
Formalized High Level Synthesis with
Applications to Cryptographic Hardware?

William Harrison[0000−0002−3760−3556], Ian Blumenfeld[0000−0003−2080−9790],
Eric Bond, Chris Hathhorn[0000−0002−6277−3987], Paul Li[0009−0000−0789−7410],

May Torrence, and Jared Ziegler

Two Six Technologies, Inc.
901 N. Stuart Road, Arlington VA 22203. USA.

Abstract. Verification of hardware-based cryptographic accelerators con-
nects a low-level RTL implementation to the abstract algorithm itself;
generally, the more optimized for performance an accelerator is, the more
challenging its verification. This paper introduces a verification method-
ology, model validation, that uses a formalized high-level synthesis lan-
guage (FHLS) as an intermediary between algorithm specification and
hardware implementation. The foundation of our approach to model val-
idation is a mechanized denotational semantics for the ReWire HLS lan-
guage. Model validation proves the faithfulness of FHLS models to the
RTL implementation and we summarize a model validation case study
for a suite of pipelined Barrett multipliers.

Keywords: Programming languages and models · Verifying cryptographic sys-
tems · Automated theorem proving.

1 Introduction

This paper presents the mechanized semantics for the functional high-level syn-
thesis (HLS) language ReWire [48, 53], where ReWire is an embedded DSL in
Haskell for expressing synchronous hardware designs. This semantics is the cor-
nerstone of a hardware verification methodology called model validation that
we also introduce with the verification case study of a family of cryptographic
accelerators for fully homomorphic encryption. With model validation, ReWire
plays a dual role as a language for both formal modeling and implementation.

Model validation (Fig. 1) estab-

Verilog ProverReWire
model embed

validate

verify

Fig. 1: Model Validation Methodology.

lishes that a Verilog design produces
the same results as a verified cor-
rect ReWire model. The first path
(model; embed; verify) creates a ReWire
model, embeds it in a theorem prover
via ReWire’s formalized semantics,
and verifies its functional correctness. The second path (model ; validate) validates

? This research was developed with funding from the Defense Advanced Research
Projects Agency (DARPA). The views, opinions and/or findings expressed are those
of the author and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

the fidelity of the ReWire model to the Verilog design by establishing functional
equivalence using the model-checking capabilities in YoSys [59].

Synchronous circuitry never terminates and, consequently, neither do ReWire
programs. ReWire syntax and semantics are structured by reactive resumption
monads over state (RRS), where computations in RRS monads [18, 34, 43, 45,
57] resemble potentially infinite sequences of stateful actions. Non-terminating
computation can be challenging to mechanize with a theorem prover and, for the
ReWire semantics, this challenge is overcome by an alternative representation
of RRS monads using infinite streams. This stream-based RRS representation
allows an embedding of ReWire directly into any prover with a stream library—
we provide example embeddings of the semantics in Isabelle, Coq, and Agda [12].
The semantics resembles a Reynolds-style definitional interpreter [52], although
our semantics targets theorem prover object languages rather than a general-
purpose functional programming language as Reynolds’ classic paper did. The
shallow embedding uses effect labels [41] to distinguish between the termination
behavior of ReWire terms and to selectively pick the appropriate denotations.

This focus of this paper is primarily on the embed arrow in Fig. 1 and we
leave a broader discussion of model validation and its uses for follow-on publica-
tions. The remainder of this section introduces background on ReWire. Section 2
presents the formalization of ReWire as a typed λ-calculus and the embedding of
this semantics in three theorem proving systems: Isabelle, Coq, and Agda. It is
with the Isabelle embedding that we perform the formal verification of the family
of pipelined Barrett multipliers in Section 3. Section 3 describes the BMM case
study at a high-level due to lack of space. Section 4 reviews related work and
Section 5 summarizes our results and outlines future directions for this research.

ReWire is a domain-specific language (DSL) embedded in Haskell for ex-
pressing, implementing, and verifying hardware designs. All ReWire programs
are Haskell programs (but not necessarily vice versa). We assume of necessity
that the reader is familiar with functional languages and especially with the
use of monads to model effects in functional programming (see Appendix A for
an overview). We first illustrate ReWire syntax and semantics in terms of two
simple examples: Mealy machines and carry-save adders.

output & next state logic

storage s

outputs oinputs i

storage feedback

internal

(a) Mealy Machine

Re i s o a = µX. ST s (a + (o⇥ (i! X)))
return :: a ! Re i s o a
return a = � s. (inj1 a , s)
(>>=) :: Re i s o a !

(a ! Re i s o b) ! Re i s o b
(x >>= f) s0 = case x s0 of

(inj1 a , s1) ! f a s1

(inj2 (o , ) , s1) !
(inj2 (o , � i.  i >>= f) , s1)

lift :: ST s a ! Re i s o a
lift f = � s. let (a , s0) = f s in (inj1 a , s0)
signal :: o ! Re i s o i
signal o = � s. (inj2 (o , return) , s)

ST s a = s ! (a⇥ s)
get :: ST s s set :: s! ST s ()
get = �s.(s, s) set s

0 = �s.((), s0)

Fig. 4: Reactive Resumption Monads over State in Haskell.
Re is a synchronous concurrency monad allowing expression
of both terminating and non-terminating threads; it constitutes
a core part of ReWire’s syntax and semantics. (ST s) is the
well-known state monad over state s.

internal :: i ! ST s o

internal i = . . .
onecycle :: i ! Re i s o i

onecycle i = lift (internal i) >>= �o. signal o
mealy :: i ! Re i s o ()
mealy i = onecycle i >>= mealy

B. Reactive Resumption Monads over State

In Section II, we introduced the type constructor Re i s o,
where, respectively, types i, s, and o, represent input, storage,
and output types. Re is constructed in ReWire using Haskell
monad transformers, but rather than introducing that notational
overhead here, we define Re directly in Fig. 4. The functor
part of Re is written in a categorical style followed by the
definitions of its unit (return) and bind (>>=). Additional
structure includes lift (which lifts a stateful computation into
Re) and signal (which sends o to the “output port”).

C. Mechanizing Reactive Resumptions Over State

In Fig. 4, Re is a coinductive construction and such construc-
tions can be tricky to formalize (even with, for example, Coq’s
coinduction library). The most direct approach to formalizing
ReWire would seem to be the transliteration of Re into the
logic of a theorem prover, but this naive approach will quickly
fail because the negative occurrence of X in the definition
of the Re functor in Fig. 4 runs afoul of the strict positivity
requirement in Coq or Agda, for example. Another approach
would consider a deep embedding formalizing ReWire’s de-
notational semantics [13] in terms of the mechanized domain
theory, building on existing work by Huffman [8], [9], Benton
et al. [14], or Schröder and Mossakowski [15]. In previous

data State (w : Set) (a : Set) : Set where
SM : (s ! (a⇥ s)) ! State s a

data Writer+ (w : Set) (a : Set) : Set where
B[] : w ! a ! Writer+ w a
B : w ! Writer+ w a ! Writer+ w a

DomRe0 : Set ! Set ! Set ! Set ! Set
DomRe0 i s o a = State s a
DomRe+ : Set ! Set ! Set ! Set ! Set
DomRe+ i s o a = (i⇥ s⇥ o) !

Stream i !
Writer+ (i⇥ s⇥ o) (a⇥ Stream i)

DomRe1 : Set ! Set ! Set ! Set
DomRe1 i s o = (i⇥ s⇥ o) !

Stream i !
Stream (i⇥ s⇥ o)

iterRe : (a ! DomRe+ i s o a) ! (a ! DomRe1 i s o a)
iterRe f a (i, s, o) is

= unfoldStr obs (delta f) ((i , s , o) B [(a , is)])
where
Sto : Set ! Set ! Set ! Set ! Set
Sto i s o a = Writer+ (i⇥ s⇥ o) (a⇥ Stream i)
delta : (a ! DomRe+ i s o a) !

