n



CF���e�� � case constexp	e
 of

true �� ���e�� �S �i�unitS 	unitD	i



false �� rdAddr �S �a�inAddr 	a� �

	CF��e�� �S �
e�unitS 	Negate	
e� a



CF��e� � e��� �
case hconstexp	e�
� constexp	e�
i of
htrue� truei �� ��e� � e��� �S �i�unitS 	unitD	i



htrue� falsei ��

rdAddr �S �a�inAddr 	a� �


	��e��� �S �i�CF��e��� �S �
��unitS

�

� �D �j�

Thread	j� a
 �D �v��

unitD	i� v�


�



hfalse� truei ��

rdAddr �S �a�inAddr 	a� �


	CF��e��� �S �
����e��� �S �j�unitS

�

� �D �i�

Thread	i� a
 �D �v��

unitD	v� � j


�



hfalse� falsei ��

rdAddr �S �a�inAddr 	a� �

	CF��e��� �S �
��CF��e��� �S �
��unitS 	Add	
�� 
�� a




Fig� �� Constant�Folding Compilation Semantics for Integer Expressions



Control�Flow�

Dynam � TCPS void Id

Bool � ����� �� �

��if b then c�� �
��b�� �D �B � Bool�callcc 	���Bh��c�� �D �� �i


Implementation�orientedMonolithic�

Dynam � TCPS void 	TSt Label 	TSt Code Id


Label � int� Code � Dynam void

jump � Label� Dynam void

jumpL � getCode �D 	�� � Code�� L


newlabel � Dynam	Label

newlabel �
getLabel �D �l � Label�
updateLabel�L �� L� �� �D � �

unitD	l


Mono��if b then c�� � Dynam	void
 �
Mono��b�� �D �B � Bool�

newlabel �D �L��

newlabel �D �Lc�

callcc 	���
newSegment	L�� ��
 �D � �

newSegment	Lc�Mono��c�� �D � �jumpL�
 �D � �

BhjumpLc� jumpL�i


Metacomputation�

Dynam � TCPS void 	TSt Code Id
� Static � TSt Label Id
IfThen � Dynam	Bool
�Dynam	void
�Label�Label�Dynam	void

IfThen	
B� 
c� Lc� L�
 � 
B �D �B � Bool�

callcc 	���
updateCode�L� �� ��� �D � �

updateCode�Lc �� 
c �D � �jumpL�� �D � �

BhjumpLc� jumpL�i


C��if b then c�� � Static	Dynam void
 �
C��b�� �S �
B �

C��c�� �S �
c�

newlabel �S �Lc�

newlabel �S �L��

unitS 	IfThen	
B � 
c� Lc� L�



Fig� 	� if
then� � ways



static data necessary for proper staging� Therefore� newSegment must explicitly
pass the current label count and any other static intermediate data structure to
the continuation it stores��

C��e� � e��� � Static	DynamBool
 �
rdAddr �S �a�

inAddr 	a� �

C��e��� �S �
e� �

C��e��� �S �
e� �

unitS

�
BBBBB�


e� �D �i � int�

e� �D �j � int�
Thread	i� a
 �D �v��

Thread	j� 	a� �

 �D �v��

unitD

�
�h�T � �F i�
		v� � v�
 � �T � �F 


�

�
CCCCCA

C��while b do c�� � Static	Dynam void
 �
C��b�� �S �
B�

C��c�� �S �
c�

newlabel �S �Ltest�

newlabel �S �Lc�

newlabel �S �L��

unitS

�
BBB�

callcc ���

updateCode�L� �� �� �D � �

updateCode�Lc �� 
c �D 	jumpLtest
� �D
updateCode�Ltest �� 
B �D �B�		BhjumpLc� jumpL�i�
� �D
jumpLtest

