
A Mechanized Semantic Metalanguage for High Level Synthesis
William L. Harrison
Two Six Technologies
Arlington, VA, USA

william.lawrence.harrison@gmail.com

Chris Hathhorn
Cyber Security Research Group
Oak Ridge National Laboratory

Oak Ridge, TN, USA
hathhorn@gmail.com

Gerard Allwein
US Naval Research Laboratory

Washington, DC, USA

ABSTRACT
High-level synthesis (HLS) seeks to make hardware development
more like software development by adapting ideas from program-
ming languages to hardware description and HLS from functional
languages is usually motivated as a means of bringing software-
like productivity to hardware development. Formalized semantics
support a range of important capabilities in software languages
(e.g., compositionality, comprehensibility, interoperability, formal
methods, and security) that are desirable in hardware languages as
well. This paper considers the formalized semantics of the Device
Calculus, a typed 𝜆-calculus with operators for constructing Mealy
machines that forms a semantic substratum suitable for high-level
synthesis and we demonstrate the utility of the Device Calculus
as a foundation for formal methods in functional HLS with a case
study specifying the semantics of an idealized subset of the FIRRTL
language. FIRRTL (“Flexible Internal Representation for RTL”) is
an open-source hardware intermediate representation targeted by
the Chisel hardware construction language and the semantics we
present is also a starting point for exploring formal methods and
security within both the Chisel toolchain and any other high-level
synthesis flows that target FIRRTL.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Security and privacy → Logic and verifi-
cation.

KEYWORDS
Formal aspects of hardware, Dependently-typed languages, High
level synthesis, Formalized Semantics, Mechanized reasoning, Se-
curity foundations

ACM Reference Format:
William L. Harrison, Chris Hathhorn, and Gerard Allwein. 2021. A Mecha-
nized Semantic Metalanguage for High Level Synthesis. In 23rd International
Symposium on Principles and Practice of Declarative Programming (PPDP
2021), September 6–8, 2021, Tallinn, Estonia. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3479394.3479417

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPDP 2021, September 6–8, 2021, Tallinn, Estonia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8689-0/21/09. . . $15.00
https://doi.org/10.1145/3479394.3479417

compiler

HDL

synthesizableembedded
DSL

Host

compiler

HDL

HW DSLembedded
DSL

Host
instr.
select

eDSL
Semantics

HW DSL
Semanticscorrectness

Figure 1: HLS compiler translates HLL Host subset to synthe-
sizable subset of commodity HDL (top). Formulating com-
piler correctness requires bridging the software-hardware
semantics gap (bottom).

1 INTRODUCTION
High-level synthesis (HLS) adapts software high-level languages
(HLL) to hardware development. The motivation to do so has been
to bring software engineering virtues—e.g., modularity, compre-
hensibility, reusability, etc.—to the whole hardware development
process [2] but also more recently to translate software formal meth-
ods into a hardware context [7, 23, 56]. Herklotz and Wickerson [36]
and Du et al. [19] make compelling arguments for applying soft-
ware formal methods to HLS languages and compilers as a means
of bringing a level of maturity and reliability to HLS that justifies
its use in critical systems. Formal methods applied to software com-
pilers have been explored for at least five decades now [48] and
the state of the art is at a high-level of sophistication [43]. Are
there necessary building blocks for verifying HLS compilers still
required? This article answers the question in the affirmative, argu-
ing for a semantic metalanguage that we call Device Calculus that
is suitable to both source and target languages in an HLS flow.

Previous work [35] introduced Device Calculus as a means of
capturing security design patterns for hardware; the current work
is a companion piece laying out the formal underpinnings for that
approach. The contributions of this paper are: (1) a formalized se-
mantics for the Device Calculus; (2) a high-level overview of a
rigorous semantics, formalized in Agda, for a substantial idealized
subset of FIRRTL; and (3) feedback with respect to the FIRRTL
language design that may prove useful for the Chisel/FIRRTL com-
munity. This paper is not intended to serve as a formal semantics for
all of FIRRTL as it now exists—we leave that for future work—but
the semantic case study we present demonstrates the viability of

https://doi.org/10.1145/3479394.3479417
https://doi.org/10.1145/3479394.3479417

PPDP 2021, September 6–8, 2021, Tallinn, Estonia William L. Harrison, Chris Hathhorn, and Gerard Allwein

output &
next state logic

storage s

outputs oinputs i

state feedback

Figure 2: Mealy machines are a widely accepted intuition
for guiding digital design [39, 46]. A formalization of Mealy
machines as coinductive type (Fig. 3) underlies the semantics
of the Device Calculus.

the approach and of the Device Calculus as building block in HLS
verification.

Motivation. An HLS language may be viewed as a kind of embed-
ded domain-specific language (eDSL) in which the embedding is
literal (e.g., ReWire [53] is a subset of Haskell) or figurative (e.g.,
LegUp [13] is said to be “C-like”). Fig. 1 (top) shows the general
structure of an HLS compiler, which translates the specific eDSL
into a synthesizable subset of a commodity hardware description
language (HDL) like Verilog or VHDL. Because formal semantics
for commodity HDLs are problematic (see Section 1.1 below), this
general structure would complicate the formal verification of an
HLS compiler. Fig. 1 (bottom) shows the structure of an HLS com-
piler in which the code generation targets a machine-independent,
hardware intermediate form (HW DSL). This restructuring is in one
sense just good compiler engineering in that it makes the HLS com-
piler re-targetable—i.e., by delaying any commitment to machine-
or HDL-dependent features until instruction selection. But, if HW
DSL can be readily formalized, then it can play an important role
in the formal verification of the entire HLS compiler, portrayed by
the familiar compiler correctness diagram in Fig. 1 (bottom).

Figure 2 presents the graphical view of Mealy machines, that
have been, and continue to be, the standard mental model in digital
design practice [39, 46]—i.e., engineers “think” in terms of Mealy
machines but program in commodity hardware definition languages
when formulating a digital design. Upon any clock “tick” for the
circuit, particular values of the input, register storage, and external
outout (i, s, and o, resp.) are latched. During this clock period, the
current values of i and s flow through the output and next-state
logic—combinational circuitry—to produce new external output and
storage values. This combinational logic is effectively a function
of type i → s → (o × s); that combinational logic is functional
in nature has been recognized for many years [59] and forms the
basis of most approaches to compiling functional programs to gates.
These intuitions are formalized in Agda in Section 2.

This article argues the case for a mechanized semantic metalan-
guage suitable to HLS compiler verification. The Device Calculus is
a typed 𝜆-calculus with constants related to hardware description—
e.g., types and operations for fixed size binary words as well as
recursion operators for constructing Mealy machines. It appeared
in previous work [35] as a metalanguage for security patterns for
hardware, but this previous work did not explore the formalized
semantics of Device Calculus. The current work presents these foun-
dations mechanized in Agda along with a case study formalizing a

significant portion of the open source, machine-independent, hard-
ware intermediate representation called FIRRTL (“Flexible Internal
Representation for RTL”)1.

What makes a metalanguage suitable for specifying HLS lan-
guages? “Harmony” with the underlying notion of computation
of sequential hardware would seem to be a high-level answer. For
example, hardware has a fixed memory footprint and this restricts,
one way or another, the notions of program and data recursion
in an HLS language [55]. Another difference between software
programs and hardware designs generally is in termination behav-
ior: hardware does not terminate. Hardware designers use Mealy
machines of a particular, non-terminating form (see Fig. 2) as an or-
ganizing principle in digital design, and Mealy machines are at the
heart of the Device Calculus metalanguage. The Device Calculus is
a convenient 𝜆-calculus syntax for constructing Mealy machines
well-suited to the role of semantic metalanguage for HLS languages;
𝜆-calculi have played that role in language semantics research for
many decades [60]. We illustrate this suitability in Section 4 with
the Idealized FIRRTL semantics. In most respects, the Device Calcu-
lus language definition is given in a familiar style of a denotational
semantics encoding in dependently typed languages like Coq and
Agda; this style of semantics is sometimes referred to as a tagless
interpreter.

Section 1.1 describes related work. Section 2 describes the formal-
ization of Mealy machines as a coinductive type in Agda. Section 3
presents the Device Calculus and its formalized semantics. Section 4
presents Idealized FIRRTL and its translation into the Device Cal-
culus metalanguage. In order to make this article as self-contained
as possible, this section includes an overview of FIRRTL as it ex-
ists [44]. Section 5 discusses conclusions and future directions.

1.1 Related Work
Mealy machines were first introduced to engineering practice as
a kind of mental model to guide engineers in circuit design [46]
and abstract state machines continue to inform the process [39].
Still, it is difficult to comprehend system level design in terms of
low-level state machines and bridging this conceptual divide is a
primary motivation behind high-level synthesis tools and languages.
The most popular strategy adapts C-like languages: LegUp [13],
Vivado HLS [68], FPM [66], Streams-C [26] and ROCCC [64]. Such
tools confront the challenges of extracting coarse-grain parallelism
from C-like languages [20]. High-level synthesis (HLS) based on
languages and libraries for parallelism [14, 30] are common also.

There is a considerable literature on compiling functional pro-
grams to hardware [3, 4, 6, 21, 22, 24, 31, 51, 53, 59, 61] and this
line of research was initially motivated by the desire to make hard-
ware design more like software design: aspects of hardware’s no-
tion of computation (notably combinational circuitry) are inher-
ently functional in nature. A parallel line of research in functional
HLS [11, 12, 15–17, 23, 56, 57] seeks to adapt software formal meth-
ods for functional languages to verifying correctness and secu-
rity properties of hardware designs and implementations. Both

1All the Agda code discussed here is available online [34]. Please note the notational
convention at the beginning of Section 2.

A Mechanized Semantic Metalanguage for High Level Synthesis PPDP 2021, September 6–8, 2021, Tallinn, Estonia

record Mealy (i : Set) (s : Set) (o : Set) : Set where
coinductive
field fun : i → s → (o × s)

now : i × s × o
nxt : i → Mealy i s o

unfoldM : (i → s → (o × s)) → i → s → o → Mealy i s o
fun (unfoldM f i s o) = f
now (unfoldM f i s o) = (i , s , o)
nxt (unfoldM f _ s o) i = unfoldM f i s′ o′

where (o′ , s′) = f i s

transcript : Mealy i s o → Stream i → Stream (i × s × o)
hd (transcript m is) = now m
tl (transcript m is) = transcript (nxt m (hd is)) (tl is)
runM : N → Mealy i s o → Stream i → List (i × s × o)
runM n m is = takeStr n (transcript m is)

Figure 3: Mealy Machine Representation as Agda Coinductive
Record, Corecursion Operator, & Stream Semantics

Nikhil [51] and Edwards [20] argue that conventional software lan-
guages are unsuitable for hardware design because of their adher-
ence to a von Neumann programming model. Hardware parallelism
is “massive, fine-grain, heterogeneous and reactive” and, as such, is
fundamentally inharmonious with conventional languages like C,
C++, etc. Nikhil then argues that Bluespec, a functional language
based on term-rewriting, does fit well with hardware’s notion of
computation.

ReWire [29, 53, 56] is a functional hardware definition language
embedded in the Haskell functional language. ReWire exhibits all
of the benefits of a functional approach (e.g., expressiveness and
concision) while allowing the specification of fine-grain concurrent
algorithms and mechanisms. ReWire’s language design is organized
by a reactive resumption monad [53], a mathematical structure that
models hardware parallelism which may be directly represented
in Haskell. The Device Calculus was first identified as part of an
ongoing effort to verify both ReWire applications and the ReWire
compiler. Reynolds et al. [56] presented a small-step operational
semantics for ReWire formalized in Coq. The research reported
here grew out of that work and follow-on publications will report
the formalization of ReWire in terms of Device Calculus. One of
the primary motivations behind the current work is to build a
foundation for a verified compilation process for ReWire.

Braibant and Chlipala [12] and Braibant [11] apply ideas from
CompCert [43] to hardware synthesis and is the most closely related
to ReWire. Their work presents a certified compiler translating a
monadic-functional HDL (called “Fe-Si”) into RTL. Fe-Si is a small,
idealized core of the BSV hardware description language [37]. Fe-
Si’s syntax is based on state monads, albeit not structured with
monad transformers like ReWire’s. Timing in Fe-Si is explicit, rather
in the manner of VHDL, using an explicit clock tick parameter,
whereas ReWire makes use of reactive resumptions as a basis for
timing [53].

The organizing principle underlying the Device Calculus is a for-
mulation of Mealy machines as a coinductive type in Agda. Coupet-
Grimal and Jakubiec [16, 17] use a model for Mealy machines closely

related to ours in their work in which Mealy machines are repre-
sented as stream-transducers. In their work, a Mealy machine is
represented as a function of type Stream i → s → Stream o. This
stream model of sequential circuitry is common enough—e.g., there
are analogous constructions in Gordon [28], Zhu et al. [69], and Flor
et al. [23]. The stream model views sequential circuitry—implicitly
or explicitly—as a sequence of “snapshots” of a circuit’s inputs,
state, and outputs: the next state s′ and output o′ are determined
by the current input i and a register state s. There is a “causality”
hygiene condition that the semantics does not “look forward or
backward” in the input stream (discussed in Flor et al. [23], page
12); i.e., that only the current state and a single input i determine
the next state and output. The notion of causal stream functions
is discussed by Uustalu and Vene [62]. The formulation of Mealy
machines described below in Section 2 is factored through the Mealy

coinductive type and the snapshot stream for a circuit is produced
from Mealy by iteration across an input stream, thereby avoiding
necessity of a causality side condition.

Gordon outlined the challenges of semantic specification of hard-
ware definition languages [27], focusing specifically on Verilog,
although his analysis applies equally to VHDL. There have been
previous attempts to formalize VHDL as well [41] that have suc-
ceeded only on small parts of the language. One way of coping with
the lack of formal semantics for commodity HDLs is to identify
a formalizable subset of the language in question. Gordon [28],
Lööw and Myreen [45], Khan [40], and Zhu, He and Bowen [69]
do so for Verilog. Another approach is to design a new hardware
language and compiler with formalization as a specific requirement.
Examples of this approach are Kami [15] and CHERI [50]. Flor,
Swierstra, and Sijsling presented Π-ware [23], a calculus of circuit
combinators embedded in Agda with the goal of illustrating an ap-
proach to circuit design, testing, and formal verification within one
language. Π-ware is organized around a single, designated circuit
type with corresponding operators for constructing combinational
and sequential circuit descriptions. Both Ghica and Jung [25] and
Megacz [47] describe a categorical semantics for a class of digital
circuits, the former using monoidal categories and the latter using
generalized arrows. Device calculus, in contrast, is a conventional
typed 𝜆-calculus extended with a single type constructor for circuits
(called Dev).

FIRRTL [44] is the target of the compiler for the Chisel hardware
construction language and, because FIRRTL is machine-independent,
it is key to making the Chisel compiler retargetable. The Chisel
team argues forcefully that FIRRTL can be key to bringing software
levels of productivity to hardware development [38]. The essence
of their argument is that FIRRTL, if used as a common target for
hardware language compiler front-ends, would enable library porta-
bility and language interoperability (i.e., something comparable,
roughly speaking, to an LLVM (https://llvm.org) for hardware con-
struction). One direction that has not been hitherto explored is the
high assurance dimension for FIRRTL, and the Idealized FIRRTL
semantics reported here provides a critical step in that direction.

Formal verification of (software) language compilers is a tradi-
tional area in programming languages research that has, of late,
enjoyed considerable success with realistic compilers [43]. Com-
piler verification requires that both its source and target languages
have rigorous mathematical semantics [67]. Compiler specification

https://llvm.org

PPDP 2021, September 6–8, 2021, Tallinn, Estonia William L. Harrison, Chris Hathhorn, and Gerard Allwein

8 : Mealy i1 s1 o1 →
Mealy i2 s2 o2 →
Mealy (i1 × i2) (s1 × s2) (o1 × o2)

m1 8 m2 = unfoldM (fun× (fun m1) (fun m2))
(i1 , i2) (s1 , s2) (o1 , o2)

where
(i1 , s1 , o1) = now m1
(i2 , s2 , o2) = now m2

feedbackM : (o1 → o2)
→ (i2 → o1 → i1)
→ i2
→ Mealy i1 s o1
→ Mealy i2 s o2

feedbackM out conn i2 m = unfoldM f2 i2 s (out o1)
where

wrap : (o1 → o2)
→ (i2 → o1 → i1)
→ o1
→ (i1 → s → (o1 × s))
→ (i2 → s → (o2 × s))

wrap out conn oi f ix s = . . .
(_ , s , o1) = now m
f2 = wrap out conn o1 (fun m)

pipeline : Mealy i1 s1 o1
→ Mealy o1 s2 o2
→ Mealy i1 (s1 × s2) o2

pipeline m1 m2 = feedbackM 𝜋2
(𝜆 i1 → 𝜆 (o1 , o2) → (i1 , o1))
(𝜋13 (now m1)) (m1 8 m2)

Figure 4: Mealy Operators for parallel, output feedback, and
horizontal composition defined with unfoldM. Function fun×
is the function product and projection notation (i.e., 𝜋2 and
𝜋13) is explained in Section 2.

is generally posed in the form of a commuting diagram (as in Fig. 1,
bottom). Generally, a compiler correctness specification will re-
quire that, for a source program 𝑝 , the meaning of 𝑝 according to
the source semantics will be related to the target semantics of the
compiled code for 𝑝 . Making the source and target semantics as
“close” as possible—admittedly more of an imprecise, aesthetic judg-
ment than a mathematical one—simplifies compiler verifications.
We envision Device Calculus—a 𝜆-calculus with a mostly “textbook”
semantics—as a means of organizing HLS compiler verifications by
bridging software and hardware semantics.

There has been surprisingly little formal methods research on
multiple clock domains in functional HLS; to the authors’ best
knowledge, Czeck et al. [18] remains the only such published re-
search. There has been substantial research in formal methods
for multi-clock hardware in other language paradigms: Esterel [5],
Lustre [32], and Signal [42]. Esterel is a synchronous imperative lan-
guage, while Lustre and Signal are synchronous dataflow languages.
Each of these languages has a rich formal methods literature, seman-
tics, and toolsets, but it is their handling of clock zones or domains
that is of particular relevance to functional HLS and reconfigurable
computing generally.

W4 = BitVector 4
genfib4 : (Bit × Bit) → W4 × W4 → (W4 × (W4 × W4))
genfib4 (_ , 1) (_ , _) = (0000 , (0000 , 0001))
genfib4 (0 , _) (n , m) = (n , (n , m))
genfib4 (1 , _) (n , m) = (m , (m , n ⊞ m))
fib4 : Mealy (Bit × Bit) (W4 × W4) W4
fib4 = unfoldM genfib4 (0 , 0) (0000,0000) 0000

((0 , 0) , (0000 , 0000) , 0000) ::
((0 , 1) , (0000 , 0001) , 0000) ::
((1 , 0) , (0001 , 0001) , 0001) ::
((0 , 0) , (0001 , 0001) , 0001) ::
((1 , 0) , (0001 , 0010) , 0001) ::
((0 , 0) , (0001 , 0010) , 0001) ::
((1 , 0) , (0010 , 0011) , 0010) ::
((0 , 0) , (0010 , 0011) , 0010) ::
((1 , 0) , (0011 , 0101) , 0011) ::
((0 , 0) , (0011 , 0101) , 0011) ::
((1 , 0) , (0101 , 1000) , 0101) ::
((0 , 1) , (0000 , 0001) , 0000) :: []

Figure 5: Simple Example: Fibonacci as a Mealy Machine (top)
with sample execution (bottom).

Designing hardware with multiple clock domains is a notori-
ously tricky design element to implement correctly with current
reconfigurable computing toolchains. A multiple clock domain de-
sign is partitioned into several, non-overlapping clock zones or
domains with each zone possessing its own notion of clock and
clock domain intercommunication (i.e., routing signals between
zones) requires some form of synchronization. In practice, Clock
Domain Crossing (CDC) is accomplished with a range of synchro-
nization mechanisms, including simple two flip-flop synchronizer
to FIFO queues between domains [63]. Recent extensions to the
C-based LegUp high-level synthesis tool [54] include synchronizing
queues as source language constructs. Esterel, Lustre, and Signal
provide a variety of language abstractions for clock types (e.g.,
discrete vs. continuous) as well as synchronization mechanisms. Re-
cent work of Bourke et al. [8, 9] considers the formal verification of
a Lustre compiler in Coq and, while this compiler targets software
(i.e., assembly language), its formalization of timing is, we believe,
also relevant to our work. Which forms of these abstractions make
the most sense for Device Calculus and functional HLS generally is
currently an open question of intense interest to the authors. We
discuss this question further in Section 5.

2 COINDUCTIVE SEMANTICS FOR MEALY
MACHINES

Notational Conventions. We will occasionally make syntactic
simplifications to the Agda code presented in this paper. We will
elide variable quantifications (e.g., “∀ {i1 i2 s o1 o2} →”) to avoid vi-
sual clutter. Such simplifications will be made without further com-
ment. Throughout we use a dependent projection notation, 𝜋𝑖 𝑛 ,
which projects the 𝑖𝑡ℎ component from an 𝑛-tuple. The codebase
contains the full definitions [34].

The Mealy machine model (Fig. 2) can be neatly formalized
as a coinductive record declaration in Agda (Fig. 3) that is the
core of the Device Calculus semantics below in Section 3. The

A Mechanized Semantic Metalanguage for High Level Synthesis PPDP 2021, September 6–8, 2021, Tallinn, Estonia

data Type : Set where
unit : Type
bit : Type
slv : N → Type -- standard logic vector a' la VHDL
index : N → Type
⇒ : Type → Type → Type
⊗ : Type → Type → Type
⊕ : Type → Type → Type
Dev : Type → Type → Type → Type

Value : Type → Set
Value unit = ⊤
Value bit = Bool
Value (slv n) = Vec Bit n
Value (index n) = Fin n
Value (t1 ⇒ t2) = (Value t1) → (Value t2)
Value (t1 ⊗ t2) = (Value t1) × (Value t2)
Value (t1 ⊕ t2) = (Value t1) ⊎ (Value t2)
Value (Dev i s o) = Mealy (Value i) (Value s) (Value o)

Figure 6: Device Calculus: Type Syntax & Semantics in Sum-
mary.

record type Mealy i s o represents a Mealy machine with input,
storage, and output types i, s, and o and its definition contains
the type declaration for three methods, fun, now, and nxt. Each
method type declaration includes Mealy i s o implicitly; e.g., the
type of now is Mealy i s o → i × s × o rather than i × s × o as it ap-
pears in Fig. 3. The next state and output logic are defined by the
function field, fun : Mealy i s o → i → s → (o × s) . The second field,
now, defines the current values of the input, storage, and output.
The third field defines the continuation function of the machine,
nxt : Mealy i s o → i → Mealy i s o. For a machine m and input
i, (nxt m i) is the continuation of m (in the sense of continuation-
passing style in functional programming). The unfoldM operator
constructs a Mealy machine given the first two fields (fun and now).

Fig. 3 presents a stream semantics for Mealy machines. The func-
tion transcriptmodels a Mealy machine as a function from a stream
of inputs to a stream of “snapshots” of type (i × s × o) . Each snap-
shot records the state of the input line, internal storage, and output
line at each clock “tick”. The definition of transcript uses Agda’s
copatterns [1] with the Stream type’s destructors, hd and tl [34]. For
convenience, we define a finite sampling function runM to generate
finite snapshot lists for specific test cases.

Fig. 4 presents several operators for Mealy machines definable in
terms of the unfoldM constructor. For machines m1 and m2, (m1 8 m2)
creates a new machine in which m1 and m2 are placed in parallel. (8)
is a synchronous parallelism operator in that each submachine is
intuitively on the same “clock”. (feedbackM out conn i2 m) can feed-
back the o1 output as specified by a conn function. (pipeline m1 m2)
connects m1’s output into m2’s input.

Figure 5 (top) presents a simple example of a Mealy machine, fib4.
From the type of fib4, it takes a pair of Bits, (go, reset) , as input on
each “clock tick”. If reset is set, it reinitializes registers n and m to
0000 and 0001, respectively. Otherwise, if go is set, it updates n and m

accordingly to calculate the Fibonacci sequence (here, ⊞ is unsigned
addition on W4). Mealy machines can be “run” by mapping them into
Streams with an appropriate Stream of inputs; here, those inputs

data _⊩d_ : Cxt Type → Type → Set where
var : ∀ {Γ a} → a ∈ Γ → Γ ⊩d a
lam : ∀ {Γ a b} → (a :: Γ) ⊩d b → Γ ⊩d (a ⇒ b)
app : ∀ {Γ a b} → Γ ⊩d (a ⇒ b) → Γ ⊩d a → Γ ⊩d b
+ : ∀ {Γ n}

→ Γ ⊩d (slv n) → Γ ⊩d (slv n)
→ Γ ⊩d (slv n)

casebv : ∀ {Γ n c}
→ Γ ⊩d (slv n) → Vec BitPat n
→ Γ ⊩d (slv n ⇒ c) → Γ ⊩d c → Γ ⊩d c

(_,_) : ∀ {Γ} {t1 t2 : Type}
(a : Γ ⊩d t1) (b : Γ ⊩d t2)

→ Γ ⊩d (t1 ⊗ t2)
𝜋1 : ∀ {Γ} {t1 t2 : Type}

(a : Γ ⊩d (t1 ⊗ t2))
→ (Γ ⊩d t1)

𝜋2 : ∀ {Γ} {t1 t2 : Type}
(b : Γ ⊩d (t1 ⊗ t2))

→ (Γ ⊩d t2)
inl : ∀ {Γ} {t1 t2 : Type}

(a : Γ ⊩d t1)
→ Γ ⊩d (t1 ⊕ t2)

inr : ∀ {Γ} {t1 t2 : Type}
(b : Γ ⊩d t2)

→ Γ ⊩d (t1 ⊕ t2)
1 : ∀ {Γ} → Γ ⊩d unit
0! : ∀ {Γ} → Γ ⊩d bit
1! : ∀ {Γ} → Γ ⊩d bit
⟨_⟩ : ∀ {Γ n} → Vec Bit n → Γ ⊩d (slv n)
L_M : ∀ {Γ n} → Fin n → Γ ⊩d (index n)
-- Device level operations
unfoldDev : ∀ {Γ i s o}

→ Γ ⊩d (i ⇒ s ⇒ (o ⊗ s))
→ Γ ⊩d i → Γ ⊩d s → Γ ⊩d o

→ Γ ⊩d Dev i s o

|| : ∀ {i1 s1 o1 i2 s2 o2 Γ}
→ Γ ⊩d Dev i1 s1 o1 → Γ ⊩d Dev i2 s2 o2

→ Γ ⊩d Dev (i1 ⊗ i2) (s1 ⊗ s2) (o1 ⊗ o2)

feedback : ∀ {i1 i2 s o1 o2 Γ}
→ Γ ⊩d (o1 ⇒ o2) → Γ ⊩d (i2 ⇒ o1 ⇒ i1)
→ Γ ⊩d i2 → Γ ⊩d Dev i1 s o1

→ Γ ⊩d Dev i2 s o2

Figure 7: Device Calculus: Intrinsically-typed Syntax.

are of type Stream (Bit × Bit) . This Stream semantics for Mealy is
given by the two functions, transcript and runM, defined in Fig. 3.
Figure 5 (bottom) gives a sample run of fib4.

3 THE DEVICE CALCULUS AND ITS
SEMANTICS

This section presents the Device Calculus and its formalization in
Agda [34]. Fig. 6 presents the syntax and semantics of types in the
Device Calculus. Type has constructors for functions (⇒), sums (⊕),
and products (⊗). It also possesses hardware-relevant base types
and type constructors—e.g., bit vectors or standard logic vectors
(a.k.a., slv) in VHDL parlance—and related arithmetic and logical

PPDP 2021, September 6–8, 2021, Tallinn, Estonia William L. Harrison, Chris Hathhorn, and Gerard Allwein

J_K : ∀ {Γ t} → (Γ ⊩d t) → Env Γ → Value t
J var x K 𝜌 = lookup∈ 𝜌 x
J lam f K 𝜌 = 𝜆 s → J f K (s ▷ 𝜌)
J app f e K 𝜌 = (J f K 𝜌) (J e K 𝜌)
J e1 + e2 K 𝜌 = J e1 K 𝜌 ⊞ J e2 K 𝜌
J casebv e p f b K 𝜌 = (J f K 𝜌) $

(bitmatch p (J e K 𝜌)) , (J b K 𝜌)
where

$,_ : ∀ a b → (a → b) → Maybe a → b → b
f $ nothing , b = b
f $ (just a) , _ = f a

J (a , b) K 𝜌 = (J a K 𝜌 , J b K 𝜌)
J 𝜋1 e K 𝜌 = Data.Product.proj1 (J e K 𝜌)
J 𝜋2 e K 𝜌 = Data.Product.proj2 (J e K 𝜌)
J inl e K 𝜌 = Data.Sum.inj1 (J e K 𝜌)
J inr e K 𝜌 = Data.Sum.inj2 (J e K 𝜌)
J 1 K 𝜌 = tt
J 0! K 𝜌 = Data.Bool.false
J 1! K 𝜌 = Data.Bool.true
J ⟨ v ⟩ K 𝜌 = v
J L n M K 𝜌 = n
J unfoldDev f i s o K 𝜌

= unfoldM (J f K 𝜌) (J i K 𝜌) (J s K 𝜌) (J o K 𝜌)
J d1 || d2 K 𝜌 = (J d1 K 𝜌) 8 (J d2 K 𝜌)
J feedback out conn dev i2 K 𝜌

= feedbackM (J out K 𝜌) (J conn K 𝜌) (J dev K 𝜌) (J i2 K 𝜌)

Figure 8: Device Calculus: Semantics.

operations. The type constructor for devices, Dev, is intended to
distinguish terms corresponding to Mealy machines and sequential
circuitry. The Value function defines the semantics of Type in Fig. 6
making use of Agda’s standard libraries for booleans, vectors, prod-
ucts, and sums (⊎). Fin n denotes a type of a set with n elements
(defined in the standard library Data.Fin) and ⊤ is the unit type
with single element tt.

The Device Calculus’s intrinsically-typed syntax is given in Fig. 7.
The style of the language’s syntax encodes typing rules as data
declarations in a manner familiar to users of Coq or Agda (e.g.,
see Wadler, Kokke, and Siek [65], Part 2). It is a de Bruijn style
syntax, meaning that it is identifier-free; this obviates handling
substitution, albeit at the expense of readability. De Bruijn style
handles variables as references into a type environment (e.g., the
“𝑎 ∈ Γ” in the var rule in Fig. 7). There are three constructors for Dev
terms: unfoldDev, | |, and feedback. (+) signifies unsigned addition;
there are a number of logical and arithmetic operations as well (see
the codebase [34]).

The semantics of Device Calculus is given as a tagless interpreter
in Fig. 8. The tagless style makes explicit use of Agda’s dependent
type system: given a term of type t and an appropriately typed
environment, J_K returns a value of type Value t. (An excellent in-
troduction to tagless interpreters may be found in Bove, Dybjer, and
Norell [10]). Most of the semantic equations are unremarkable for
a de Bruijn style 𝜆-calculus. The device level operations correspond
to the Mealy operators defined in Fig. 4; in particular, an unfoldDev

term is mapped simply to the unfoldM constructor of Mealy. There
are also bit patterns in the language with pattern-matching per-
formed by bitmatch; e.g., a bit pattern 0 * 1 matches any bit

data _�d_ : Cxt Type ! Type ! Set where
var : 8 {� a} ! a 2 � ! � �d a
lam : 8 {� a b} ! (a :: �) �d b ! � �d (a) b)
app : 8 {� a b} ! � �d (a) b) ! � �d a ! � �d b

.

.

.
unfoldDev : 8 {� i s o}

! � �d (i) s) (o ⌦ s))
! � �d i
! � �d s
! � �d o

! � �d Dev i s o

Fig. 7. Device Calculus: Intrinsically-typed Syntax.

J_K : 8 � t ! (� �d t) ! Env � ! Value t
J var x K ⇢ = lookup2 ⇢ x
J lam f K ⇢ = � s ! J f K (s B ⇢)
J app f e K ⇢ = (J f K ⇢) (J e K ⇢)

.

.

.
J unfoldDev f i s o K ⇢ =

unfoldM (J f K ⇢) (J i K ⇢) (J s K ⇢) (J o K ⇢)

Fig. 8. Device Calculus: Semantics.

simply to the unfoldM constructor of Mealy.

IV. IDEALIZED FIRRTL & ITS SEMANTICS
1 module MyModule :
2 input ina : UInt<1>
3 input inb0 : UInt<2>
4 input inb1 : UInt<2>
5 input inb2 : UInt<2>
6 input clk : Clock
7 output out : UInt<2>
8 wire c : UInt<1>
9 c <= ina

10 reg r0 : UInt<2>, clk
11 reg r1 : UInt<2>, clk
12 reg r2 : UInt<2>, clk
13 r0 <= inb0
14 r1 <= mux(c, ina, inb1)
15 r2 <= inb2
16 out <= r0

It is a common approach in language semantics to first trans-
late the source language into an appropriate target �-calculus
and then to define that source language via the semantics of the
target calculus. The Idealized FIRRTL semantics is structured
via translation into the Device Calculus, whose syntax and
semantics is summarized in Figure ??).

1 module MyModule :

2 input ina : UInt<1>

3 input inb0 : UInt<2>

4 input inb1 : UInt<2>

5 input inb2 : UInt<2>

6 input clk : Clock

7 output out : UInt<2>

8 wire c : UInt<1>

9 c <= ina

10 reg r0 : UInt<2>, clk

11 reg r1 : UInt<2>, clk

12 reg r2 : UInt<2>, clk

13 r0 <= inb0

14 r1 <= mux(c, ina, inb1)

15 r2 <= inb2

16 out <= r0

cough

(a) Caption1

output &
next state logic

storage s

outputs oinputs i

state feedback

(b) Caption1

Fig. 1. Caption for this figure with two images

3 Semantic Foundation for FIRRTL

Figure ?? (top) depicts a graphical representation of a Mealy machine that is a
common mental model in digital design. Upon any clock “tick” for the circuit,
particular values of the input, register storage, and external outout (i, s, and o,
resp.) are latched. During this clock period, the current values of i and s flow
through the output and next-state logic—combinational circuitry—to produce
new external output and storage values. This combinational logic is e�ectively a
function of type i ! s ! (o⇥s); that combinational logic is functional in nature
has been recognized for many years [7] and forms the basis of most approaches
to compiling functional programs to gates.

3.1 Coinductive Semantics for Mealy Machines

The Mealy machine model can be neatly represented as a coinductive record dec-
laration in Agda (see Figure ??, bottom). Given a machine of type Mealy i s o

Fig. 9. MyModule: Semantics translates FIRRTL to Mealy. Lowered FIRRTL
Example ([3], p. 50).

This section presents the formalized semantics of Idealized
FIRRTL, specified as an embedding translation into the Device
Calculus described previous in Section III. Section IV-C
describes the syntax of Idealized FIRRTL as typed syntax in
Agda. Section IV-D presents the

The FIRRTL specification [3] is less structured than this–
e.g., there is no order of declarations placing inputs before
outputs and such declarations can occur within connections
(e.g., Fig. 9 (Left)).

A. FIRRTL Overview

Before proceeding further, we clarify first what we mean by
“FIRRTL”. FIRRTL [3] is a family of intermediate languages
generated in succession by phases in the Chisel compiler. The
Chisel compiler first generates high-level (“high”) FIRRTL,
and, through successive transformations, produces low-level
(“lowered”) FIRRTL. Lowered FIRRTL resembles a small
subset of the Verilog HDL, and the Chisel compiler finally
performs instruction selection from lowered FIRRTL into
Verilog. It is lowered FIRRTL that first interested us because
it is well-designed, machine-independent, and small (and,
therefore, susceptible to formalization).

The language formalized below in Section IV is an idealized
form of lowered FIRRTL. We make certain mild assumptions
about the syntax of FIRRTL circuit descriptions that do not,
we believe, affect the generality or accuracy of the semantics
we discuss below. For example, we only consider a repre-
sentative subset of the expressions in FIRRTL as given in its
definition [3].

To give the reader an idea of what lowered FIRRTL looks
like, consider the example in Figure 9. This is a declaration
of a single module that can be compiled into a standalone
circuit (although it serves no purpose other than as a syntax
example). FIRRTL is a typed language, with ground types for
fixed-width unsigned and signed bit strings (UInt<n> and
SInt<n>) and clocks (Clock). FIRRTL programs consist of
declarations (lines 1-6); e.g., ina is input of type UInt<1>
(an unsigned bit string of width 1), r0 is a register (reg) of
type UInt<2>, etc. Although it is not explicit in the syntax,
each declaration has the form of a simple let; e.g., the scope
of the out declaration on line 7 is the rest of the module
(lines 8-16). A wire declaration is effectively a temporary reg

declaration for semantic purposes and, hereafter, we identify
the two forms.

The remainder of the module in Fig. 9 consists of connect
statements, x <= e. Each output and reg must be con-
nected to—i.e., appear on the left-hand side of a connect—
precisely once. The permissible right-hand sides are expres-
sions involving inputs and regs. Connect statements appear
at first glance to be a form of assignment, but they are really
parts of function declaration, intuitively of type inputs !
registers ! (outputs ⇥ registers). The semantics we have
developed in Agda makes this precise by translating module

bodies into such functions explicitly.
Note that line 14 in the aforementioned code example

contains what could be construed as a type error—i.e., r1

Figure 9: Lowered FIRRTL Example ([44], p. 50).

vector of length three starting and ending with bits 0 and 1, resp.
These definitions may be found in the codebase.

4 IDEALIZED FIRRTL & ITS SEMANTICS
This section presents the formalized semantics of Idealized FIR-
RTL, specified as a syntactic translation into the Device Calculus
semantic metalanguage. FIRRTL [44] is really a family of languages,
and Section 4.1 describes the particular member of this family—
“lowered” FIRRTL—that concerns us and, henceforth, we will refer
to Idealized FIRRTL as IF when it is necessary to avoid confusion.
Section 4.2 describes the syntax of IF as an intrinsically-typed syn-
tax in Agda and motivates the syntax of IF’s type language and, in
particular, types for IF modules. Section 4.3 presents the semantic
embedding of IF into Device Calculus. It is a common approach in
language semantics to first translate the source language into an
appropriate target 𝜆-calculus and then to define that source lan-
guage via the semantics of the target calculus; this is the approach
we adopt.

4.1 Lowered FIRRTL Overview
Before proceeding further, we clarify first what we mean by “FIR-
RTL”. We provide this background information on FIRRTL to moti-
vate IF for readers unfamiliar with hardware definition languages,
although it is not strictly necessary for understanding the remain-
der of the paper. FIRRTL [44] is a family of intermediate languages
generated in succession by phases in the Chisel compiler. The Chisel
compiler first generates high-level (“high”) FIRRTL, and, through
successive transformations, produces low-level (“lowered”) FIRRTL.
Lowered FIRRTL resembles a small subset of the Verilog HDL, and
the Chisel compiler finally performs instruction selection from low-
ered FIRRTL into Verilog. It is lowered FIRRTL that first interested
us because it is well-designed, machine-independent, and small
(and, therefore, amenable to formalization).

To give the reader an idea of what lowered FIRRTL looks like,
consider the example in Figure 9. This is a declaration of a single
module that can be compiled into a standalone circuit (although
it serves no purpose other than as a syntax example). FIRRTL is
a typed language, with ground types for fixed-width unsigned
and signed bit strings (UInt<n> and SInt<n>) and clocks (Clock).

A Mechanized Semantic Metalanguage for High Level Synthesis PPDP 2021, September 6–8, 2021, Tallinn, Estonia

module m :
inputs i
registers s
outputs o
instances ms
connections

𝑙ℎ𝑠1 ⇐ 𝑟ℎ𝑠1
⋮

𝑙ℎ𝑠𝑛 ⇐ 𝑟ℎ𝑠𝑛

Connections Format

𝑙ℎ𝑠! ∈ (𝑜 ∪ 𝑖") ∪ (𝑠 ∪ 𝑠")
𝑟ℎ𝑠! ∈ (𝑖 ∪ 𝑜") ∪ (𝑠 ∪ 𝑠")

where

𝑚′
𝑜′𝑖′
𝑠′

𝑖

𝑠

𝑜
𝑚

Figure 10: Idealized FIRRTL module syntax (left) with connec-
tions syntax and scoping (center). Module instances graphi-
cally (right) as a Mealy machine. These are described in detail
in the text.

FIRRTL programs consist of declarations (resp., lines 2-8 and lines
10-12) and connect statements. For example, ina is an input of type
UInt<1> (an unsigned bit string of width 1), and r0 is a register
(reg) of type UInt<2>, etc. Although it is not explicit in the syntax,
each declaration has the form of a simple let; e.g., the scope of
the out declaration on line 7 is the rest of the module (lines 8-16).
A wire declaration is effectively a temporary reg declaration for
semantic purposes and, hereafter, we identify the two forms.

The remainder of the module in Fig. 9 consists of connect state-
ments of the form, x <= e. Each output and reg must be connected
to—i.e., appear on the left-hand side of a connect—precisely once.
The permissible right-hand sides are expressions involving inputs
and regs. Modules may also contain instances of other modules
(although the module in Fig. 9 does not) and the inputs and outputs
of such instances also are in scope—more on this below. Connect
statements appear at first glance to be a form of assignment, but
they are really parts of function declaration, intuitively of type
inputs → registers → (outputs×registers). The semantics described
below in Section 4.3 makes this precise by translating module bodies
into such functions explicitly.

Note that line 14 in the aforementioned code example contains
what could be construed as a type error—i.e., r1 (of width 2) being
potentially connected to a value of width 1 (ina). Implicit conver-
sions (e.g., converting ina to a width 2 bit-string) are eschewed
by many languages—e.g., Haskell—because, although convenient,
they render the code less clear and (potentially) could inadvertently
obscure an error.

The one substantial restriction we make concerns the handling
of clock signals that support multiple clock domains—specifically,
our model assumes single clock circuit descriptions. Building FPGA
applications with multiple clock domains (i.e., in which different
parts of the circuit are driven by separate clocks) is well-known to
be tricky in practice; we will return to the semantics of multiple
clock domains in Section 5.

4.2 Syntax of Idealized FIRRTL
The Idealized FIRRTL (IF) language formalized in this section

is an abstract form of lowered FIRRTL. We make certain mild as-
sumptions about the syntax of FIRRTL circuit descriptions that do
not, we believe, affect the generality or accuracy of the semantics
we discuss below. For example, we only consider a representative
subset of the expressions in FIRRTL as given in its definition [44].

The principal syntactic unit within IF is the module. Each IF mod-
ule defines a synchronous circuit and, in the translation semantics

data GrTy : Set where
UInt : N → GrTy
SInt : N → GrTy
Clock : GrTy

data Ty : Set where
↑_ : GrTy → Ty
⊗ : Ty → Ty → Ty
Unit : Ty

data ModTy : Set where
Mod_,_,_⋊_ :

Ty → Ty → Ty → Cxt ModTy → ModTy

Figure 11: Idealized FIRRTL: Types and Module Type Syntax

into the Device Calculus presented below, an IF module is mapped
to a Device Calculus term of type Dev i s o. The challenge of speci-
fying a typed syntax for IF lies mainly in determining scoping rules
for the many varieties of binding that occur in the language. FIRRTL
is a conventionally block-structured language in which, informally,
a circuit has structure c = let m1 in · · · let mn in m for modules mj
(0 ≤ j) and m where the let is a simple (i.e., non-recursive) binder.
FIRRTL leaves this let-structuring implicit, representing a circuit
specification as a sequence of module definitions. IF makes this
let-structuring explicit (Fig. 12).

The concrete syntax of a module has the form illustrated in Fig. 10
(left). The format of a FIRRTL module m consists of four declaration
forms (i.e., of inputs i, registers s, outputs o, and instances ms) fol-
lowed by sequences of instances and then sequences of connections
(about which more will be said shortly). Each identifier declaration
(e.g., “input ina : UInt<1>”) is fairly self-explanatory. The FIRRTL
specification [44] is less structured than the IF syntax–e.g., there
is no order of declarations placing inputs before outputs and such
declarations can occur within connections (e.g., Fig. 9 (left)). The
instances declarations are a (possibly empty) sequence of previously
defined modules; each module can be named multiple times as well.
The final section includes connections. IF connections have the same
syntax and scoping rules as FIRRTL connections.

Fig. 10 (center) gives scoping rules for IF/FIRRTL connections.
Module instances—specifically, the inputs and outputs of instances—
are also in scope in the connections of a module. Fig. 10 (right)
illustrates this situation in which module 𝑚 has an instance 𝑚′.
Notice that the inputs of𝑚′–𝑖 ′–must also be connected to exactly
once (i.e., appear on the left-hand side of “<=”)—intuitively, this is
necessary because𝑚′ is a kind of “sub-circuit” of𝑚 that must be fed
inputs. For similar reasons, the outputs of𝑚′ are inputs available to
𝑚. The inputs (resp., outputs) of𝑚′ become outputs (resp., inputs)
of𝑚.

Fig. 11 presents the IF type syntax. The definition of simple
types, Ty, is mostly self-explanatory. “Ground” types (using the
terminology of the FIRRTL report [44]) are defined by GrTy, that
has constructors for unsigned and signed integers and clock. The
Clock type is included as a placeholder for later work and is not used
in the current specification. Ty types are either GrTy or products.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia William L. Harrison, Chris Hathhorn, and Gerard Allwein

data _⊢c_ :
Cxt ModTy → ModTy → Set

where
mod : ∀ {M ∆}

→ M ⊢m ∆

→ M ⊢c ∆
letmod : ∀ {M ∆′}

→ (∆ : ModTy)
→ (M ⊢m ∆)
→ (∆ :: M) ⊢c ∆′

→ M ⊢c ∆′

Figure 12: Intrinsically-Typed Syntax of Idealized FIRRTL
Circuits. Circuit declarations are sequences of module decla-
rations with scoping akin to a simple (non-recursive) let. A
type context (i.e., the type constructor Cxt) is a list in Agda.

A module type in Fig. 11 has the form, Mod i , s , o ⋊ ms. The Mod

type constructor is similar to Dev from Figure 6, although it also
contains a sequence of ModTy (represented as an Agda list) corre-
sponding to the instances within a specific module. For example, the
type of𝑚 from Fig. 10 would be Mod i , s , o ⋊ [Mod i′ , s′ , o′ ⋊ []]
(assuming𝑚′ contains no instances).

Fig. 12 presents the syntax for IF circuits. As previously discussed,
IF circuits are explicitly let-structured to clarify the circuit scoping.
Circuit judgments have the form M ⊢c ∆, where M is a ModTy con-
text and ∆ is a ModTy. The letmod rule is simply a non-recursive
let-binding specialized to the IF type system. Module judgments
(M ⊢m ∆) are not defined in Fig. 12 but may be found in the code-
base [34].

Fig. 13 presents a subset of the rules for IF expressions. The
judgment form, Γ ⊢x 𝑎 // Δ, includes a GrTy type environment,
an GrTy, and a ModTy ∆. This figure displays the four variable
reference forms in IF and a conditional expression (mux). Recall
that de Bruijn style calculi are identifier-free and instead variable
references are represented by a pointer into a type environment. For
example, a reference to a register variable is given by a pointer into
regs ∆ (i.e., the s in Mod i , s , o ⋊ ms). The inp and node references
are similarly defined. A qualified reference refers to an output of
a module instance and the appropriate environment is calculated
by the function instso. A mux is a conditional expression where the
condition contains a single bit.

4.3 Mealy Semantics for Idealized FIRRTL
Fig. 15 presents an overview of the translation semantics for Ideal-
ized FIRRTL into the Device Calculus. There are three main func-
tions in the translation are tr∆, trC, and trM, the first two of which
are defined in the figure; the type signature for trM is given. For
∆ = Mod i , s , o ⋊ ms, inputs ∆, registers ∆, and outputs ∆ are the
translation into Type of i, s, and o, respectively.

The essence of the hardware formal model encapsulated by
the Device Calculus views synchronous circuits as calls of the
form, unfoldM f i s o. The semantics for Idealized FIRRTL extracts

data _⊢x_//_ : Cxt GrTy → GrTy → ModTy → Set
where
reg : ∀ {Γ ∆ a}

→ a ∈ regs ∆

→ Γ ⊢x a // ∆
inp : ∀ {Γ ∆ a}

→ a ∈ ins ∆

→ Γ ⊢x a // ∆
node : ∀ {Γ ∆ a}

→ a ∈ Γ

→ Γ ⊢x a // ∆
qexp : ∀ {Γ ∆ a}

→ (𝜇 : Ty)
→ 𝜇 ∈ instso ∆
→ a ∈ 𝜇

→ Γ ⊢x a // ∆

mux : ∀ {Γ ∆ a}
→ Γ ⊢x UInt 1 // ∆
→ Γ ⊢x a // ∆
→ Γ ⊢x a // ∆

→ Γ ⊢x a // ∆

Figure 13: Intrinsically-Typed Syntax of Idealized FIRRTL
Expressions. The expression syntax pictured here reflects
four kinds of variables in IF/FIRRTL. Full specification is
available online [34].

these arguments (i.e., f, i, s, and o) via a syntax-directed trans-
lation from an Idealized FIRRTL circuit declarations into the De-
vice Calculus described in Section 3 previously. The translation
tr∆ calculates the Device Calculus types (i.e., Type) of these ar-
guments. The function trM translates a module (i.e., its third argu-
ment M ⊢m ∆) into a closed Device Calculus term (i.e., [] ⊩d tr∆ ∆)
with terms corresponding to a call to unfoldM. The function trC

translates an Idealized FIRRTL circuit (i.e., its argument of type
M ⊢c ∆) to produce a closed Device Calculus term (i.e., of type
[] ⊩d Dev (inputs ∆) (registers ∆) (outputs ∆)). The semantics of
an Idealized FIRRTL circuit is then given by a composition of trC
and the Device Calculus semantics, J−K, defined in Fig. 8.

4.3.1 Type Language Translation. Fig. 14 shows the type trans-
lation from IF to Device Calculus. The translation of Ty is unre-
markable, noting, however, that for the case of uni-clock circuit
descriptions that we have assumed, the choice of Clock representa-
tion is irrelevant, and so, we map (↑ Clock) to bit. The ˝ty function
calculates a product type in the IF Ty language. For an IF module of
type ∆ = Mod i , s , o ⋊ ms, the types of its registers will be a prod-
uct of its own register type, s, with the register types of its modules
ms; the helper function tystate computes this product. Modules and
circuits of type ∆ will be modeled in Device Calculus by a term of

A Mechanized Semantic Metalanguage for High Level Synthesis PPDP 2021, September 6–8, 2021, Tallinn, Estonia

type Dev (inputs ∆) (registers ∆) (outputs ∆) as described in Sec-
tion 4.3.2, where the inputs, registers, and outputs functions are
defined in Fig. 14.

4.3.2 Translating Modules. This section describes the translation
of IF modules into Device Calculus, considering first the translation
of modules without instance modules and then the translation of
modules with instance modules.

Recall that the structure of Idealized FIRRTL modules was illus-
trated in Figure 10 and, for the reader’s convenience, we repeat that
figure here below. There is displayed on the left the general format
of an Idealized FIRRTL module m and instance list ms. For the sake
of this description, assume m has ModTy type Mod i , s , o ⋊ ms. This
section describes translating m for the cases in which its module
instances, ms, is empty and when it is non-empty.

Conference’17, July 2017, Washington, DC, USA William L. Harrison, Chris Hathhorn, and Gerard Allwein

data _`c_ :
Cxt ModTy ! ModTy ! Set

where
mod : 8 {M ∆}

! M `m ∆

! M `c ∆
letmod : 8 {M ∆0}

! (∆ : ModTy)
! (M `m ∆)
! (∆ :: M) `c ∆0

! M `c ∆0

Figure 12: Intrinsically-Typed Syntax of Idealized FIRRTL
Circuits. Circuit declarations are sequences of module decla-
rations with scoping akin to a simple (non-recursive) let. A
type context (i.e., the type constructor Cxt) is a list in Agda.

type of< from Fig. 10 would be Mod i , s , o o [Mod i0 , s0 , o0 o []]
(assuming<0 contains no instances).

Fig. 12 presents the syntax for IF circuits. As previously discussed,
IF circuits are explicitly let-structured to clarify the circuit scoping.
Circuit judgments have the form M `c ∆, where M is a ModTy con-
text and ∆ is a ModTy. The letmod rule is simply a non-recursive
let-binding specialized to the IF type system. Module judgments
(M `m ∆) are not de�ned in Fig. 12 but may be found in the code-
base [34].

Fig. 13 presents a subset of the rules for IF expressions. The
judgment form, � `x 0 // �, includes a GrTy type environment,
an GrTy, and a ModTy ∆. This �gure displays the four variable
reference forms in IF and a conditional expression (mux). Recall
that de Bruijn style calculi are identi�er-free and instead variable
references are represented by a pointer into a type environment. For
example, a reference to a register variable is given by a pointer into
regs ∆ (i.e., the s in Mod i , s , o o ms). The inp and node references
are similarly de�ned. A quali�ed reference refers to an output of
a module instance and the appropriate environment is calculated
by the function instso. A mux is a conditional expression where the
condition contains a single bit.

4.3 Mealy Semantics for Idealized FIRRTL
Fig. 15 presents an overview of the translation semantics for Ideal-
ized FIRRTL into the Device Calculus. There are three main func-
tions in the translation are tr∆, trC, and trM, the �rst two of which
are de�ned in the �gure; the type signature for trM is given. For
∆ = Mod i , s , o o ms, inputs ∆, registers ∆, and outputs ∆ are the
translation into Type of i, s, and o, respectively.

The essence of the hardware formal model encapsulated by
the Device Calculus views synchronous circuits as calls of the
form, unfoldM f i s o. The semantics for Idealized FIRRTL extracts
these arguments (i.e., f, i, s, and o) via a syntax-directed trans-
lation from an Idealized FIRRTL circuit declarations into the De-
vice Calculus described in Section 3 previously. The translation

tr∆ calculates the Device Calculus types (i.e., Type) of these ar-
guments. The function trM translates a module (i.e., its third argu-
ment M `m ∆) into a closed Device Calculus term (i.e., [] �d tr∆ ∆)
with terms corresponding to a call to unfoldM. The function trC

translates an Idealized FIRRTL circuit (i.e., its argument of type
M `c ∆) to produce a closed Device Calculus term (i.e., of type
[] �d Dev (inputs ∆) (registers ∆) (outputs ∆)). The semantics of
an Idealized FIRRTL circuit is then given by a composition of trC
and the Device Calculus semantics, J�K, de�ned in Fig. 8.

4.3.1 Type Language Translation. Fig. 14 shows the type trans-
lation from IF to Device Calculus. The translation of Ty is unre-
markable, noting, however, that for the case of uni-clock circuit
descriptions that we have assumed, the choice of Clock representa-
tion is irrelevant, and so, we map (" Clock) to bit. The ˝ty function
calculates a product type in the IF Ty language. For an IF module of
type ∆ = Mod i , s , o o ms, the types of its registers will be a prod-
uct of its own register type, s, with the register types of its modules
ms; the helper function tystate computes this product. Modules and
circuits of type ∆ will be modeled in Device Calculus by a term of
type Dev (inputs ∆) (registers ∆) (outputs ∆) as described in Sec-
tion 4.3.2, where the inputs, registers, and outputs functions are
de�ned in Fig. 14.

4.3.2 Translating Modules. This section describes the translation
of IF modules into Device Calculus, considering �rst the translation
of modules without instance modules and then the translation of
modules with instance modules.

Recall that the structure of Idealized FIRRTL modules was illus-
trated in Figure 10 and, for the reader’s convenience, we repeat that
�gure here below. There is displayed on the left the general format
of an Idealized FIRRTL module m and instance list ms. For the sake

module m :
inputs i
registers s
outputs o
instances ms
connections

!ℎ#1 ⇐ %ℎ#1
⋮

!ℎ#" ⇐ %ℎ#"

Connections Format

!ℎ#! ∈ (& ∪ (") ∪ (# ∪ #")
*ℎ#! ∈ ((∪ &") ∪ (# ∪ #")

where

!′ !′#′
$′

#

$

!
!

of this description, assume m has ModTy type Mod i , s , o o ms. This
section describes translating m for the cases in which its module
instances, ms, is empty and when it is non-empty.

Each module and module instance is speci�ed ultimately as a
Dev-typed Device Calculus term of the form of unfoldDev f i0 s0 o0.
Module m is speci�ed as a Device calculus term of type Dev i s o.
(Here, we con�ate the IF Ty types i, s, and o with their translations
into Device Calculus Type types for the sake of simplicity.) The
expressions i0, s0, and o0 are the initial values of m’s inputs, regis-
ters, and outputs (assumed to be zero-ed bit vectors) and f is the
transition function of type i) s) (o ⌦ s) . The function tr∆ in
Fig. 15 translates the type of m into the types of the Device Calculus
terms f, i0, s0, and o0 that are arguments to unfoldDev.

Consider �rst the case in which m has no instances (i.e., ms
is empty), then the scoping rules for connections (middle, above)
are considerably simpli�ed. The left-hand sides (lhs 9) are declared
in either m’s own outputs and registers (i.e., o and s) while the
right-hand sides (rhs 9) are declared in either m’s own inputs and
registers (i.e., i and s). Therefore, in the case where ms is empty, the

Each module and module instance is specified ultimately as a
Dev-typed Device Calculus term of the form of unfoldDev f i0 s0 o0.
Module m is specified as a Device calculus term of type Dev i s o.
(Here, we conflate the IF Ty types i, s, and o with their translations
into Device Calculus Type types for the sake of simplicity.) The
expressions i0, s0, and o0 are the initial values of m’s inputs, regis-
ters, and outputs (assumed to be zero-ed bit vectors) and f is the
transition function of type i ⇒ s ⇒ (o ⊗ s) . The function tr∆ in
Fig. 15 translates the type of m into the types of the Device Calculus
terms f, i0, s0, and o0 that are arguments to unfoldDev.

Consider first the case in which m has no instances (i.e., ms
is empty), then the scoping rules for connections (middle, above)
are considerably simplified. The left-hand sides (lhs 𝑗) are declared
in either m’s own outputs and registers (i.e., o and s) while the
right-hand sides (rhs 𝑗) are declared in either m’s own inputs and
registers (i.e., i and s). Therefore, in the case where ms is empty, the
connections in module m determine in a straightforward manner
a function of type 𝑖 → 𝑠 → (𝑜 × 𝑠) that is tantamount to the
definition of f. In other words, the Device Calculus function f

derives immediately from the syntax of m’s connect statements in
a straightforward syntax-directed fashion.

For the case in which ms is non-empty, it suffices to consider
the case where there is precisely one module instance 𝑚′ in ms. To
see why this is, let ms be a sequence of𝑚𝑖 where 𝑛 ≥ 𝑖 > 1. Each
module instance 𝑚𝑖 will be translated to a corresponding device,
𝑑𝑖 , in the Device Calculus (i.e., a Dev-typed term). These multiple
devices may be composed into a single device, 𝑑1 | | · · · | | 𝑑𝑛 with
the Device Calculus parallelism operator (| |). Therefore, assume
there is precisely one module instance𝑚′ in ms.

The module instance 𝑚′ has its own register state 𝑠 ′ and the
scoping rules for connections (pictured above) show that this state
is directly visible within 𝑚—i.e., the registers in 𝑚′ may be directly
connected to within 𝑚. While this global “flat” view of state is
straightforward enough to specify in Device Calculus, it does com-
plicate the translation of modules defined by trM. The full definition

-- Translate IF types to Device Calculus Types
trTy : Ty → Type
trTy (↑ UInt n) = slv n
trTy (↑ SInt n) = slv n
trTy (↑ Clock) = bit
trTy (t1 ⊗ t2) = (trTy t1) ⊗ trTy t2
trTy Unit = unit

-- Helper function computing IF product type
Πty : Ty → Cxt Ty → Ty
Πty h [] = h
Πty h (t :: []) = h ⊗ t
Πty h (t :: ts) = h ⊗ (Πty t ts)

-- Calculate Register Ty from ModTy
mutual

tystate : ModTy → Ty
tystate (Mod _ , s , _ ⋊ []) = s
tystate (Mod _ , s , _ ⋊ ms) = Πty s (tystates ms)
tystates : Cxt ModTy → Cxt Ty
tystates [] = []
tystates (m :: 𝜇) = tystate m :: (tystates 𝜇)

-- Project/Translate from ModTy
inputs : ModTy → Type
inputs ∆ = trTy (ins ∆)

where ins : ModTy → Ty
ins (Mod i , _ , _ ⋊ _) = i

registers : ModTy → Type
registers ∆ = trTy (tystate ∆)
outputs : ModTy → Type
outputs ∆ = trTy (outs ∆)

where outs : ModTy → Ty
outs (Mod _ , _ , o ⋊ _) = o

Figure 14: Idealized FIRRTL Type Semantics via Translation
into the Device Calculus. See Section 4.3.1 for discussion.

of the module translation function trM is omitted from Fig. 15 but
is available in the codebase [34].

4.3.3 The Running Example. Figure 16 (top) returns to the simple
example presented first in Fig. 5. This example is a FIRRTL encoding
of the Fibonacci circuit, firfib4; firfib4 has type Δ according to
the type system for Idealized FIRRTL. The example in Figure 16
(top) uses concrete syntax for readability’s sake. Δ is a ModTy, which
is a type constructor in the Idealized FIRRTL type that captures
a module’s input, internal storage, and output types ((Bit ⊗ Bit) ,
(W4 ⊗ W4) , and W4, respectively). The fourth field in a ModTy indicates
the ModTy types of any instance modules within a module itself; for
firfib4, there are no such instances.

The semantics of firfib4, fib4′ in Figure 16 (right), is defined by
composing the translation of FIRRTL circuits (given by trC) with
the semantics of Device Calculus (J_K). The Stream semantics of
fib4′ produces the same output as that of fib4 from Figure 5 as one
would expect.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia William L. Harrison, Chris Hathhorn, and Gerard Allwein

-- UnfoldDev argument Types
tr∆ : ModTy → Type
tr∆ ∆ = (i ⇒ s ⇒ (o ⊗ s)) ⊗ (i ⊗ s ⊗ o)

where
i = inputs ∆
s = registers ∆
o = outputs ∆

-- Module Translation
trM : ∀ M

→ (∆ : ModTy)
→ ModEnv M
→ M ⊢m ∆
→ [] ⊩d tr∆ ∆

trM = . . .

-- Circuit Translation
trC : ∀ {M}

→ (∆ : ModTy)
→ (ModEnv M)
→ (M ⊢c ∆)
→ ([] ⊩d Dev (inputs ∆) (registers ∆) (outputs ∆))

trC ∆ 𝜌 (mod x) = unfoldDev (𝜋14 ans) (𝜋24 ans)
(𝜋34 ans) (𝜋44 ans)

where
ans = trM ∆ 𝜌 x

trC ∆ 𝜌 (letmod ∆x x m) = trC ∆ (trM ∆x 𝜌 x ▷ 𝜌) m

Figure 15: Idealized FIRRTL Circuit Semantics via Transla-
tion into the Device Calculus. See Section 4.3.2 for a detailed
discussion of trM.

4.4 Conformance of IF to FIRRTL
This section discusses the relationship between (lowered) FIRRTL
as it exists now and Idealized FIRRTL as we have modeled it here.
FIRRTL does not presently have a formal semantics and so there
is not a standard formalization against which to compare the Ide-
alized FIRRTL semantics described above. It is described at the
FIRRTL project website (https://www.chisel-lang.org/firrtl/), its
code repository (https://github.com/chipsalliance/firrtl), and in two
publications [38, 44]. There is also an experimental simulator for
lowered FIRRTL (henceforth, the “simulator”) made available (https:
//github.com/freechipsproject/firrtl-interpreter) by the Chisel team.

One basis for comparison, therefore, is to encode example low-
ered FIRRTL programs in the IF syntax and compare the Agda
output to that of the simulator. This experiment was successfully
performed using sample lowered FIRRTL programs downloaded
from its repository in the past. The experiment is described here
and the full details of the testing (e.g., the lowered FIRRTL source
code, etc.) are included in the codebase [34]. A complementary ap-
proach to conformance evaluation is outlined as well that involves
proving the equivalence of the IF semantics to a suitable small-step
operational semantics.

Experimental Evaluation. The aforementioned FIRRTL simulator
includes an interactive shell to step through the execution of a
lowered FIRRTL program. The first experiment that we performed
was to encode the Fibonacci function running example described
in Figures 5 and 16 in lowered FIRRTL and, then, to step through it

firfib4 : [] ⊢c ∆
module firfib4 :

input go : UInt<1>
input reset : UInt<1>
input clk : Clock
reg n : UInt<4>, clk
reg m : UInt<4>, clk
output out : UInt<4>
n <= if reset then 0

elsif go then m else n
m <= if reset then 1

elsif go then n + m else m
out <= n

∆ : ModTy
∆ = Mod (Bit ⊗ Bit) , (W4 ⊗ W4) , W4 ⋊ []

fib4′ : Mealy
(Vec Bit 1 × Vec Bit 1)
(Vec Bit 4 × Vec Bit 4)
(Vec Bit 4)

fib4′ = J trC ∆ [] firfib4 K []

Figure 16: Fibonacci Revisited. This example creates the same
stream as the previous example in Fig. 5.

with the simulator. The output for one step in this experiment, for
example, is (pretty-printed slightly by hand):

CircuitState
Inputs : clk = 0, go = 1, reset = 0
Outputs : out = 1
Registers : m = 2, n = 1
FutureRegisters: m = 3, n = 2

This simulator output corresponds to the transition between the
sixth and seventh stream elements in Fig. 5

((0 , 0) , (n=0001 , m=0010) , out=0001)
((go=1 , 0) , (n'=0010 , m'=0011) , 0010)

in which the relevant fields are labelled to correspond to the sim-
ulator output. In this Fibonacci experiment, the output of the IF
semantics conformed to the simulator output. Three other exam-
ples previously downloaded from the FIRRTL project repository
were evaluated in the same manner and found to conform with
the simulator output. The details of this experimental evaluation,
including the simulator output and the FIRRTL programs tested,
are included in the codebase [34].

This experiment provides some basic confidence that there is
agreement between the semantics for idealized subset of FIRRTL
described here and the intentions of the Chisel/FIRRTL team. It
is not clear that the simulator is considered as a kind of “gold
standard” for lowered FIRRTL, but it does provide at least a basis
for comparison with the present work. The process itself is quite
time-consuming, including the hand-encoding of terms in Agda, the
stepping through executions with the simulator, and the comparison
of the two outputs. More rigorous automated testing (which we
leave for future work), would require constructing a parser for
lowered FIRRTL to support automated translation into IF syntax in

https://www.chisel-lang.org/firrtl/
https://github.com/chipsalliance/firrtl
https://github.com/freechipsproject/firrtl-interpreter
https://github.com/freechipsproject/firrtl-interpreter

A Mechanized Semantic Metalanguage for High Level Synthesis PPDP 2021, September 6–8, 2021, Tallinn, Estonia

i⟨_⟩ : ModTy → Set
i⟨ ∆ ⟩ = Value (inputs ∆)
s⟨_⟩ : ModTy → Set
s⟨ ∆ ⟩ = Value (registers ∆)
o⟨_⟩ : ModTy → Set
o⟨ ∆ ⟩ = Value (outputs ∆)

circuit : ∀ (∆ : ModTy)
→ (c : [] ⊢c ∆)
→ Mealy i⟨ ∆ ⟩ s⟨ ∆ ⟩ o⟨ ∆ ⟩

circuit ∆ c = J trC ∆ [] c K []

step : ∀ (∆ : ModTy)
→ (c : [] ⊢c ∆)
→ (i⟨ ∆ ⟩ × s⟨ ∆ ⟩ × o⟨ ∆ ⟩)
→ i⟨ ∆ ⟩
→ (i⟨ ∆ ⟩ × s⟨ ∆ ⟩ × o⟨ ∆ ⟩)

step ∆ c (i,s,o) i' = { }0

equivalence : ∀ (∆ : ModTy)
→ (c : [] ⊢c ∆)
→ (i : i⟨ ∆ ⟩)
→ step ∆ c (now (circuit ∆ c)) i

≡ now (nxt (circuit ∆ c) i)
equivalence ∆ c = { }1

Figure 17: Equivalence Statement in the Device Calculus Agda
Development between circuit semantics and Small-Step Op-
erational Semantics step.

Agda as well as instrumentation of the FIRRTL simulator to align
its output with that of the Agda semantics.

Specifying Equivalence. One advantage of small-step operational
semantics for languages is that they are more readily understood
by non-experts in language semantics. The mechanized semantics
for IF presented in previous sections is based in semantic structures
and techniques that are, we believe, not well-known outside of the
programming languages and formal methods communities. One
approach to evaluating the conformance of the IF semantics to FIR-
RTL, therefore, would be to first formulate a small-step semantics
for lowered FIRRTL, establish its conformance in collaboration with
the Chisel/FIRRTL team, and then prove an equivalence between
between the two semantics. This approach, including the appropri-
ate statement of formal equivalence, is outlined here and left for
future work.

Any small-step operational semantics will include a transition
relation or function between configurations; in the case of the
proposed FIRRTL operational semantics, a reasonable configuration
will include the circuit program itself and the current values of its
inputs, register state, and outputs. A similar small-step semantics
was described in previous research by Reynolds et al. [56] for the
ReWire language. In that ReWire semantics, the transition relation is
deterministic, and so, similarly, the small-step semantics we propose
here will be represent in Agda as a function (rather than a relation)
that we will call step in Fig. 17. In this high-level presentation, only
this top-level function will be described.

Figure 17 first introduces several useful abbreviations in Agda;
three functions (i⟨_⟩, s⟨_⟩, and o⟨_⟩) map a ModTy to the Agda model

of its input, register state, and output types, respectively, by com-
position. The translation semantics of IF circuits is abbreviated by
the circuit function in Fig. 17; note that this function produces
a Mealy machine. A type declaration of a transition function for a
small-semantics for FIRRTL—called step— can be given in Agda as
portrayed in the figure. This incorporates constructions from the IF
mechanization and fits into the pattern discussed above. The “{ }0”
is Agda notation indicating that the body of the step definition has
not yet been given.

Fig. 17 presents a statement of equivalence between the IF seman-
tics, circuit, and the proposed operational semantics, step. The
intuition behind this statement (called equivalence in the figure) is
as follows. Let m be be the Mealy machine given by the IF semantics
for c; that is, let m be (circuit ∆ c) . If one steps circuit c from m’s
current state (i.e., now (circuit ∆ c)) for a new input i, one arrives
at the identical state via m’s nxt function. Again, the “{ }1” notation
indicates that this proof of equivalence has yet to be given.

5 FUTURE WORK & CONCLUSIONS
This article introduced a mechanized semantic metalanguage suit-
able for HLS, the Device Calculus, and demonstrated its application
in a substantial case study specification for an idealized subset of the
FIRRTL hardware language. The current work is also a companion
piece to previous work [35] that lays out the formal underpinnings
for that approach to security patterns for hardware.

The Device Calculus semantics is denotational in style and mech-
anized in Agda, in contrast to our previous work on the mecha-
nized semantics of the ReWire functional hardware description
language [56], which was structured as a small-step operational se-
mantics in Coq. We were motivated in part to explore this approach
because of Agda’s elegant formulation of coinductive types [1].
Sequential circuitry’s notion of computation is inherently non-
terminating—i.e., such circuits, in principle, never terminate—and
so coinductive types play an essential role in our semantics of De-
vice Calculus. The Mealy coinductive type introduced in Section 2
is at the heart of the HLS formal methodology we advocate.

A follow-on publication will present the Device Calculus mecha-
nization of the ReWire functional hardware description language
and its compiler. ReWire designs are organized by reactive resump-
tion monadic semantics [33, 53] and the ReWire compiler’s main
translation phase is called purification [52]. Purification is a source-
to-source translation that translates monadic effects (i.e., “impure”
operations typed in a reactive resumption monad over state) into a
pure core 𝜆-calculus that resembles the Device Calculus. As such,
the Device Calculus semantics for the ReWire language will closely
resemble the main phase of its HLS compiler, thereby aiding, we
expect, the formal verification of the ReWire compiler. Another
follow-on publication will describe verification logics based on the
Mealy semantics. Satisfaction in these logics has the form, M;𝜎 |= 𝜑 ,
in which M is a Mealy machine, 𝜎 is a stream of inputs, and 𝜑 is a
sentence in the logic. We are currently experimenting with tem-
poral and hybrid logics in this style mechanized in Agda. In this
scenario, the machine M effectively induces a Kripke semantics for
the logic.

PPDP 2021, September 6–8, 2021, Tallinn, Estonia William L. Harrison, Chris Hathhorn, and Gerard Allwein

The Chisel/FIRRTL team hypothesize [38] that FIRRTL can play
a role in making hardware development more like software devel-
opment; their primary focus is on making hardware development
more agile and flexible by adapting techniques from software com-
pilers. Although FIRRTL was designed as a target for the Chisel
hardware construction language, there is no reason why other
high level synthesis flows could not target it as well. Indeed, we
initially became interested in FIRRTL as a target for the ReWire
functional hardware description language. FIRRTL—or something
like it—could play a role something along the same lines as LLVM
(https://llvm.org) has played in software—that is, as a common re-
targetable backend with support for high assurance. Were this to
come to pass, formulating the semantic foundations of FIRRTL now
and letting those foundations guide its further development makes
considerable sense.

In reconfigurable computing, supply chain vulnerabilities loom
large in the setting of mission-critical systems [58]. Third-party IP
modules provide useful, reusable functionality for FPGA applica-
tions, for example, but they come in vendor proprietary formats
that render safety, correctness, or security analysis effectively in-
tractable. Engineers, nonetheless, are understandably reluctant to
give up third party IP modules despite their opacity to analysis.

Even software binaries can be reverse-engineered if need be, but
there is no analogous “IDA Pro” for vendor-specific, proprietary
hardware IP modules. That FIRRTL is open—and, consequently,
not in a proprietary format—could make it a valuable part of high-
assurance HLS toolchains, because it could be the target of multiple
HLS languages and compilers (i.e., not only Chisel and ReWire).
Having a rigorous semantics for a low-level, machine-independent,
open source hardware language like FIRRTL, then, provides an im-
portant foundation for formal methods on reconfigurable hardware
because of the availability of FIRRTL IP and its susceptibility to for-
mal analyses. There is a growing library of IP in Chisel (and, hence,
in FIRRTL) that could alleviate part of the “third party IP” challenge.
We believe that the semantics of Idealized FIRRTL presented here
provides a significant first step towards FIRRTL becoming a useful
foundation for high assurance hardware development.

Languages are not generally designed and implemented with
formalization in mind. In formulating a rigorous semantics for a
language born “in the wild”, one may encounter aspects of the
language that may impede its formalization—although, admittedly,
such “impediments” may be a matter of taste. However, taking this
qualitative feedback into account can help improve future versions
of the language. The authors envision this paper serving as a bridge
between, roughly speaking, the hardware development, formal
methods, and programming languages research communities.

The FIRRTL language has a clock type whose values are treated
as first-class. In FIRRTL, clocks are associated directly with indi-
vidual registers rather than with circuits or modules and this can
complicate synthesis (or render it impossible) in certain situations.
For example, a connection assignment, c <= and(a, b) , is problem-
atic if a and b are on different clocks because, intuitively, when is
the intended value of the and(a, b) available for c? An alternative
to this fine-grained timing is the more coarse-grained notion of
multiple clock domains in which designs are partitioned into non-
overlapping clock zones. Recent extensions to the LegUp high-level
synthesis tool [54] provide a means of representing multiple clock

domains in the LegUp source code along with a compiler that insert
FIFO queues to implement clock domain crossing automatically.

One remaining semantic challenge for Device Calculus is accom-
modating multiple clock domains within a single device (i.e., term
of type Dev i s o). The work on multiple clock domains in Esterel
introduced by Berry and Sentovich [5] is of particular relevance
here. In particular, they extend Esterel with a clock “sub-language”
for expressing different clock domains; a similar language will be in-
troduced into the Device Calculus through its type system through
its extension as a type effect system [49]. Because clock domains
are static, it makes sense to encapsulate them as effect labels in the
Device Calculus type system. In such a scenario, one could imag-
ine clock tags annotating each device and being tracked through
parallel compositions; e.g., device types would now have the form
Dev𝑐 i s o for clock tag 𝑐 . Then, an asynchronous parallelism op-
erator could be introduced; given 𝑚 𝑗 : Dev𝑐 𝑗 i𝑗 s𝑗 o𝑗 , the typing
rule would appear something like:

𝑚1 | |𝑚2 : Dev(𝑐1⊔𝑐2) (i1 ⊗ i2) (s1 ⊗ s2) (o1 ⊗ o2)

Here, the (𝑐1 ⊔ 𝑐2) clock tag indicates multiple (i.e., at least two)
clock domains.

To complete this semantics for such an extension to Device Cal-
culus would necessitate the development of a mechanized theory
of asynchronous Mealy machines. In practice, communication be-
tween clock domains is typically handled by circuitry implementing
an asynchronous queue. Indeed, recent extensions to the LegUp
high-level synthesis tool [54] automatically generate linking cir-
cuitry (i.e., asynchronous queues) between different clock domains.
Completing this scenario to extend the current Device Calculus
semantics, then, would add a formal model of asynchronous queues
to the current (uni-clock) Mealy semantics. Clock signals are really
fundamentally different and (in our opinion) ought to be treated as
such in the language.

In the parlance of language design, FIRRTL treats Clocks as first-
class values. That is, in FIRRTL [44], the Clock type is treated syn-
tactically as any other type—e.g., they can be passed into and out
of modules as any other signal values. However, Clocks can be ma-
nipulated only by conversions to and from other bit vector types,
there are no FIRRTL operations specific to that type other than con-
versions to and from UInt and SInt types; these are, specifically,
the asClock, asUInt, and asSInt instructions (p.42-3, Li et al. [44]).

From a language design point of view, this situation would seem
to be potentially problematic. For one thing, Clocks are static—
circuits do not vary their clock rates. Unlike other types, for ex-
ample, Clock timing must ultimately be determined statically by
the compiler and synthesis tools. While synthesis tools can use
static analyses to reject ill-defined programs, it would be better
(certainly from a semantic point of view) to screen out such cases
when possible via the language’s type system itself. Considering the
reputation of multiple clock domain engineering as tricky, language
support for developing such applications is highly desirable. From
a language design point of view, Clock signals are not first-class
values in the ordinary sense of that term despite being passed as
ordinary inputs and outputs.

https://llvm.org

A Mechanized Semantic Metalanguage for High Level Synthesis PPDP 2021, September 6–8, 2021, Tallinn, Estonia

REFERENCES
[1] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. 2013. Co-

patterns: Programming Infinite Structures by Observations. In Proceedings of the
40th POPL. 27–38.

[2] David Andrews. 2015. Will the Future Success of Reconfigurable Computing
Require a Paradigm Shift in Our Research Community’s Thinking? Keynote
address, Applied Reconfigurable Computing.

[3] C. Baaij and J. Kuper. 2014. Using Rewriting to Synthesize Functional Languages
to Digital Circuits. In Trends in Fun. Prog. (LNCS, Vol. 8322). 17–33.

[4] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avizienis, John Wawrzynek, and Krste Asanovic. 2012. Chisel: constructing
hardware in a Scala embedded language. In DAC. 1216–1225.

[5] Gerard Berry and Ellen Sentovich. 2001. Multiclock Esterel. In Correct Hardware
Design and Verification Methods, CHARME 2001, Vol. Lecture Notes in Computer
Science, vol 2144. Springer.

[6] Per Bjesse, Koen Claessen, and Mary Sheeran. 1998. Lava: Hardware Design in
Haskell. In ICFP ’98. 174–184.

[7] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. 2020. The
Essence of Bluespec: A Core Language for Rule-Based Hardware Design. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation (London, UK) (PLDI 2020). 243–257.

[8] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet,
and Lionel Rieg. 2017. A Formally Verified Compiler for Lustre. SIGPLAN Not.
52, 6 (June 2017), 586–601. https://doi.org/10.1145/3140587.3062358

[9] Timothy Bourke, Lélio Brun, and Marc Pouzet. 2019. Mechanized Semantics
and Verified Compilation for a Dataflow Synchronous Language with Reset.
Proc. ACM Program. Lang. 4, POPL, Article 44 (Dec. 2019), 29 pages. https:
//doi.org/10.1145/3371112

[10] Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A Brief Overview of Agda – A
Functional Language with Dependent Types, Vol. 5674. 73–78.

[11] Thomas Braibant. 2011. Coquet: A Coq Library for Verifying Hardware. In
Certified Programs and Proofs. 330–345.

[12] T. Braibant and A. Chlipala. 2013. Formal Verification of Hardware Synthesis. In
CAV. 213–228.

[13] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson. 2013. LegUp: An
Open-source High-level Synthesis Tool for FPGA-based Processor/Accelerator
Systems. ACM Trans. Embed. Comput. Syst. 13, 2, Article 24 (Sept. 2013), 27 pages.

[14] Jongsok Choi, S. Brown, and J. Anderson. 2013. From software threads to parallel
hardware in high-level synthesis for FPGAs. In Field-Programmable Technology
(FPT), 2013 International Conference on. 270–277. https://doi.org/10.1109/FPT.
2013.6718365

[15] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chli-
pala, and Arvind. 2017. Kami: a platform for high-level parametric hardware
specification and its modular verification. PACMPL 1 (2017), 24:1–24:30.

[16] Solange Coupet-Grimal and Line Jakubiec. 1999. Hardware Verification Using
Co-induction in Coq. In Proceedings 12th TPHOLs. 91–108.

[17] Solange Coupet-Grimal and Line Jakubiec. 2004. Certifying Circuits in Type
Theory. Form. Asp. Comput. 16, 4 (Nov. 2004), 352–373.

[18] E. Czeck, R. Nanavati, and J. Stoy. 2006. Reliable Design with Multiple Clock
Domains. In Proc. MEMOCODE. 139–148.

[19] Zewei Du, Yann Herklotz, Nadesh Ramanathan, and John Wickerson. 2021.
Fuzzing High-Level Synthesis Tools. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (Virtual Event, USA) (FPGA
’21). Association for Computing Machinery, New York, NY, USA, 148. https:
//doi.org/10.1145/3431920.3439466

[20] Stephen A. Edwards. 2006. The Challenges of Synthesizing Hardware from
C-Like Languages. IEEE Design & Test 23 (2006), 2006.

[21] Stephen A. Edwards. 2013. Functioning Hardware from Functional Programs.
Technical Report CUCS-027-13. Department of Computer Science, Columbia
University.

[22] Stephen A. Edwards, Martha A. Kim, Richard Townsend, Kuangya Zhai, and
Lianne Lairmore. 2019. The FHW Project: High-Level Hardware Synthesis from
Haskell Programs. Technical Report CUCS-003-19. Department of Computer
Science, Columbia University.

[23] João Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. 2015. Π-Ware:
Hardware Description and Verification in Agda. In Proc. TYPES.

[24] Marco Gerards, Christiaan Baaij, Jan Kuper, and Matthijs Kooijman. 2011. Higher-
Order Abstraction in Hardware Descriptions with C𝜆aSH. In Proceedings of the
2011 14th EUROMICRO Conference on Digital System Design (DSD ’11). IEEE
Computer Society, Washington, DC, USA, 495–502. https://doi.org/10.1109/DSD.
2011.69

[25] D. Ghica and A. Jung. 2016. Categorical semantics of digital circuits. In FMCAD.
[26] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski. 2000. Stream-oriented FPGA

computing in the Streams-C high level language. In Field-Programmable Custom
Computing Machines, 2000 IEEE Symposium on. 49–56.

[27] Michael J. C. Gordon. 1995. The semantic challenge of Verilog HDL. Proc. of 10th
Annual IEEE LICS (1995), 136–145.

[28] Michael J. C. Gordon. 2002. Relating Event and Trace Semantics of Hardware
Description Languages. Comput. J. 45, 1 (01 2002), 27–36.

[29] Ian Graves, Adam M. Procter, William Harrison, and Gerard Allwein. 2015. Prov-
ably Correct Development of Reconfigurable Hardware Designs via Equational
Reasoning. In FPT. 160–171.

[30] David Greaves and Satnam Singh. 2008. Kiwi: Synthesis of FPGA Circuits from
Parallel Programs. In IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM). IEEE Computer Society.

[31] Jim Grundy, Tom Melham, and John O’leary. 2006. A reflective functional lan-
guage for hardware design and theorem proving. J. Funct. Program. 16, 2 (March
2006), 157–196.

[32] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The synchronous data
flow programming language LUSTRE. Proc. IEEE 79, 9 (1991), 1305–1320.

[33] W. Harrison. 2006. The Essence of Multitasking. In Algebraic Methodology and
Software Technology. 158–172.

[34] William Harrison. 2021. Device Calculus Codebase. Available from https://www.
dropbox.com/s/j121q0p87z9k90b/codebase.tar.gz?dl=1.

[35] William L. Harrison and Gerard Allwein. 2020. Verifiable Security Templates
for Hardware. In Proceedings of the Design, Automation, and Test Europe (DATE)
Conference.

[36] Yann Herklotz and John Wickerson. 2021. High-level synthesis tools should be
proven correct. In Workshop on Languages, Tools, and Techniques for Accelerator
Design (LATTE).

[37] Bluespec Homepage. 2017. http://bluespec.com.
[38] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim, C. Schmidt,

C. Markley, J. Lawson, and J. Bachrach. 2017. Reusability is FIRRTL ground:
Hardware construction languages, compiler frameworks, and transformations.
In 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
209–216.

[39] Randy H. Katz. 2000. Contemporary Logic Design (2nd ed.). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[40] Wilayat Khan, Alwen Tiu, and David Sanan. [n.d.]. VeriFormal: An Executable
Formal Model of a Hardware Description Language.

[41] C. Kloos and P. Breuer (Eds.). 1995. Formal Semantics for VHDL. Kluwer Academic
Publishers.

[42] P. LeGuernic, T. Gautier, M. Le Borgne, and C. Le Maire. 1991. Programming
real-time applications with SIGNAL. Proc. IEEE 79, 9 (1991), 1321–1336.

[43] X. Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7
(July 2009), 107–115.

[44] Patrick S. Li, Adam M. Izraelevitz, and Jonathan Bachrach. 2016. Specification for
the FIRRTL Language. Technical Report UCB/EECS-2016-9. EECS Department,
University of California, Berkeley.

[45] Andreas Lööw and Magnus O. Myreen. 2019. A Proof-Producing Translator for
Verilog Development in HOL. In 2019 IEEE/ACM 7th International Conference on
Formal Methods in Software Engineering (FormaliSE). 99–108.

[46] G. H. Mealy. 1955. A method for synthesizing sequential circuits. The Bell System
Technical Journal 34, 5 (Sep. 1955), 1045–1079.

[47] A. Megacz. 2012. Hardware Design with Generalized Arrows. In Proceedings of
the 23rd International Conference on Implementation and Application of Functional
Languages (Lawrence, KS) (IFL’11). Springer-Verlag, Berlin, Heidelberg, 164–180.
https://doi.org/10.1007/978-3-642-34407-7_11

[48] F. Lockwood Morris. 1973. Advice on Structuring Compilers and Proving Them
Correct. In Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (Boston, Massachusetts) (POPL ’73).
Association for Computing Machinery, New York, NY, USA, 144–152. https:
//doi.org/10.1145/512927.512941

[49] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 2010. Principles of
Program Analysis. Springer.

[50] Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony Fox,
Michael Roe, Brian Campbell, Matthew Naylor, Robert M. Norton, Simon W.
Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson, and Peter Sewell.
2020. Rigorous engineering for hardware security: Formal modelling and proof
in the CHERI design and implementation process. In 2020 IEEE Symposium on
Security and Privacy (SP). 1003–1020.

[51] Rishiyur S. Nikhil. 2011. Abstraction in Hardware System Design. Commun.
ACM 54, 10 (Oct. 2011), 36–44. https://doi.org/10.1145/2001269.2001284

[52] A. Procter. 2014. Semantics-Driven Design and Implementation of High-Assurance
Hardware. Ph.D. Dissertation. University of Missouri, 2014. Department of Com-
puter Science.

[53] Adam Procter, William Harrison, Ian Graves, Michela Becchi, and Gerard Allwein.
2017. A Principled Approach to Secure Multi-core Processor Design with ReWire.
ACM TECS 16, 2, Article 33 (Jan. 2017), 33:1–33:25 pages.

[54] O. Ragheb and J. H. Anderson. 2018. High-Level Synthesis of FPGA Circuits with
Multiple Clock Domains. In 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). 109–116.

https://doi.org/10.1145/3140587.3062358
https://doi.org/10.1145/3371112
https://doi.org/10.1145/3371112
https://doi.org/10.1109/FPT.2013.6718365
https://doi.org/10.1109/FPT.2013.6718365
https://doi.org/10.1145/3431920.3439466
https://doi.org/10.1145/3431920.3439466
https://doi.org/10.1109/DSD.2011.69
https://doi.org/10.1109/DSD.2011.69
https://www.dropbox.com/s/j121q0p87z9k90b/codebase.tar.gz?dl=1
https://www.dropbox.com/s/j121q0p87z9k90b/codebase.tar.gz?dl=1
http://bluespec.com
https://doi.org/10.1007/978-3-642-34407-7_11
https://doi.org/10.1145/512927.512941
https://doi.org/10.1145/512927.512941
https://doi.org/10.1145/2001269.2001284

PPDP 2021, September 6–8, 2021, Tallinn, Estonia William L. Harrison, Chris Hathhorn, and Gerard Allwein

[55] Thomas Reynolds, Rohit Chadha, William L. Harrison, and Gerard Allwein. 2020.
Strongly Bounded Termination with Applications to Security and Hardware
Synthesis. In ACM Workshop on Type Driven Development (TyDe).

[56] Thomas N. Reynolds, Adam Procter, William Harrison, and Gerard Allwein.
2019. The Mechanized Marriage of Effects and Monads with Applications to
High-assurance Hardware. ACM TECS 18, 1, Article 6 (Jan. 2019), 26 pages.

[57] Cherif Salama, Gregory Malecha, Walid Taha, Jim Grundy, and John O’Leary. 2011.
Static consistency checking for Verilog wire interconnects—Using dependent
types to check the sanity of Verilog descriptions. Higher-Order and Symbolic
Computation 24, 1-2 (2011), 81–114.

[58] Raymond Shanahan. 2014. US Department of Defense Trusted Microelectronics.
In the Proceedings of the 17th Annual NDIA Systems Engineering Conference.

[59] Mary Sheeran. 1984. muFP, A Language for VLSI Design. In LISP and Functional
Programming. 104–112.

[60] Joseph E. Stoy. 1977. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press.

[61] George Ungureanu and Ingo Sander. 2017. A Layered Formal Framework for
Modeling of Cyber-Physical Systems. In Design Automation and Test in Europe
(DATE 2017). Lausanne, Switzerland.

[62] Tarmo Uustalu and Varmo Vene. 2005. The essence of dataflow programming. In
Proceedings of the Third Asian conference on Programming Languages and Systems

(APLAS’05). 2–18.
[63] Saurabh Verma and Ashima Dabare. 2007. Understanding Clock Domain Crossing

Issues. The EE Times (24 Dec. 2007). https://www.eetimes.com/understanding-
clock-domain-crossing-issues/

[64] J. Villarreal, A. Park, W. Najjar, and R. Halstead. 2010. Designing Modular
Hardware Accelerators in C with ROCCC 2.0. In Field-Programmable Custom
Computing Machines (FCCM), 2010 18th IEEE Annual International Symposium on.
127–134. https://doi.org/10.1109/FCCM.2010.28

[65] Phillip Wadler, Wen Kokke, and Jeremy Siek. 2021. Programming Language
Foundations in Agda. https://plfa.github.io.

[66] C. Wang, X. Li, J. Zhang, P. Chen, X. Feng, and X. Zhou. 2012. FPM: A Flexible
Programming Model for MPSoC on FPGA. In Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International. 477–
484.

[67] Glynn Winskel. 1993. The formal semantics of programming languages: an intro-
duction. MIT Press.

[68] Xilinx Corporation 2021. Vivado High-Level Synthesis. http://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html.

[69] Huibiao Zhu, Jifeng He, and J. Bowen. 2006. From algebraic semantics to denota-
tional semantics for Verilog. In 11th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS’06). 341–360.

https://www.eetimes.com/understanding-clock-domain-crossing-issues/
https://www.eetimes.com/understanding-clock-domain-crossing-issues/
https://doi.org/10.1109/FCCM.2010.28
https://plfa.github.io
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

	Abstract
	1 Introduction
	1.1 Related Work

	2 Coinductive Semantics for Mealy Machines
	3 The Device Calculus and Its Semantics
	4 Idealized FIRRTL & Its Semantics
	4.1 Lowered FIRRTL Overview
	4.2 Syntax of Idealized FIRRTL
	4.3 Mealy Semantics for Idealized FIRRTL
	4.4 Conformance of IF to FIRRTL

	5 Future Work & Conclusions
	References