Sto i s o a ! Sto i s o a
delta f � = case � of

(w B [(a , is)]) ! f a w is
(w B ws) ! ws

obs : Sto i s o a ! (i⇥ s⇥ o)
obs � = case � of

(w B []) ! w
(w B) ! w

unfoldStr : (t ! a) ! (t ! t) ! Stream a
hd (unfoldStr f g t) = f t
tl (unfoldStr f g t) = unfoldStr f g (g t)

Fig. 5: Domain Semantics in Agda

work, Reynolds et al. [2] chose to formalize a small-step,
operational semantics for ReWire in Coq and the semantic
properties of ReWire’s underlying monads were then captured
as an typed equational logic whose rules are derived from the
formalized operational semantics.

The formalized semantics presented here is a straightfor-
ward adaptation that extends the Device Calculus seman-
tics [16] to reactive resumption monads over state. Recent
work introduced the Device Calculus, a �-calculus with types
and operations for constructing Mealy machines. That work
presents an extensional semantics for Mealy machines as
infinite streams of “snapshots” of the form (i , s , o) recording
the final, latched values of the input, store, and output for each
clock cycle. Device Calculus includes a type constructor for
Mealy machines (called Dev) and the coinductive semantics
of the Device Calculus, formalized in Agda, denotes terms of
type Dev i s o as functions from streams of inputs to streams
of snapshots. Corresponding to Dev i s o is DomRe1 i s o

in Fig. 5.
Fig. 5 presents the semantics for reactive resumption mon-

ads over state in which the productivity-labelled constructors
are expressed in terms of snapshots of the form (i, s, o).
State s is the familiar state monad over s. A (Writer+ s a)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

(b) ReWire Mealy Design Template

Fig. 2: Mealy Machines (a); Corresponding Mealy Template in ReWire (b).

Mealy machines (Fig. 2a) are a common mental model for designers of se-
quential circuitry [26,35]. Given current values of the input (i), internal storage

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

(s), and output (o), the internal combinational logic of the Mealy machine com-
putes the storage and output values for the next clock cycle. Fig. 2b presents a
ReWire template encoding the Mealy machine. The type constructors, Re i s o

and ST s, refer, respectively, to a reactive resumption monad over state and to
the state monad. The type variables i, s, and o in Re i s o correspond directly
to the Mealy machine’s input, storage, and output types. Monads like Re i s o

and ST s possess their respective monadic unit (return) and bind (>>=) opera-
tors (that are typically overloaded in both Haskell and ReWire). Operations in
ST s read and write storage typed in s. The Re operation lift injects a stateful
computation into Re and signal performs synchronous input-output.

It is possible to describe what mealy does intuitively before presenting any
formal semantics (although readers experienced with monadic semantics may
find Fig. 4 useful at this point). Calls to onecycle describe exactly one clock cycle
of circuit execution, while calls to mealy describe an entire circuit computation
itself. The internal action of a cycle, lift (internal i), in combination with
the current internal storage (of type s), updates that storage, and computes the
next output o. The signal operator sends its argument to the output ports
and, then, returns the next input. Producing a signal, (signal o), sends the
computed output to the output port, and signifies the completion of a clock cycle;
mealy then continues, ad infinitum. ST (resp., Re) operations will ultimately be
compiled into combinational (resp., sequential) circuitry by the ReWire compiler.

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) | (a & c) | (b & c)) << 1 , a ⊕ b ⊕ c)
data Ans a = DC | Val a — resp., “don’t care” and “valid”

csa :: (W8, W8, W8) → Re (W8, W8, W8) () (W8, W8)
csa (a, b, c) = signal (f a b c) >>= csa

scsa :: (W8, W8, W8) → Re (W8, W8, W8) (W8, W8) (W8, W8) ()
scsa abc = save abc >>= λcs. signal cs >>= scsa

where
thread :: (W8, W8) → ST (W8, W8) (W8, W8)
thread cs = set cs >> get

save :: (W8 , W8 , W8) → Re (W8 , W8 , W8) (W8, W8) (W8, W8) (W8, W8)
save (a , b , c) = lift (thread (f a b c))

pcsa :: W8 → Re W8 () (Ans (W8, W8)) ()
pcsa a = signal DC >>= λb. signal DC >>= λc. signal (Val cs) >>= pcsa

where cs = f a b c

bad :: i → Re i i o () — Haskell, not ReWire; not signal-productive
bad i = lift (set i) >>= bad

Fig. 3: ReWire source code for Carry-Save Adder Functions. The operators &, |,
and ⊕ are bitwise and, inclusive or, and exclusive or. Operator << is shift-left.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

A carry-save adder (CSA) is a function which takes in three n-bit words a,
b, and c, and computes two n-bit words s and c′, such that a + b + c = s + c′.
Fig. 3 presents three ReWire functions for CSA circuits for n = 8. The function
f defines the carry-save operation, so that, for example, f 40 25 20 = (48, 37),
representing W8 words as integers for readability. The answer Ans data type
indicates whether an output is valid. Function csa accepts inputs a, b, and c

on each clock cycle, computes their carry-save sum, and sends that sum to the
outport port before starting again. The behavior of scsa is the same as csa,
but scsa also stores the result in a local store of type (W8, W8)—this difference
is reflected in the types of csa and scsa in Fig. 3. Function pcsa is pipelined,
accepting inputs on successive clock cycles and computing the carry-save sum
when the third input, c, is available. While it waits, DC is signaled, and, once
all three arguments are available, Val of the carry-save sum is signaled.

The bad function in Fig. 3 is not valid ReWire because it is not signal-
productive—i.e., there is no output-producing call to signal. Signal-productivity
means that ReWire programs regularly produce outputs analogously to how
synchronous circuits (e.g., mealy in Fig. 2a) produce outputs on every clock
signal. Signal-productivity is enforced by the type system below in Section 2
(e.g., so that bad does not type check).

The ReWire compiler can translate functions like mealy, csa, scsa, and
pcsa into synthesizable VHDL or Verilog (as shorthand, we call such func-
tions devices). But not every Haskell function with codomain Re i s o a is a
device—there are three main provisos arising from the nature of synchronous
hardware—and none of these provisos is enforced by the Haskell type system.
The first proviso limits recursion in devices to tail recursion, because tail recur-
sion only requires a fixed memory footprint. Arbitrary recursive Haskell functions
may require a stack and heap and such dynamic allocation is anathema to hard-
ware. The second proviso requires that devices never terminate—i.e., just like a
synchronous circuit, they should (in principle) never terminate on any inputs.
The third proviso is that they be signal-productive—the Haskell function bad

in Fig. 3 is not signal-productive and, hence, is not a ReWire device. The effect
type system described in Section 2 enforces each these requirements so that Re∞

(Re+) is the type for devices (resp., signal-productive, terminating terms).
A conventional formulation of Re appears in Fig. 4. In ReWire, Re is con-

structed using Haskell monad transformers, but rather than introducing that
notational overhead here, we define Re directly in Fig. 4. The functor part of Re
is written in a categorical style followed by the definitions of its unit (return)
and bind (>>=). Additional structure includes lift (which lifts a stateful com-
putation into Re) and signal (which sends o to the “output port”). We include
these definitions for reference and to make the article self-contained.

2 Formalizing ReWire

The ReWire formalization is a conventionally structured denotational semantics
of the form, J− K : (Γ ` t) → Env Γ → ptq, mapping a well-typed term and

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://en.wikipedia.org/wiki/Carry-save_adder

Re i s o a = µX. ST s (a + (o× (i→ X)))
return :: a → Re i s o a

return a = λ s. (inj1 a , s)
(>>=) :: Re i s o a →

(a → Re i s o b) →
Re i s o b

(x >>= f) s0 = case (x s0) of
(inj1 a, s1) → f a s1
(inj2(o, κ), s1)→

(inj2(o, λi. κ i >>= f) , s1)

lift :: ST s a → Re i s o a

lift f = λ s. let
(a , s′) = f s

in
(inj1 a , s

′)
signal :: o → Re i s o i

signal o = λ s. (inj2 (o , return) , s)
ST s a = s → (a× s)
get :: ST s s set :: s→ ST s ()
get = λs.(s, s) set s

′ = λs.((), s′)

Fig. 4: Reactive Resumption Monads over State. Re is a synchronous concurrency
monad allowing expression of both terminating and non-terminating threads; it
constitutes a core part of ReWire’s syntax and semantics. The codebase includes
a Haskell rendering of this semantics [12].

suitable environment into a domain of values. We first present the term and
type syntax of the formalized ReWire effect calculus and then the mechaniza-
tion of RRS monads. RRS monads originated in the denotational semantics of
concurrent and parallel languages [18, 34, 43, 45, 57]; much of the challenge of
formalizing ReWire originates in representing them in a theorem prover.

We use the term denotational advisedly for our semantics, because the term
may evoke expectations in some readers of some explicit form of CPO semantics.
The ReWire semantics takes the form of, to borrow a term from Reynolds [52], a
definitional interpreter—i.e., an embedding of a source language into a conven-
tional functional programming language. Here, however, the embedding maps a
typed syntax for ReWire into the object language of a theorem prover (specif-
ically Isabelle, Agda, and Coq). The domain semantics displayed in Fig. 6a is
based on infinite streams of snapshots and this enabled the straightforward def-
initional embedding of ReWire into Isabelle, Coq, and Agda, because each of
these provers possesses a stream library. This obviated the need for a deep em-
bedding of the denotational semantics in the manner of, for example, Huffman et
al. [24, 25] or Schröder [54]. We present the Agda formalization because Agda’s
syntax is simpler to read than either that of Coq or Isabelle [12], and within
that code, several syntactic simplifications have been made to improve readabil-
ity (e.g., removing certain quantifiers or implicitly-passed variables, etc.).

ReWire is a computational λ-calculus (in the sense of Moggi [37]) with
monadic constructs corresponding to the Re and ST monads from Fig. 4. The
type language in Fig. 5a includes effect labels indicating the termination and pro-
ductivity behavior of expressible programs. The intrinsically-typed term syntax
encodes typing rules in the constructors. The type language contains base types
specific to hardware: bit and the standard logic vector type constructor (slv)
that takes a natural number representing bit vector size. We elide operations on
low-level data types in Fig. 5a because they are not remarkable.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

data Ty : Set where
nat : Ty

bool : Ty

unit : Ty

bit : Ty

slv : N → Ty

⇒ : Ty → Ty → Ty

⊗ : Ty → Ty → Ty

⊕ : Ty → Ty → Ty

ST : Ty → Ty → Ty

Re0 : Ty → Ty →
Ty → Ty → Ty

Re+ : Ty → Ty →
Ty → Ty → Ty

Re∞ : Ty → Ty →
Ty → Ty

Effects
p, q ∈ {0 , + , ∞}
0 t 0 = 0 + t+ = +
0 t+ = + + t 0 = +

data ` : Cxt Ty → Ty → Set where
var : a ∈ Γ → Γ ` a

lam : a :: Γ ` b → Γ ` (a⇒ b)
app : Γ ` a⇒ b → Γ ` a → Γ ` b

. . . elided . . .
returnST : Γ ` a⇒ ST s a

>>=ST : Γ ` ST s a →
Γ ` a⇒ ST s b →
Γ ` ST s b

get : Γ ` ST s s

set : Γ ` s⇒ ST s unit

liftr : Γ ` ST s a⇒ Re0 i s o a

>>=pq : Γ ` Rep i s o a⇒
(a⇒ Req i s o b)⇒
Reptq i s o b

returnr : Γ ` a⇒ Re0 i s o a

signalr : Γ ` o⇒ Re+ i s o i

loop : Γ ` (a⇒ Re+ i s o a)⇒
(a⇒ Re∞ i s o)

(a) Type and Effect Syntax (left) and intrinsically-typed term syntax (right).

p−q : Ty→ Set

pnatq = N
pboolq = Bool

punitq = >
pbitq = Bool

pslv nq = Vec Bool n

pt1 ⇒ t2q = pt1q→ pt2q
pt1 ⊗ t2q = pt1q× pt2q
pt1 ⊕ t2q = pt1q] pt2q
pST s aq = State psq paq
pRe0 i s o aq =

DomRe
0 piq psq poq paq

pRe+ i s o aq =
DomRe

+ piq psq poq paq
pRe∞ i s oq =

DomRe
∞ piq psq poq

J− K : (Γ ` t) → Env Γ → ptq
J var x K ρ = lookup∈ ρ x
J lam f K ρ = λv. J f K (v C ρ)
J app f e K ρ = (J f K ρ) (J e K ρ)

...
J returnST K ρ = λv. SM(λs. (v , s))
J e >>=ST f K ρ = (J e K ρ) <>=00 (J f K ρ)
J get K ρ = SM (λs. (s , s))
J set K ρ = λs. SM (λ . (() , s))
J liftr K ρ = λϕ. ϕ
J returnr K ρ = λv. SM(λs. (v , s))
J e >>=pq f K ρ = (J e K ρ) <>=pq (J f K ρ)
J signal K ρ = λo. λ(, s ,). λis.

let
i = shd is

is′ = stl is
in

(i , s , o) B [(i , is′)]
J loop f K ρ = iterRe (J f K ρ)

(b) Denotational Semantics for the ReWire Calculus

Fig. 5: ReWire as an Effect Calculus.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

The syntax is parameterized by productivity labels, 0, +, and ∞, which are
ordered linearly so that p t q returns the maximum of labels p and q. Terms
of 0-productivity are created with liftr and returnr or binds of 0-productive
computations. Such computations correspond to computations by combinational
circuitry between clock cycles. Terms of +-productivity are created with signal

or binds, x >>= f, in which at least one of x or f is a +-productive computations.
Computations typed in Re+ correspond to signal-productive, terminating com-
putations spanning at least one clock cycle. One could define >>=pq for cases in
which p and/or q is ∞, but we have not done so here. In Haskell, for example,
x >>= f is identical to x when x is non-terminating; such terms are not of use
in expressing hardware designs in ReWire. Terms of ∞-productivity—i.e., what
we previously called devices—may be only created with the recursion-binder
loop. To represent the mealy program from Fig. 2b in the ReWire Calculus,
one would refactor its definition with loop so that mealy : i → Re∞ i s o and
mealy = loop onecycle. Refactoring with a recursion operator is a common
syntactic change of representation in denotational semantics.

Fig. 5b defines the denotational semantics of the ReWire calculus. It is worth
remarking on its structure and organization now, but detailed discussion is de-
ferred until the end of this section. The domain semantics (p−q) maps each type
Ty into a corresponding Agda Set. For the RRS monadic type constructors, there
are corresponding constructions indexed by effect labels and these are defined
in the next section. Most of the cases in the semantics of terms (J−K) are sim-
ilarly not remarkable except in the monadic cases. Corresponding to syntactic
binds (i.e., >>=pq) are semantic binds (i.e., <>=pq) and corresponding to recursive
syntactic operator (loop) is the semantic recursive operator (iterRe).

Reynolds et al. [53] formulated a small-step, operational semantics for ReWire
in Coq. A deep embedding formalizing ReWire’s denotational semantics [47] in
terms of mechanized domain theory (e.g., Huffman [24,25], Benton et al. [5], or
Schröder [54]) is possible as well. However, both the deep embedding and the
small-step operational approaches seemed too unwieldy at the scale of our case
studies. Recent work [22] introduced the Device Calculus, a λ-calculus with types
and operations for constructing Mealy machines and our semantics extends the
Device Calculus semantics to RRS monads.

Fig. 6a presents the semantics for reactive resumption monads over state in
which the productivity-labelled constructors are expressed in terms of “snap-
shots” of the form (i, s, o). State s is the familiar state monad over s. A
(Writer+ s a) is a list-like structure for which the constructor B corresponds
to list cons—intuitively, it is a non-empty list that ends in an a-value—and is
used to model ReWire terms typed in Re+. It is used to represent terminating
signal-productive hardware computations—i.e., those that operate over multiple
clock cycles, produce snapshots and terminate. A hardware computation typed
in Re∞ corresponds to sequential circuitry. The intuition is that, given the cur-
rent snapshot of a circuit (Fig. 2a) and a stream of all its future inputs, the
result is a stream of all snapshots (i.e., a Stream (i× s× o)).

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

data State (s : Set) (a : Set) : Set where
SM : (s→ (a×s))→ State s a

data Writer+ (w : Set) (a : Set) : Set where
B[] : w→ a→ Writer+ w a

B : w→ Writer+ w a→ Writer+ w a

DomRe0 i s o a = State s a

DomRe+ i s o a = (i×s×o)→ Stream i→ Writer+ (i×s×o) (a× Stream i)
DomRe∞ i s o = (i×s×o)→ Stream i→ Stream (i×s×o)

(a) Domain Semantics

<>=00 : ST s a→ (a→ ST s b)→ ST s b

<>=0+ : ST s a→ (a→ DomRe+ i s o b)→ DomRe+ i so b

<>=++ : DomRe+ i s o a→ (a→ DomRe+ i s o b)→ DomRe+ i s o b

iterRe : (a→ DomRe+ i s o a)→ (a→ DomRe∞ i s o a)

(b) Type Declarations of Effect-labeled Bind & Co-Recursion Operators

Fig. 6: Domain Semantics & Semantic Operators.

Signal-productive computations (i.e., those corresponding to terms of type
Re+ i s o a) are represented in the domain DomRe+ piq psq poq paq. The intu-
ition underlying this structure is that, given an initial snapshot (i , s , o) and a
stream of inputs in i, signal-productive computations will express a finite, non-
zero number of additional snapshots, represented in Writer+ (i × s × o) a.
The intuition underlying DomRe∞ piq psq poq paq is similar, except that it pro-
duces a stream expressing the entire circuit as a “transcript” of snapshots. The
intuition underlying a value in DomRe0 piq psq poq paq is simple—it produces no
snapshots because it represents computation that occurs between clock cycles;
hence it is simply a state monad computation.

The type declarations for effect-labeled bind operators are shown in Fig. 6b.
The monad laws for these were verified in Coq [12]. We chose to verify these laws
in Coq and, although this choice was somewhat arbitrary, it does however illus-
trate the utility of Reynold-style definitional shallow embedding of the ReWire
formalization. The Coq syntax below is different from the Agda syntax we have
adopted throughout; e.g., bindRePP stands for (>>=++), etc. A typical theorem,
showing the associativity of (>>=++), is below:

Theorem AssocPP {i s o a b c} : forall (x : RePlus i s o a),

forall (f : a -> RePlus i s o b), forall (g : b -> RePlus i s o c),

bindRePP x (fun va => bindRePP (f va) g) = bindRePP (bindRePP x f) g.

Fig. 6b presents the type declaration of the corecursion operator, iterRe.
ReWire devices typically take the form of mutually recursive co-equations and
such co-equations may be encoded in the ReWire calculus using a standard

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

approach from denotational semantics. Two ReWire co-equations (left) are rep-
resented in the calculus by (iterRe f), where f is defined as (right):

fi :: ai → Re i s o ()
f1 a1 = x1 >>= f2
f2 a2 = x2 >>= f1

f : (a1 ⊕ a2)→ Re
+
i s o

f (inl a1) = x1 >>=
+0 (returnr ◦ inr)

f (inr a2) = x2 >>=
+0 (returnr ◦ inl)

Fig. 5b presents the mechanized denotational semantics for ReWire. It closely
resembles the Device Calculus semantics referred to previously [22], except for
the monadic fragment of the calculus, which is represented by the constructions
of Fig. 6a. The state monadic operators (returnST, >>=ST, get, and set) have an
unremarkable semantics. Lifting and unit (respectively, liftr and returnr) are
treated as state monad computations as one would expect from the type seman-
tics in Fig. 6a. Lifting is the identity function and the denotation for returnr

is identical to that of returnST. The productivity-labelled bind is mapped to
the appropriate operator from Fig. 6b. The denotation of signal computes a
snapshot (i , s , o) based on the current internal state (s), the head of the input
stream (i), and the output argument it has been passed (o), returning the next
input and the remaining stream of inputs. The semantics of loop applies iterRe
to the denotation of f.

3 Case Study: Cryptographic Hardware Verification

We performed the model validation process on a substantial case study: a family
of pipelined Barrett modular multipliers (BMM) that are based on hardware
algorithms published by Zhang et al. [62]. The formal methods team was pro-
vided with Verilog designs created by hand by a team of hardware engineers
and it was our task was to formally verify the correctness of these designs. The
designs in question were highly optimized using a variety of techniques (e.g.,
specialized encodings for compression/decompression) to enhance area and time
performance of the synthesized circuits. The technical focus heretofore has been
on the embed arrow from Fig. 1. This section summarizes the BMM case study
(i.e., the verify arrow in Fig. 1) and we provide sufficient information to under-
stand the its essentials, although the presentation is necessarily at a high-level
due to space limitations. A complete description is left for future publications.

It is important to note that the Verilog designs for BMM were not designed
with formal verification in mind. Model validation is a hybrid approach mixing
interactive theorem-proving with user-guided, but otherwise, fully automated
equivalence checking. We developed this approach, in part, because we were
concerned that a fully-automated approach would not scale up to the large size
of several of the designs. All of the relevant materials to this case study are
available [12]; these include Verilog designs for the multipliers, the Isabelle proof
scripts that specify and verify the hardware designs, as well as the semantics for
ReWire formalized in Isabelle, Coq, and Agda.

BMM Case Study (model). Creating a ReWire model of the BMM Verilog
design constitutes the model phases of the model validation process illustrated in

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

module BMM (CLK, A_IN, B_IN, M_IN
, mu_IN, km3_IN, Z_OUT);

parameter N = 128;
parameter LOG_N = 7;
input CLK;
input [N-1 : 0] A_IN, B_IN, M_IN;
input [N+2 : 0] mu_IN;
input [LOG_N-1 : 0] km3_IN;
output [N-1 : 0] Z_OUT;
reg [2*N-1 : 0] stage0_XY_reg; // stage 0 reg
reg [N+2 : 0] stage0_mu_reg;
reg [N-1 : 0] stage0_M_reg;
reg [LOG_N-1:0] stage0_km3_reg;
reg [N : 0] stage1_XY_reg; // stage 1 reg
reg [N-1 : 0] stage1_q_reg;
reg [N-1 : 0] stage1_M_reg;
reg [N : 0] stage2_XY_reg; // stage 2 reg

. . .

(a) Input Verilog for BMM

type Inp = (BV(N) -- A_IN
, BV(N) -- B_IN
, BV(N) -- M_IN
, BV(N + 3) -- mu_IN
, BV(LOG_N)) -- km3_IN

type Out = BV(N) -- Z_OUT

bmm :: Inp → Re Inp Reg Out ()
bmm i = do lift (internal i)

i’ ← signal (obs reg)
bmm i’

where
internal :: Inp → ST Reg Out
internal i = do r ← get

put (trans i r)
returnST (obs r)

trans :: Inp → Reg → Reg
trans i r = . . .
obs :: Reg → Out
obs r = . . .

(b) Corresponding ReWire Mimic

Fig. 7: Case Study: Modeling Hardware Designs in ReWire. The bmm function (b)
is an instance of the ReWire’s Mealy pattern that mimics the original hardware
design (a). Haskell’s do notation is syntactic sugar for >>=.

Fig. 1. The task required formally verifying instances of this input RTL for word
sizes: W = 64, 128 , 256, 512, and 1024. This section illustrates this process using
relevant parts of the BMM case study. An excerpt of the input BMM Verilog
code is presented in Fig. 7a. The top-level input and output declarations are
displayed (not all register declarations are included for reasons of space).

The Verilog I/O port declarations that are captured as ReWire tuple types,
Inp and Out, in Fig. 7b. The Verilog register declarations are encoded as the
ReWire tuple type, Reg, although it does not appear in the figure. The ReWire
compiler unfolds boolean vector types to built-in ReWire types (e.g., for N =
128, BV(N) becomes the built-in ReWire word type W128).

One notable difference between the Verilog input ports and the ReWire type
Inp in Fig. 7 is the absence of a clock type in the latter. This reflects the implicit
timing inherent in the Re monad. Fig. 7b excerpts the ReWire formal model
that mimics the input Verilog BMM design—this is a ReWire function, bmm,
that has type Inp → Re Inp Reg Out. The ReWire function bmm is an instance
of the Mealy design pattern from Fig. 2b. In our experience, most of the effort in
the model phase of model validation derives from specifying the input, storage,
and output types (e.g., Inp, Reg, and Out)and, also, from the formulation of the
internal function that represents the combinational output and next-state logic.
Developing the ReWire model was, for the case study presented here, entirely
by hand, although we believe that future work can automate (at least parts of)
the process (see Section 5 for further discussion).

BMM Case Study (embed). The final part of the embed arrow in Fig. 1
for this case study is the semantic translation of the ReWire model into the
logic of the Isabelle theorem prover. (Some liberties have been taken with Is-

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

abelle syntax for readability.) The semantic foundation expressed in Figures 5
and 6 was developed as a theory file in Isabelle. This development was along the
lines of Reynold’s notion of definitional interpreters [52] as remarked upon in
the previous section—i.e., because Isabelle possesses a stream library, the defi-
nitional embedding of the ReWire semantics was straightforward. For example,
the semantic domain DomRe∞ i s o is formulated in Isabelle in Fig. 8. Given
this semantic foundation formulated as an Isabelle theory, a translation into this
theory based on the denotational semantics from Fig. 5b was written in Haskell.
This translation, in most respects, simply transliterates ReWire abstract syntax
into the constructions of the Isabelle semantic theory, making use of the built-in
monadic syntax in Isabelle/HOL. Fig. 8 presents the Isabelle translation of the
ReWire mimic of the original BMM design (from Fig. 7b). Note the structural
similarity between body and onecycle from Fig. 2b. Note also that body is typed
in the Isabelle version of DomRe+ from Fig. 6a. The translator analyses recur-
sive definitions (e.g., the original bmm from Fig. 7b) and reformulates them using
iterRe, but, otherwise, the translations of ReWire definitions in Fig. 8 are unre-
markable. The use of Oxford brackets emphasizes that this Isabelle declaration
defines the denotational semantics of bmm from Fig. 7b.

type_synonym (’i,’s,’o) DomRe_INF =

"(’i × ’s × ’o) ⇒ ’i stream ⇒ ((’i × ’s × ’o) stream)"

fun body :: "Inp ⇒ (Inp, Reg, Out, Inp) Dom_Re_Plus" where

"body (i) = retdo { reg ← liftR get;

liftR (set (trans i reg)); signalR (obs reg) }"
definition J bmm K :: "Inp ⇒ (Inp, Reg, Out) Dom_Re_INF"

where "J bmm K i = iterRe body (i)"

Fig. 8: Embedding of bmm from Fig. 7b in Isabelle.

BMM Case Study (verify). This section presents the verify phase of the
model validation process illustrated in Fig. 1. The compute bmm function in Fig. 9
defines the calling convention for the bmm ReWire device. In the figure, the
initial values, i0, s0, and o0, are tuples of zeros, represented as bit vectors
of appropriate sizes (e.g., o0 is just W128). The function applies J bmm K to the
appropriate inputs thereby producing a stream of snapshots. The computed bmm

value is the output of the fifth such snapshot (calculated with projection π3,
stream take stake, and the list indexing operation “!”). The correctness theorem
embedding eq in Fig. 9 is expressed in Isabelle as an equation relating the results
computed by the compute bmm Isabelle embedding (lhs) to the value computed
by the high-level algorithm, barrett fws word (rhs).

BMM Case Study (validate). This section overviews the validate phase of
the model validation process illustrated in Fig. 1 as applied to the BMM case
study. The successful proof of the correctness theorem embedding eq in Isabelle
verifies the functional correctness of the ReWire representation of the BMM
target design. This alone provides a strong assurance story, but there remains

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

a question as to the accuracy of the hand translation of Verilog BMM design
into ReWire model—what evidence is there that the ReWire model faithfully
represents the input design? Model validation goes further and demonstrates the
soundness of the model through the use of model checking technology.

fun compute_bmm :: "128 word ⇒ 128 word ⇒ 128 word ⇒ 131 word ⇒ 7 word ⇒ 128 word"
where
"compute_bmm a b m mu km3 =
π3 (stake 5 (J bmm K (a,b,m,mu,km3) (i0,s0,o0) (repeat (a,b,m,mu,km3))) ! 4)"

theorem embedding_eq : "compute_bmm a b m mu km3 = barrett_fws_word a b m mu km3"

Fig. 9: Formal Specification of bmm.

The yosys (Yosys Open SYnthesis Suite) toolchain [59] supports the synthesis
of Verilog (and, through an extension, VHDL) designs, providing an array of
options for transformation, optimization, and model checking. In particular for
our use case, yosys integrates the ABC system [9] for sequential logic synthesis
and formal verification. Here, we use yosys to carry out an equivalence check
between two circuits: those synthesized from the input Verilog BMM design and
the Verilog output by compiling the verified ReWire model.

The ReWire compiler provides a Verilog backend and we can thus perform
an apples-to-apples comparison of the two Verilog circuits using yosys. Because
the ReWire model mimics the modular and algorithmic structure of the hand-
written circuit, yosys can quickly identify common substructures in support of
automatic equivalence verification of the two circuits. Even with the high degree
of similarity between the two circuits, some of the more complex equivalence
checks proved challenging for the automated tooling. To break down the prob-
lem further, we applied compositional verification, in which subcomponents are
verified individually and those results are used to verify higher-level components.
After we verify equivalence for a submodule, we instruct yosys to treat references
to that submodule by both the implementation and ReWire specification as a
blackbox library. “Blackboxing” modules can streamline equivalence checking.

The yosys scripts we used may be found in the codebase [12]. Our initial
experimentation focused on purely combinational circuits, provable using the
yosys equiv simple command. This worked “out of the box” for a number of sub-
modules. However, much of the target design consists of sequential circuits, which
require additional configuration to manage timing and state. In this case, with
the equiv induct command, yosys proves such circuits equivalent by temporal
induction over clock cycles.

4 Related Work

We coined the term model validation because of its similarities to translation
validation [17, 40, 44, 46]. Translation validation begins with a given source pro-
gram and compiler and, then, establishes the correctness relation between the

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

source and its implementation (i.e., the compiled source program). Translation
validation establishes the correctness of individual compiler translations rather
than verifying the whole compiler itself. Model validation starts from a given
implementation (i.e., the HDL circuit design) and high-level correctness criteria
(e.g., an algorithm given in pseudocode) and, then, establishes the equivalence
of the two to a ReWire formal model that mimics the circuit design. The (model

; validate) path in model validation proceeds in the “opposite direction” from
translation validation. Translation validation for HLS has been applied before
(e.g., Kundu [29] and Ramanathan et al. [49,50]), but model validation is novel
to the best knowledge of the authors.

High-level synthesis (HLS) adapts software high-level languages to hardware
development. The motivation to do so has been to bring software engineering
virtues—e.g., modularity, comprehensibility, reusability, etc.—to the whole hard-
ware development process [2] but also more recently to translate software formal
methods into a hardware context [7,14,53]. Herklotz and Wickerson [23] and Du
et al. [13] make compelling arguments for applying software formal methods to
HLS languages and compilers as a means of bringing a level of maturity and re-
liability to HLS that justifies its use in critical systems. Formal methods applied
to software compilers have been explored for at least five decades now [38] and
the state of the art is at a high-level of sophistication [30].

Gordon outlined the challenges of semantic specification of hardware defini-
tion languages [19], focusing specifically on Verilog, although his analysis applies
equally to VHDL. There have been previous attempts to formalize VHDL as
well [28, 58] that have succeeded only on small parts of the language. One way
of coping with the lack of formal semantics for commodity HDLs is to identify
a formalizable subset of the language in question. Gordon [20], Zhu et al. [63],
Meredith et al. [36], Khan [27], and Lööw and Myreen [32] do so for Verilog.
Another approach creates a new hardware language and compiler with formal-
ization as a specific requirement (e.g., Kami [11], Bluespec [7], and CHERI [42]).
HLS generally seeks to adapt software languages to hardware—ReWire, being a
DSL embedded in Haskell, is in this camp.

The original motivation for high-level synthesis was to promote software-like
development to hardware design by introducing software-like abstractions and
methodologies. In particular, functional language approaches to high-level syn-
thesis have a long pedigree, including muFP [55], Cλash [15], ForSyDe, Lava [6],
Kiwi [56], and Chisel [4]. There is a growing awareness of the utility of language-
based approaches (including HLS) for hardware formal methods (e.g., a sample
of very recent publications [3,7,8,21,22,31,32,42,53] can be found in the refer-
ences). This language-based approach has been particularly successful in formal
development of instruction set architectures [3, 42,51].

There has been work formalizing monads with theorem provers as a basis
for verifying functional programs [1,10,16,33,39]. Simple monads (e.g., Haskell’s
Maybe) can be transliterated into a theorem prover, but more complex monads—
e.g., RRS monads—require more care [24,25,53,54]; their mechanization here is,
by comparison, a shallow embedding. Effect labels in the ReWire calculus type

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://forsyde.github.io/

system were essential because they allow fine-grained distinctions with respect
to signal-productivity and non-termination to be made in the construction of
terms that, in turn, determine the appropriate denotation domain.

5 Summary, Conclusions, and Future Work

The research described here was performed as part of a project to develop for-
mally verified hardware accelerators to improve upon the existing algorithmic
gains to fully-homomorphic encryption (FHE). ReWire’s role is to bridge the gap
between the hardware design and algorithm by establishing 1) the equivalence
of the algorithm to the model and 2) the equivalence of the model to the circuit
design. Equivalence between the algorithm and the ReWire model is verified
with a ReWire semantics formalized in the Isabelle theorem prover. Equivalence
between the ReWire model and the input circuit design is established by produc-
ing binary circuits from each (using commodity synthesis tools and the ReWire
compiler) and applying an automated binary equivalence checker.

Model validation addresses the following kind of scenario. A team of hardware
engineers produces a circuit design C in a commodity HDL (e.g., VHDL or
Verilog) to implement an algorithm A (written in informal, imperative style
pseudocode) in hardware and then a formal methods team is given the task
of evaluating whether C implements A correctly. There is significant distance
between the notions of computation underlying A (i.e., store-passing in some
form) and C (i.e., clocked, synchronous parallelism) and so formally relating
the two is non-trivial and requires care. We have shown how a formalized HLS
language like ReWire can bridge this gap to reduce this conceptual distance.

The first path of model validation—the composite arrow (model; embed; verify)

in Fig. 1—is, in some respects, a conventional hardware verification flow with a
theorem prover: a formal model is abstracted from an HDL design, encoded in
the prover logic, and then properties of that model are verified. The interposed
formalized HLS language may provide some benefits with respect to proof engi-
neering via libraries of theorems that may be reused later. We have developed
such libraries of theorems and tactics over the course of this project that will
be shared as open source. The second path of the model validation process—the
composite arrow (model ; validate)—speaks to the fidelity of the formal model it-
self to the input circuit design. Establishing the fidelity of a formal model to the
object it models addresses a broad issue in formal methods research that can be
difficult to explore: how can we gauge the accuracy of a formal model itself?

The class of high-level algorithms of which the BMM case study is a mem-
ber are generally informally specified as C-style pseudocode (see, for instance,
Zhang et al. [62]). One approach for future work would be to develop a formalized
domain-specific language for this class of high-level algorithms that can be lifted
automatically into ReWire. This would accelerate the model validation process
as it would automate the otherwise time-consuming, by-hand model phase. Such
a language-based approach would support, among other things, a correct-by-
construction approach to hardware development based in program transforma-

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

tion. Another potential accelerator applies recent work by Zeng et al. [60, 61]
that seeks to automatically generate update functions of type i→ s→ (o× s)
from Verilog designs. Automatic recovery of such update functions would go a
long way towards automating the model phase of model validation.

We have successfully applied the model validation methodology to several
substantial case studies, including the BMM case study from Section 3 and an-
other on a 4096-bit iterative Montgomery modular multiplier (MMM) that we
will describe in future work. Why develop a new methodology at all? Several
members of the formal methods team have extensive experience with Cryptol,
for example, and we did experiment with it. For example, we specified some of
the basic encoder components from the MMM in Cryptol, but the automated
equivalence check of these against the relevant components failed to terminate
after several days. It seemed unlikely, then, that this fully automated approach
would scale up to a 4096-bit multiplier. One of the key reasons for our success in
these case studies is the extensive automation available in Isabelle—that moti-
vated our choice of Isabelle over Coq. ReWire is open source and the success of
the (model ; validate) path in Fig. 1 relied on our ability to make customizations
to its Verilog code generator in support of Yosys equivalence checking.

Fmax (GHz) Area (µm2)

Width ReWire Original ∆% ReWire Original ∆%

64 1.588 2.127 +25% 13399 12126 +10%
128 1.357 2.134 +36% 42970 41650 +3%
256 1.229 1.952 +37% 150463 157214 -4%
512 1.074 1.789 +40% 554612 578506 -4%

1024 0.954 1.473 +35% 2109037 2106714 +0.1%

Table 1: Performance Comparison: ReWire vs. Handwritten Barrett Multipliers.

Comparing the performance of the compiled ReWire models in Section 3
against those of the original Verilog designs was in some respects surprising
to us. Table 1 displays performance numbers (maximum clock frequency and
area) for the case study for each word size of pipelined Barrett multipliers. The
columns labeled “Original” are those for the original Verilog design created by
hand and those labeled “ReWire” are for the mimic designs created as formal
models. While the maximum clock frequency numbers for the ReWire models
are between 25%-40% slower than the Original designs, the area of the circuits is
roughly equivalent and, in some cases, slightly better than those produced for the
handwritten designs. Future work will explore the optimization of the ReWire
compiler to bring these performance characteristics into line with hand-written
Verilog and VHDL designs as much as possible.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

References

1. Affeldt, R., Nowak, D., Saikawa, T.: A hierarchy of monadic effects for program
verification using equational reasoning. In: Hutton, G. (ed.) Mathematics of Pro-
gram Construction. pp. 226–254 (2019)

2. Andrews, D.: Will the future success of reconfigurable computing require a
paradigm shift in our research community’s thinking? (Apr 2015), keynote address,
Applied Reconfigurable Computing

3. Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.,
Mundkur, P., Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,
N., Sewell, P.: The State of Sail. In: SpISA 2019: Workshop on Instruction Set
Architecture Specification (September 2019)

4. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avizienis, R.,
Wawrzynek, J., Asanovic, K.: Chisel: constructing hardware in a scala embedded
language. In: DAC. pp. 1216–1225 (2012)

5. Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational
semantics in Coq. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
Theorem Proving in Higher Order Logics. pp. 115–130. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009)

6. Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware design in haskell.
ACM SIGPLAN Notices 34 (05 2001)

7. Bourgeat, T., Pit-Claudel, C., Chlipala, A., Arvind: The essence of Bluespec: A
core language for rule-based hardware design. In: Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation. p.
243–257. PLDI 2020 (2020)

8. Bourke, T., Brun, L., Pouzet, M.: Mechanized semantics and verified compila-
tion for a dataflow synchronous language with reset. Proc. ACM Program. Lang.
4(POPL) (Dec 2019)

9. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Computer Aided Verification. pp. 24–40 (2010)

10. Breitner, J., Spector-Zabusky, A., Li, Y., Rizkallah, C., Wiegley, J., Weirich, S.:
Ready, set, verify! applying hs-to-coq to real-world haskell code (experience report).
Proc. ACM Program. Lang. (jul 2018)

11. Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., Arvind: Kami: a plat-
form for high-level parametric hardware specification and its modular verification.
PACMPL 1, 24:1–24:30 (2017)

12. Model Validation Codebase. Available from https://www.dropbox.com/s/

r59xg34qzh0arri/codebase_paper4262.tar.gz?dl=0 (Dec 2022)

13. Du, Z., Herklotz, Y., Ramanathan, N., Wickerson, J.: Fuzzing high-level syn-
thesis tools. In: The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. p. 148. FPGA ’21, Association for Computing Ma-
chinery, New York, NY, USA (2021)

14. Flor, J.P.P., Swierstra, W., Sijsling, Y.: Π-Ware: Hardware Description and Veri-
fication in Agda. In: Proc. TYPES (2015)

15. Gerards, M., Baaij, C., Kuper, J., Kooijman, M.: Higher-order abstraction in hard-
ware descriptions with CλaSH. In: Proceedings of the 2011 14th EUROMICRO
Conference on Digital System Design. pp. 495–502. DSD ’11, IEEE Computer
Society, Washington, DC, USA (2011). https://doi.org/10.1109/DSD.2011.69,
http://dx.doi.org/10.1109/DSD.2011.69

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://www.dropbox.com/s/r59xg34qzh0arri/codebase_paper4262.tar.gz?dl=0
https://www.dropbox.com/s/r59xg34qzh0arri/codebase_paper4262.tar.gz?dl=0
https://doi.org/10.1109/DSD.2011.69
https://doi.org/10.1109/DSD.2011.69
http://dx.doi.org/10.1109/DSD.2011.69

16. Gibbons, J., Hinze, R.: Just do it: Simple monadic equational reasoning. In: Pro-
ceedings of the 16th ACM SIGPLAN International Conference on Functional Pro-
gramming. p. 2–14. ICFP ’11 (2011)

17. Goldberg, B., Zuck, L., Barrett, C.: Into the loops: Practical issues in transla-
tion validation for optimizing compilers. Electronic Notes in Theoretical Computer
Science 132(1), 53–71 (2005), proceedings of the 3rd International Workshop on
Compiler Optimization Meets Compiler Verification (COCV 2004)

18. Goncharov, S., Schröder, L.: A coinductive calculus for asynchronous side-effecting
processes. In: Proc. of the 18th International Conf. on Fundamentals of Computa-
tion Theory. pp. 276–287 (2011)

19. Gordon, M.J.C.: The semantic challenge of Verilog HDL. Proc. of 10th Annual
IEEE LICS pp. 136–145 (1995)

20. Gordon, M.J.C.: Relating Event and Trace Semantics of Hardware Description
Languages. The Computer Journal 45(1), 27–36 (01 2002)

21. Harrison, W.L., Allwein, G.: Verifiable security templates for hardware. In: Pro-
ceedings of the Design, Automation, and Test Europe (DATE) Conference (2020)

22. Harrison, W.L., Hathhorn, C., Allwein, G.: A mechanized semantic metalanguage
for high level synthesis. In: 23rd International Symposium on Principles and Prac-
tice of Declarative Programming (PPDP 2021) (2021)

23. Herklotz, Y., Wickerson, J.: High-level synthesis tools should be proven correct. In:
Workshop on Languages, Tools, and Techniques for Accelerator Design (LATTE)
(2021)

24. Huffman, B.: HOLCF ’11: A Definitional Domain Theory for Verifying Functional
Programs. Ph.D. thesis, Portland State University (2012)

25. Huffman, B.: Formal verification of monad transformers. In: Proceedings of the
17th ACM SIGPLAN International Conference on Functional Programming. p.
15–16. ICFP ’12 (2012)

26. Katz, R.H.: Contemporary Logic Design. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edn. (2000)

27. Khan, W., Tiu, A., Sanan, D.: Veriformal: An executable formal model of a hard-
ware description language. In: Roychoudhury, A., Liu, Y. (eds.) A Systems Ap-
proach to Cyber Security: Proceedings of the 2nd Singapore Cyber-Security R&D
Conference (SG-CRC 2017), pp. 19–36. IOS Press (2017)

28. Kloos, C., Breuer, P. (eds.): Formal Semantics for VHDL. Kluwer Academic Pub-
lishers (1995)

29. Kundu, S., Lerner, S., Gupta, R.K.: Translation Validation of High-Level Synthe-
sis, pp. 97–121. Springer New York, New York, NY (2011). https://doi.org/10.
1007/978-1-4419-9359-5_7, https://doi.org/10.1007/978-1-4419-9359-5_7

30. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (Jul 2009)

31. Lööw, A.: Lutsig: A verified verilog compiler for verified circuit development. In:
Proceedings of the 10th ACM SIGPLAN International Conference on Certified
Programs and Proofs. p. 46–60. CPP 2021, Association for Computing Machinery,
New York, NY, USA (2021)

32. Lööw, A., Myreen, M.O.: A Proof-Producing Translator for Verilog Development
in HOL. In: 2019 IEEE/ACM 7th International Conference on Formal Methods in
Software Engineering (FormaliSE). pp. 99–108 (2019)

33. Maillard, K., Ahman, D., Atkey, R., Mart́ınez, G., Hriţcu, C., Rivas, E., Tanter,
E.: Dijkstra monads for all. Proc. ACM Program. Lang. 3(ICFP) (jul 2019)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://doi.org/10.1007/978-1-4419-9359-5_7
https://doi.org/10.1007/978-1-4419-9359-5_7
https://doi.org/10.1007/978-1-4419-9359-5_7
https://doi.org/10.1007/978-1-4419-9359-5_7
https://doi.org/10.1007/978-1-4419-9359-5_7

34. Marlow, S., Brandy, L., Coens, J., Purdy, J.: There is no fork: An abstraction
for efficient, concurrent, and concise data access. In: Proceedings of the 19th
ACM SIGPLAN International Conference on Functional Programming. pp. 325–
337. ICFP ’14, ACM, New York, NY, USA (2014). https://doi.org/10.1145/

2628136.2628144, http://doi.acm.org/10.1145/2628136.2628144
35. Mealy, G.H.: A method for synthesizing sequential circuits. The Bell System Tech-

nical Journal 34(5), 1045–1079 (Sep 1955)
36. Meredith, P., Katelman, M., Meseguer, J., Roşu, G.: A formal executable semantics

of Verilog. In: Eighth ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE 2010). pp. 179–188 (July 2010)

37. Moggi, E.: Notions of computation and monads. Information and Computation
93(1), 55–92 (July 1991)

38. Morris, F.L.: Advice on structuring compilers and proving them correct. In: Pro-
ceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. p. 144–152. POPL ’73, Association for Computing
Machinery, New York, NY, USA (1973)

39. Mu, S.C.: Calculating a backtracking algorithm: an exercise in monadic program
derivation. Tech. Rep. TR-IIS-19-003, Institute of Information Science, Academia
Sinica (June 2019)

40. Necula, G.C.: Translation validation for an optimizing compiler. In: Proceedings
of the ACM SIGPLAN 2000 Conference on Programming language design and
implementation. pp. 83–94 (2000)

41. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer
(2010)

42. Nienhuis, K., Joannou, A., Bauereiss, T., Fox, A., Roe, M., Campbell, B., Naylor,
M., Norton, R.M., Moore, S.W., Neumann, P.G., Stark, I., Watson, R.N.M., Sewell,
P.: Rigorous engineering for hardware security: Formal modelling and proof in the
CHERI design and implementation process. In: 2020 IEEE Symposium on Security
and Privacy. pp. 1003–1020 (2020)

43. Papaspyrou, N.S.: A Resumption Monad Transformer and its Applications in the
Semantics of Concurrency. In: Proceedings of the 3rd Panhellenic Logic Symposium
(2001), expanded version available as a tech. report from the author by request.

44. Perez, I., Goodloe, A.: Copilot 3. Tech. Rep. 20200003164, National Aeronautics
and Space Administration (NASA) (04 2020)

45. Piróg, M., Gibbons, J.: The coinductive resumption monad. Elec-
tronic Notes in Theoretical Computer Science 308, 273 – 288 (2014).
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2014.10.015,
http://www.sciencedirect.com/science/article/pii/S1571066114000826,
proceedings of the 30th Conference on the Mathematical Foundations of
Programming Semantics (MFPS XXX)

46. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems. pp.
151–166. Springer (1998)

47. Procter, A.: Semantics-Driven Design and Implementation of High-Assurance
Hardware. Ph.D. thesis, University of Missouri (2014)

48. Procter, A., Harrison, W., Graves, I., Becchi, M., Allwein, G.: A principled ap-
proach to secure multi-core processor design with ReWire. ACM TECS 16(2),
33:1–33:25 (Jan 2017)

49. Ramanathan, N., Constantinides, G.A., Wickerson, J.: Concurrency-aware thread
scheduling for high-level synthesis. In: 2018 IEEE 26th Annual International Sym-

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://doi.org/10.1145/2628136.2628144
https://doi.org/10.1145/2628136.2628144
https://doi.org/10.1145/2628136.2628144
https://doi.org/10.1145/2628136.2628144
http://doi.acm.org/10.1145/2628136.2628144
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2014.10.015
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2014.10.015
http://www.sciencedirect.com/science/article/pii/S1571066114000826

posium on Field-Programmable Custom Computing Machines (FCCM). pp. 101–
108 (2018). https://doi.org/10.1109/FCCM.2018.00025

50. Ramanathan, N., Fleming, S.T., Wickerson, J., Constantinides, G.A.: Hard-
ware synthesis of weakly consistent C concurrency. In: Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
p. 169–178. FPGA ’17, Association for Computing Machinery, New York, NY,
USA (2017). https://doi.org/10.1145/3020078.3021733, https://doi.org/10.
1145/3020078.3021733

51. Reid, A.: Trustworthy specifications of ARM® v8-a and v8-m system level ar-
chitecture. In: 2016 Formal Methods in Computer-Aided Design (FMCAD). pp.
161–168 (Oct 2016). https://doi.org/10.1109/FMCAD.2016.7886675

52. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM Annual Conference - Volume 2. p. 717–740. ACM ’72
(1972)

53. Reynolds, T.N., Procter, A., Harrison, W., Allwein, G.: The mechanized marriage
of effects and monads with applications to high-assurance hardware. ACM TECS
18(1), 6:1–6:26 (Jan 2019)

54. Schröder, L.: Bootstrapping inductive and coinductive types in hascasl. Logical
Methods in Computer Science 4(4:17), 1–27 (2008)

55. Sheeran, M.: muFP, a language for VLSI design. In: LISP and Functional Pro-
gramming. pp. 104–112 (1984)

56. Singh, S., Greaves, D.J.: Kiwi: Synthesis of FPGA circuits from parallel programs.
In: 2008 16th International Symposium on Field-Programmable Custom Comput-
ing Machines. pp. 3–12 (2008). https://doi.org/10.1109/FCCM.2008.46

57. Swierstra, W., Altenkirch, T.: Beauty in the beast. In: Proceedings of the ACM
SIGPLAN Workshop on Haskell Workshop. pp. 25–36. Haskell ’07, ACM, New
York, NY, USA (2007). https://doi.org/10.1145/1291201.1291206, http://

doi.acm.org/10.1145/1291201.1291206

58. Umamageswaran, K., Pandey, S.L., Wilsey, P.A.: Formal Semantics and Proof
Techniques for Optimizing VHDL Models. Kluwer Academic Publishers, USA
(1999)

59. Wolf, C.: Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/
60. Zeng, Y., Gupta, A., Malik, S.: Automatic generation of architecture-level mod-

els from RTL designs for processors and accelerators. In: Design, Automation &
Test in Europe (DATE). pp. 460–465 (March 2022). https://doi.org/10.23919/
DATE54114.2022.9774527

61. Zeng, Y., Huang, B.Y., Zhang, H., Gupta, A., Malik, S.: Generating architecture-
level abstractions from RTL designs for processors and accelerators part i: Deter-
mining architectural state variables. In: 2021 IEEE/ACM International Conference
On Computer Aided Design (ICCAD). pp. 1–9 (2021)

62. Zhang, B., Cheng, Z., Pedram, M.: A high-performance low-power barrett modular
multiplier for cryptosystems. In: 2021 IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED). pp. 1–6 (2021)

63. Zhu, H., He, J., Bowen, J.: From algebraic semantics to denotational semantics
for Verilog. In: 11th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS’06). p. 341–360 (2006)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://doi.org/10.1109/FCCM.2018.00025
https://doi.org/10.1109/FCCM.2018.00025
https://doi.org/10.1145/3020078.3021733
https://doi.org/10.1145/3020078.3021733
https://doi.org/10.1145/3020078.3021733
https://doi.org/10.1145/3020078.3021733
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1109/FCCM.2008.46
https://doi.org/10.1109/FCCM.2008.46
https://doi.org/10.1145/1291201.1291206
https://doi.org/10.1145/1291201.1291206
http://doi.acm.org/10.1145/1291201.1291206
http://doi.acm.org/10.1145/1291201.1291206
https://yosyshq.net/yosys/
https://doi.org/10.23919/DATE54114.2022.9774527
https://doi.org/10.23919/DATE54114.2022.9774527
https://doi.org/10.23919/DATE54114.2022.9774527
https://doi.org/10.23919/DATE54114.2022.9774527

A Monads, Monad Transformers, and Reactive
Resumption Monads over State in Haskell

This appendix includes background material on reactive resumption monads over
state and, specifically, their representation in Haskell.

A.1 Monads in Haskell

A Haskell monad is a type constructor m with associated operations return and
>>= with types:

return :: a → m a

(>>=) :: m a → (a → m b) → m b

(>>) :: m a → m b → m b — “null” bind
x >> y =x >>= λ . y

A term of type m a is referred to as a computation of a, whereas a term of
type a is a value—the distinction between values and computations is funda-
mental to monadic denotational semantics [37]. The return operation creates
an a-computation from an a-value. The (>>=) operation is a kind of “backwards
application” for m, meaning that, in x >>= f, an a-value is computed by x and
then f is applied to that value. Null bind performs computation x, ignores its
result, and then performs computation y.

Monadic return and bind operations are overloaded in Haskell and this over-
loading is resolved via the type class system.

The return and bind of a monad generally obey the “monad laws” that
signify that >>= is associative and that return is a left and right unit of >>=.
What makes monads useful in language semantics and functional programming,
however, is not this basic infrastructure, but rather the other operations definable
in terms of the monad (e.g., the state monad has operations for reading and
writing to and from state).

A.2 Identity Monad

The type constructor for the identity monad is given by:

data Identity a = Identity a

It is conventional in Haskell to use Identity for both the type and data con-
structors for the identity monad. For Identity, return and bind are defined by:

return = Identity

(Identity a) >>= f = f a

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

A.3 Monad Transformers in Haskell

A monad transformer is a construction t such that, for any monad m, t m is
a monad. Monads created through applications of monad transformers to a
base monad (e.g., Identity) are referred to as modular monads. For exam-
ple, (Re i s o) from Fig. 4 is a modular monad; see Appendix A.6 below. For
each monad transformer t, there is a lifting operation lift :: m a → t m a used
to redefine m’s operations for t m.

A.4 StateT Monad Transformer

Return and bind for the monad StateT s m are defined in terms of m:

return a = StateT (returnm a)
(StateT x) >>= f = StateT (x >>=m λ(a , s). deStateT (f a) s)

The return and bind operations are disambiguated by attaching an m subscript
to m’s operations.

In addition to the standard return and bind operations, the state monad
transformers also defines three other operations: get (to read the current state),
set (to set the current state), and the overloaded lift (that redefines m com-
putations as StateT s m computations):

get :: StateT s m s
get = StateT (λs. returnm (s , s))
set :: s → (StateT s m ())
set s = StateT (λ . returnm (() , s))
lift :: m a → StateT s m a

lift x = StateT (λs. x >>=m λa. returnm (a , s))

A.5 ReacT Monad Transformer

The reactive resumption monad transformer is given by:

data ReacT i o m a = ReacT (m (Either a (o , i → ReacT i o m a)))

Return and bind for the monad ReacT i o m are defined in terms of m:

return a = ReacT (returnm (Left a))
(ReacT x) >>= f = ReacT (x >>=m λr. case r of

Left a → f a

Right (o , k)→ returnm (o , λi. (k i) >>= f))

The additional operations in ReacT i o m are:

signal :: o → ReacT i o m i

signal o = ReacT (returnm (o , return)))
lift :: m a → ReacT i o m a

lift x = ReacT (x >>=m (Left ◦ returnm))

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

A.6 Reactive Resumption Monads over State in Haskell

In ReWire, device specifications have a type constructed using monad trans-
formers defined above. The type constructor for devices is given by the type
synonym Re—this is the Haskell definition equivalent to that from Fig. 4.

type Re i s o = ReacT i o (StateT s Identity)

ReWire allows a slightly more flexible formulation in which there are multiple
StateT applications, although one such application as above suffices for the
purposes of this work.

There are also projections from the monad transformer type constructors:

deStateT :: StateT s m a → s → m (a, s)
deStateT (StateT x) = x

deReacT :: ReacT i o m a → m (Either a (o , i → ReacT i o m a))
deReacT (ReacT x) = x

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

	 Formalized High Level Synthesis with Applications to Cryptographic Hardware