�
CCCA

Fig� �� Speci�cation for � and while

The last speci	cation in Figure � de	nes if�then as a metacomputation and
is much simpler than the monolithic�style speci	cation� Observe that Dynam

does not include the Label store� and so the continuation � now includes only
dynamic computations� Therefore� there is no need to pass in the label count to
�� and so� � may simply be stored in Code� This is a central advantage of the
metacomputation�based speci
cation� because of the separation of static
and dynamic data into two monads� the complications outlined in Section �
associated with storing command continuations in 
�� �e�g�� explicitly passing
static data and use of a snapback operator
���� are completely unnecessary�

Figure � contains the speci	cations for� andwhile� which are very similar to
the speci	cations of addition and if�then� respectively� that we have seen already�

� A full description of newSegment is found in ����



�In Figures �� ��� and ��� we have set the dynamic parts of the computation in
a box for emphasis��

��� Block Structure Compiler Building Block

Dynam � TSt Sto Id
Static � TEnv Env 	TEnv Addr Id

set � Addr� Dynam	void

set a � �v�updateSto	a �� v

get � Addr� Dynam	int

get a � getSto �D ���unitD	� a


C��new x in c�� � Static	Dynam void
 �
rdAddr �S �a�

inAddr 	a� �

rdEnv �S ���

inEnv 	��x �� unitS hset a� get ai�
 C��c��
C��x�� � rdEnv �S ���	�x


Fig� ��� Compiler Building Block for Block Structure

The block structure language includes new x in c� which declares a new
program variable x in c� The compiler building block for this language appears
in Figure ��� The static part of this speci	cation allocates a free stack location
a� and the program variable x is bound to an accepter�expresser pair
��� in the
current environment 	� In an accepter�expresser pair hacc� expi� acc accepts an
integer value and sets the value of its variable to the value� and the expresser
exp simply returns the current value of the variable� set and get set and re�
turn the contents of location a� respectively� c is then compiled in the updated
environment and larger stack �a� ���

��� Imperative Features Compiler Building Block

Dynam � TSt Sto Id� Static � TEnv Env Id
C��c��c��� � Static	Dynam void
 �

C��c��� �S �
c� �

C��c��� �S �
c� �

unitS 	
c� �D � �
c� 


C��x �� e�� � Static	Dynam void
 �
rdEnv �S ���

C��x�� �S �hacc� i�
C��e�� �S �
e�

unitS 	
e �D �i � int�	acc i



Fig� ��� Compiler Building Block for Imperative Features

The simple imperative language includes assignment ���� and sequencing
��� The compiler building block for this language appears in Figure ��� For se�
quencing� the static part of the speci	cation compiles c� and c� in succession�
while the dynamic �boxed� part runs them in succession� For assignment� the



static part of the speci	cation retrieves the accepter
��� acc for program vari�
able x from the current environment 	 and compiles t� while the dynamic part
calculates the value of t and passes it to acc�

	 Combining Compiler Building Blocks

Id
Addr

Env

Id
Label

Addr

Env

Id
Label

Eq
Block

Eq
CF

UEq
CF

Eq
Block

Id
Code

CPS

Id
Sto

Id

Block Structure + Control-flowBlock Structure Control-flow

+ =

Dynam

Static

CPS

Code
Sto

Equations:

Fig� ��� Combining Compiler Building Blocks

Figure �� illustrates the process of combining the compiler building blocks
for the block structure and control��ow languages� It is important to emphasize
that this is much simpler than in 
��� in that there is no explicit passing of static
data needed� The process is nothing more than applying the appropriate monad
transformers to create the Static and Dynam monads for the combined language�
Recall that for the block structure language�

Static � TEnv Env �TEnv Addr Id�� and Dynam � Id

For the control �ow language�

Static � TSt Label Id� and Dynam � TCPS void �TSt Code �TSt Sto Id��

To combine the compiler building blocks for these languages� one simply com�
bines the respective monad transformers�

Static � TEnv Env �TEnv Addr �TSt Label Id��
Dynam � TCPS void �TSt Code �TSt Sto Id��



Now� the speci	cations for both of the smaller languages� EqBlock and EqCF �
apply for the larger� Static and Dynam monads� and so the compiler for the
combined language is speci	ed by EqBlockUEqCF �

Compiler�

Dynam � TCPS void 	TSt Code 	TSt Sto Id

� Static � TEnv Env 	TEnv Addr 	TSt Label Id


Language � Expressions � Imperative � Control��ow � Block structure � Booleans
Equations � EqExpr 	EqImper 	 EqControl��ow 	EqBlock 	 EqBool

Source Code� new x in new y in

x � �� y � ��
while 	� � x
 do

y � y�x� x � x
��

Target Code�


 �� �� �� � �� ���� �� halt�

� �� �� � �� �
��

jump �� � �� ��� � ����

� �� �
��

�� � �� �� � �� ��

� �� �
�� 
 �� ��� � ����

BRLEQ ��� ��� � �� jump ��

Fig� ��� Compiler for While language and example compilation

Figure �� contains the compiler for the while language� and an example
program and its pretty�printed compiled version�


 Correctness

In this section� we outline an example correctness speci	cation for a reusable
compiler building block written in metacomputation style� In particular� we illus�
trate the advantages with respect to compiler correctness of metacomputation�
based compiler speci	cations over the monolithic style speci	cations of 
�� and
also of the general usefulness of monads and monad transformers with respect to
compiler correctness� Although lack of space makes a full exposition of metacomputation�
based compiler correctness impossible here� we hope to convey the basic issues��

The correctness of a reusable compiler building block for a source language
feature is speci	ed by comparing the compilation semantics C

��� with the stan�
dard semantics 

��� for that feature� Let us take as an example the conditional
if�then� Its standard and compilation semantics are presented in Figure �� A
�slightly informal� speci	cation of if�then is� If Lc �� L� and Lc� L� are unbound

� The interested reader may consult ����



in the code store� then

IfThen�

b��� 

c��� Lc� L�� �D � �initCode � 

if b then c�� �D � �initCode

where initCode � updateCode�� �
� for arbitrary constant 
 � Code� Be�
cause IfThen	��b�����c���Lc �L�
 will a�ect the code store and 

if b then c�� will not�
IfThen�

b��� 

c��� Lc� L�� �� 

if b then c��� But by masking out� the code store
state on both sides with initCode�which sets the code store to constant 
�
we require that both sides of the above equation have the same action on the
value store Sto�

The above speci	cation is easier to prove than the analogous one in mono�
lithic style because the metacomputation�based de	nition in Figure � just stores
the continuation � while the monolithic�style de	nition manipulates � as was
outlined in Sections � and ���� Furthermore� here is an example of how monad
transformers help with compiler correctness proofs� Although the above equa�
tion holds in Dynam � TCPS V oid �TSt Label �TSt Sto Id��� other monad transform�
ers could be applied to Dynam for the purposes of adding new source language
features and the speci	cation would still hold�� So� the use of monad transform�
ers in this work yields a kind of proof reuse for metacomputation�based compiler
correctness
����

� Conclusions and Future Work

Metacomputations are a simple and elegant structure for representing staged
computation within the semantics of a programming language� This paper presents
a modular and extensible style of language speci	cation based on metacomput�
ation� This style uses two monads to factor the static and dynamic parts of the
speci	cation� thereby staging the speci	cation and achieving strong binding�time
separation� Because metacomputations are de	ned in terms of monads� they can
be constructed modularly and extensibly using monad transformers� We exploit
this fact to create modular compilers�

Future work focuses on two areas� specifying other language constructs like
objects� classes� and exceptions� and exploring the use of metacomputations in
the semantics of two�level languages�

Acknowledgements

The authors would like to thank Uday Reddy and the rest of the functional
programming research group at UIUC for o�ering many helpful suggestions that
led to signi	cant improvements in the presentation�

� Given certain fairly weak conditions on the order of monad transformer application�
See ������� for details�



References

�� A� V� Aho� R� Sethi� and J� D� Ullman Compilers� Principles� Techniques� and
Tools� Addison�Wesley� �����

�� A� Appel� Modern Compiler Implementation in ML� Cambridge University Press�
New York� �����

�� A� Appel� Compiling with Continuations� Cambridge University Press� New York�
�����

�� O� Danvy� �Type�Directed Partial Evaluation�� Proceedings of the ACM Confer�
ence on the Principles of Programming Languages� �����

�� O� Danvy and R� Vestergaard� �Semantics�Based Compiling� A Case Study in
Type�Directed Partial Evaluation�� Eighth International Symposium on Program�
ming Language Implementation and Logic Programming� ����� pages ��������

�� R� Davies and F� Pfenning� �A Modal Analysis of Staged Computation�� Proceed�
ings of the ACM Conference on the Principles of Programming Languages� �����

�� D� Espinosa� �Semantic Lego�� Doctoral Dissertation� Columbia University� �����

�� W� Harrison and S� Kamin� �Modular Compilers Based on Monad Transformers��
Proceedings of the IEEE International Conference on Programming Languages�
����� pages ��������

�� W� Harrison� �Modular Compilers and Their Correctness Proofs�� Doctoral Thesis
	forthcoming
� University of Illinois at Urbana�Champaign� �����

��� N� D� Jones� C� K� Gomard� and P� Sestoft� Partial Evaluation and Automatic
Program Generation� Prentice�Hall �����

��� U� Jorring and W� Scherlis� �Compilers and Staging Transformations�� Proceedings
of the ACM Conference on the Principles of Programming Languages� �����

��� P� Lee� Realistic Compiler Generation� MIT Press� �����

��� S� Liang� �A Modular Semantics for Compiler Generation�� Yale University De�
partment of Computer Science Technical Report TR������ February �����

��� S� Liang� P� Hudak� and M� Jones� Monad Transformers and Modular Interpreters�
Proceedings of the ACM Conference on the Principles of Programming Languages�
�����

��� S� Liang� �Modular Monadic Semantics and Compilation�� Doctoral Thesis� Yale
University� �����

��� T� Mogensen� �Separating Binding Times in Language Speci�cations�� Proceedings
of the ACM Conference on Functional Programming and Computer Architecture�
pp ������ �����

��� E� Moggi� An Abstract View of Programming Languages� Technical Report ECS�
LFCS������	� Laboratory for Foundations of Computer Science� University of Ed�
inburgh� Edinburgh� Scotland� ����


��� E� Moggi� �Notions of Computation and Monads�� Information and Computation
�	���� pp� ������ �����

��� P� Mosses� Action Semantics� Cambridge University Press� �����

��� H� Nielson and F� Nielson� �Code Generation from two�level denotational meta�
languages�� in Programs as Data Objects� Lecture Notes in Computer Science ���
	Springer� Berlin� ����
�

��� H� Nielson and F� Nielson� �Automatic Binding Time Analysis for a Typed ��
calculus�� Science of Computer Programming ��� � 	April ����
� pp ��������

��� S� L� Peyton�Jones and Philip Wadler� �Imperative Functional Programming��
Twentieth ACM Symposium on Principles of Programming Languages� �����



��� U� Reddy� �Global State Considered Unnecessary� Semantics of Interference�free
Imperative Programming�� ACM SIGPLAN Workshop on State in Programming
Languages� pp� �������� �����

��� J� Reynolds� �The Essence of Algol�� Algorithmic Languages� Proceedings of the
International Symposium on Algorithmic Languages� pp� �������� �����

��� J� Reynolds� �Using Functor Categories to Generate Intermediate Code�� Proceed�
ings of the ACM Conference on the Principles of Programming Languages� pages
������ �����

��� J� E� Stoy� Denotational Semantics� the Scott�Strachey Approach to Programming
Language Theory� MIT Press� �����

��� P� Wadler� �The essence of functional programming�� Proceedings of the ACM
Conference on the Principles of Programming Languages� pages ����� �����

��� M� Wand� �Deriving Target Code as a Representation of Continuation Semantics��
ACM Transactions on Programming Languages and Systems� Vol� �� No� �� pp�
�������� �����


