
Language Abstractions for Hardware-based
Control-Flow Integrity Monitoring

William L. Harrison
Department of Electrical Engineering & Computer Science

University of Missouri
Columbia, Missouri, USA

william.lawrence.harrison@gmail.com

Gerard Allwein
US Naval Research Laboratory

Washington, DC, USA
gerard.allwein@nrl.navy.mil

Abstract—Control-Flow Integrity (CFI) is a software protec-
tion mechanism that detects a class of code reuse attacks by
identifying anomalous control-flows within an executing program.
Hardware-based CFI has the promise of the security benefits
of CFI without the performance overhead and complexity of
software-based CFI: generally speaking, hardware-based mon-
itors are more difficult to bypass, offer lower performance
overheads than software-based monitors, and, furthermore,
hardware-based CFI can be performed without the necessity of
altering application binaries or instrumenting language compil-
ers. Although hardware-based CFI is an active area of research
and there is a growing literature describing CFI strategies
at a high-level, there is, to the authors’ best knowledge, no
work on languages specially tailored to the specification and
implementation of CFI monitors. This article presents a proof-of-
concept domain-specific language with built-in abstractions for
expressing control-flow constraints along with a compiler that
targets the functional hardware description language ReWire.
While the case study is small, it indicates, we argue, an approach
to rapid-prototyping hardware-based monitors enforcing CFI
that is quick, flexible, and extensible as well as being amenable
to formal verification.

I. INTRODUCTION

Embedded systems are everywhere, deployed in a wide
variety of systems: automotive, medical, military, Internet-
of-Things, etc. Embedded systems are lightweight, having
restricted resources—in terms of both computing power and
development costs—of necessity and by design compared
to larger “industrial strength” computing systems. Embedded
systems are also increasingly the focus of security exploita-
tion [1]. The development cost of protections for embedded
systems must likewise be kept lightweight: this article explores
the application of ideas from programming language design
to the construction of security mechanisms for embedded
hardware in pursuit of this goal.

This article presents a proof-of-concept domain-specific
language with built-in abstractions for expressing and gen-
erating run-time monitors in reconfigurable hardware that
enforce control-flow integrity. Control-Flow Integrity (CFI)
is an approach to software security [2] in which changes in
control-flow within a program in execution are compared to
a control-flow graph (CFG) for the program: control-flow not
described by the program’s CFG indicates an ongoing control-
flow hijacking attack. Broadly speaking, there are two main

technical challenges in implementing a CFI monitor: (1) the
identification of an accurate control-flow graph (CFG) for the
program in question and (2) the representation strategy of the
monitor itself. There is a considerable body of research on
CFI hardware [3] and software [4] implementation strategies
since its inception.

This article focuses on challenge (2), although from a
novel perspective—that of programming language design and
domain-specific languages—and the result we present answers
the question: how can a control-flow monitor for a program
be derived directly and automatically from its CFG? The CFG
for a program is taken as input, translated to a domain-specific
language for expressing control-flow constraints called CFL
(for Control-Flow Language). CFL is a DSL “embedded” in
the Haskell functional language: it is defined in terms of
Haskell and leverages Haskell’s infrastructure (e.g., its type
system and implementation).

Embedding in Haskell provides two immediate benefits for
CFL and, consequently, for generation of hardware-based CFI
monitors. Firstly, CFL programs, being embedded in Haskell,
can leverage any number of techniques or tools associated
with Haskell (e.g., strong-typing, automated test generation,
formal verification via equational reasoning, etc.). Secondly,
CFL programs may be translated to synthesizable VHDL using
ReWire, which is a functional hardware description language
also embedded in Haskell.

This research is based in functional languages and embed-
ded domain-specific languages, but it is the authors’ intention
to make this article accessible to readers with no experience
in functional programming whatsoever. We will endeavor to
explain Haskell/ReWire notation throughout. Readers may
consult the online codebase for this paper for further details.
The remainder of this section considers related work and
presents a high-level, non-technical summary of the results.
Section II motivates the design and implementation of the
CFL language. Section III summarizes the results presented
here and discusses ongoing and future directions.

Related Work: Classic “stack-smashing” buffer-overflow
exploits copy code into the targeted system which is then, one
way or another, contrived to be executed. Countermeasures—
e.g., data execution prevention (DEP) also known as write
XOR execute (W⊕X)—were devised and widely deployed that

https://www.haskell.org
https://drive.google.com/open?id=1xhAcIz1iYr98wSor3NfKHgPsbQyN1iwM

(a) CFG as Source Text

begin = predict 1 k1
k1 = predict 2 k2
k2 = branch (3,k3) (4,k4)
k3 = predict 2 k2
k4 = branch (5,k5) (6,k6)
k5 = branch (8,k8) (7,k7)
k6 = predict 7 k7
k7 = predict 11 k11
k8 = predict 9 k9
k9 = branch (8,k8) (10,k10)
k10 = branch (5,k5) (12,k12)
k11 = predict 12 k12
k12 = stop

(b) Control-flow Expressed in CFL Language
Port Adr

Maybe Bit

(c) CFI Monitor cross-compiled to ReWire

Fig. 1: Language Abstractions for Hardware-based Control-Flow Integrity Monitoring. Throughout this article, instruction
addresses are represented, without loss of generality, as integers rather than as machine words.

effectively prevent such code injection attacks. Code re-use
attacks—e.g., return-into-libc attacks and their progeny [5]—
circumvent DEP/W⊕X by hijacking control-flow and re-using
the existing codebase on the targeted system. CFI, first pro-
posed by Abadi et al. [2], detects such code re-use attacks as
hijacked control-flow invariably diverges from the expected
control-flow. There is a continuum of CFI strategies from
“fine-grained,” in which control-flow must strictly adhere to
expectations at the instruction-level, to “coarse-grained”, in
which adherence is looser and tracked at the level of code
regions (e.g., basic blocks).

The majority of CFI research is based in software in which
applications and CFI monitoring code are woven together,
where “weaving” is accomplished by, for example, instrument-
ing language compilers to include control-flow monitoring
checks or by using binary translation techniques to alter
applications with monitoring code. An excellent survey of
software-based methods can be found in Burow et al. [4].
Software-based CFI suffers from implementation complexity
as modifying language compilers and/or binary translation can
be quite challenging techniques in, and of, themselves. Fur-
thermore, recent work on the effectiveness of software-based
CFI [6]–[8] indicates that many software-based approaches can
be circumvented.

Indirect control-flow instructions—i.e., those with register
targets like “jmp eax” in x86—are the source of imprecision
in the calculation of CFGs, because it is impossible, via static
analysis, to determine exactly the set of all possible flows from
it. Accurate CFG generation is key to the success of any CFI
approach; see Tan and Jaeger [9] for further discussion. To
render the CFL flow as general as possible, this article treats
CFGs as source input, leaving the issue of CFG generation for
future work (discussed in Section III below).

An adjacency matrix representation of a CFG will be quite
sparse, because, for any address a, there will be only a small
handful of addresses a’ for which there is a link from a to
a’. One challenge of hardware-based CFI derives from this
fact and has a negative impact on table-based approaches [10]
to hardware CFI. Mao and Wolf [11] consider more efficient

encodings of the adjacency matrix based on hashing. FSM-
based approaches [12], [13] overcome the CFG sparseness
problem by, in effect, inlining the permissible control-flow. A
similar approach is taken with CFL, in which each control-
flow constraint is expressed directly. At any point in CFL
execution, there is a single such constraint being monitored
and deviation from expected control-flows is detected at that
single point. Importantly, this “inlining approach” obviates
the need to represent the entire adjacency matrix form of the
CFG. Muench et al [14] propose hardware-assisted CFI using
transactional memory. Christoulakis et al. [15] integrate CFI
capabilities directly into a SPARC SoC; their system, HCFI,
weaves CFI monitoring directly into the hardware itself rather
than a separate hardware monitor. For an excellent survey
of hardware-based methods for CFI, please see Clercq and
Verbauwhede [3].

High-level synthesis (HLS) from functional languages [16],
[17] is a proposed remedy for the “programmability” prob-
lem [18] in reconfigurable technology. ReWire is a func-
tional hardware description language that is a subset of the
Haskell functional programming language: every ReWire pro-
gram is a Haskell program, but not necessarily vice versa.
Previous work has described the design and implementation
of ReWire [19], its support for equational reasoning about
reconfigurable hardware [19], [20], and its use as a target
for embedded DSLs [21]. ReWire is intended as a tool for
producing high assurance hardware and the current work is
a step towards formally verifying the security and integrity
properties of monitored systems (although the current work
does not address formal verification, leaving it for future
work). To the best knowledge of the authors, this work is
the first application of functional language-based HLS to the
design and implementation of hardware CFI monitors.

Language Abstractions for Hardware-based Control-
Flow Integrity Monitoring: Fig. 1 presents a high level
overview of the language-based approach to generating CFI
monitors in hardware described in this article. Fig. 1a takes as
input source the CFG of the program to be monitored. This
directed graph is transformed into a CFL program (Fig. 1b),

https://www.haskell.org

where CFL is the domain-specific language for expressing
control-flow constraints. Each CFL program has a reserved
start symbol, begin. A CFL constraint “predict 2 k2” means
intuitively: “wherever I am, if the instruction address to be
executed next is 2, then proceed to k2; otherwise, sound the
alarm.” We describe CFL’s syntax, semantics, and implemen-
tation in detail in Section II.

CFL program structure mirrors that of Haskell/ReWire—
i.e., it is a set of (mutually recursive) equations. CFL programs
are embedded in Haskell/ReWire by providing definitions for
operations predict and branch as well as interface code
for enabling and resetting the monitor; this is described in
more detail below in Section II-E. This embedding is simply
a compiler, taking CFL programs into Haskell/ReWire pro-
grams. The result of compiler the CFL program in Fig. 1a
is a Haskell/ReWire program defining cfimon, which is the
CFI monitor. Before continuing, we explain some relevant
Haskell/ReWire syntax.

Note on Notation: ReWire has a built-in type constructor
for devices, Device; e.g., d :: Device i o signifies that d
describes a clocked device that, on each clock cycle, consumes
an input and produces an output of types i and o, resp. The
double colon :: is read “has type”; e.g., “x :: a” says that
expression or variable x has type a.

The type of the monitor generated by the Haskell/ReWire
embedding is: cfimon :: Device (Port Adr) (Maybe Bit)

and it is illustrated in Fig. 1c. The type Adr stands for the
instruction address type appropriate to a particular application.
The address type Adr is, for the purposes of this presentation,
left unspecified, although typical instances would be a machine
word of some fixed size—e.g., ReWire has built-in word types
(e.g., W8, W16, and W32 for 8, 16, and 32 bit words, resp.).
Without loss of generality, addresses of type Adr are written as
integers throughout. A detailed discussion of this type occurs
in Section II-C, but, for now, think of cfimon as a synchronous
device that accepts instruction addresses on its input port (i.e.,
values of type Port Adr) and produces each cycle an output of
type Maybe Bit. Outputs of this type have the form Nothing

(meaning cfimon is not operating) and Just b, signifying that
cfimon is operating; if bit b is clear (set), then control-flow is
normal (anomalous).

Because the cfimon is executable in Haskell, we can then
write a test harness and test cases for cfimon completely
in Haskell (see the codebase for complete details). The test
harness has the following type:

test :: Device () (Port Adr) ->
Device (Port Adr) (Maybe Bit) ->
[Maybe Bit]

An application of the harness, test tst cfimon, pipes the
outputs from test device tst to the inputs of cfimon. We
can devise a test device in Haskell/ReWire, call it good, that
generates the following sequence of Port Adr outputs:

Enable, DontCare, DontCare, PC 1, DontCare,
PC 2, DontCare, DontCare, PC 3, DontCare,
PC 4, Reset, DontCare,...

(a) Input CFG

begin = predict 1 k1
k1 = predict 2 k2
k2 = predict 3 k3
k3 = predict 4 k4
k4 = predict 5 k5
k5 = branch (2,k2) (6,k6)
k6 = stop

(b) Generated CFL Program

Fig. 2: Running Example: CFI Monitor Generation. On the
left is a simple CFG used as a running example and, on the
right, is the CFL program generated automatically from it.

Or, we can devise a test device, call it bad, that generates the
following outputs:
Enable, DontCare, DontCare, PC 1, DontCare,
PC 6, DontCare, DontCare, PC 3, DontCare,
PC 4, Reset, DontCare,...

Here, Enable and Reset makes cfimon begin and end scan-
ning, resp., PC a signifies the fetch of instruction address a,
and DontCare signifies no meaningful input.

Note that, as shown, the good (bad) output sequence do (do
not) include anomalous control-flows according to the CFG
in Fig. 1a. Using the GHCi Haskell interpreter, we may then
perform the tests (underlined text is typed by user, the rest is
produced by GHCi):
ghci> test good cfimon

[Nothing,Just 0,Just 0,Just 0,Just 0,
Just 0,Just 0,Just 0,Just 0,Just 0,
Just 0,Just 0,Nothing,...

ghci> test bad cfimon
[Nothing,Just 0,Just 0,Just 0,Just 0,
Just 0,Just 1,Just 1,Just 1,Just 1,
Just 1,Just 1,Nothing,...

Note that the good test never generates a Just 1, but the bad

test does in the cycle following its producing PC 6. Once
satisfied with cfimon, it can be translated to synthesizable
VHDL using the ReWire compiler.

II. CFL: A DOMAIN-SPECIFIC LANGUAGE FOR
CONTROL-FLOW CONSTRAINTS

This section describes the Haskell/ReWire embedding of
CFL that enables the testing of monitors using Haskell as well
as their compilation to synthesizable VHDL by the ReWire
compiler. We endeavor to describe Haskell/ReWire notation
at a high level as we proceed although, of necessity, the
description is very high-level. Throughout this section, we
refer to a simple running example shown in Fig. 2 and use
it to illustrate the structure, semantics, and implementation of
CFL. Doing so allows the basic ideas to be provided without
unnecessary excursions into technicalities of programming
language design—readers may refer to the online codebase
for more details.

A. CFG Representation for the CFL Flow

A simple example will illustrate the structure of the CFG
representation. Consider the CFG in Fig. 2a which is defined
below in Haskell as:

https://drive.google.com/open?id=1xhAcIz1iYr98wSor3NfKHgPsbQyN1iwM
https://drive.google.com/open?id=1xhAcIz1iYr98wSor3NfKHgPsbQyN1iwM

runningex :: CFG Adr
runningex = (1,es)
where

es = [1 :-> 2, 2 :-> 3, 3 :-> 4, 4 :-> 5,
5 :=> (2,6), Halt 6]

A CFG is a pair consisting of the start address and a list
of edges (resp., 1 and es above). Each node carries an
address (i.e., 1 through 6). Edges come in three forms, each
corresponding to the number of successors the source node
has. In Fig. 2a, node 1 has the single successor node 2,
and, hence, the edge 1 :-> 2 is in es. Similarly, node 5 has
exactly two successors, nodes 2 and 6, and, hence, the edge
5 :=> (2,6) is in es. Node 6 has no successors in Fig. 2a,
and so it is represented by Halt 6 edge. The type declaration
of edges is parameterized over the address type a and is given
by the following Haskell declaration:
data Edge a = a :-> a - - one s u c c e s s o r

| a :=> (a,a) - - two s u c c e s s o r s

| Halt a - - no s u c c e s s o r s

type CFG a = (a,[Edge a])

A CFG is a pair, (a,es), where a is the initial address of the
CFG and es :: [Edge a] (read “[. . .]” as “list of”).

A control-flow graph (e.g., Fig. 1a and Fig. 2a) is a
directed graph expressing the expected control-flows within
a program. For our purposes, we assume that the vertices
(i.e., nodes) within the graph contain only the addresses of
instructions within the program in question. An edge, n→m, in
the graph indicates that, if executing the instruction at address
n, the instruction at address m may be executed next with no
intervening instructions. Conversely, if an edge, n→m, is not
present in the CFG, then the change of control from n to m is
not permitted. CFGs are a fundamental data structure within
language compilers and, in that context, they may be decorated
with all manner of data (e.g., results of static analyses) that we
do not include. For language compilation, the CFG vertices
will frequently denote basic blocks, which are straight-line
code (i.e., no intermediate jumps or calls) with single points
of entry and exit within the program being compiled. The
CFG format we assume represents single instructions which
is consistent with “fine-grained” CFI, although looser, “coarse-
grained” CFI has been explored [4] which might make use of
basic block information.

For any node n in a CFG, the number of edges proceed-
ing from it has a fixed upper bound as a consequence of
the semantics of the typical machine languages. An instruc-
tion at a termination point for the program would have no
edges proceeding from it. A non-control-flow instruction—
e.g., “push eax” in x86—has a single next instruction and
would, therefore, induce precisely one directed arc in the CFG.
A control-flow instruction—e.g., “jz label” in x86—would
induce precisely two directed arcs in the CFG.

B. Generating CFL programs from CFGs

The input CFG is translated into CFL by mapping a
CFG edge a :-> a’ into an CFL equation of the form
ka = predict a’ ka’, where ka and ka’ are fresh variables.
A CFG edge a :=> (a1,a2) is mapped into a CFL equation

of the form ka = branch (a1,ka1) (a2,ka2), where ka, ka1,
and ka2 are fresh variables. This mapping on edges is defined
by the pseudo-Haskell function e2cfl:

e2cfl :: Edge Adr -> CFL
e2cfl (a :-> a’) = ka = predict a′ ka′
e2cfl (a :=> (a1,a2)) = ka = branch (a1,ka1) (a2,ka2)

e2cfl (Halt a) = ka = stop

To write the actual definition of e2cfl, we would have to
introduce the abstract syntax for CFL, and this seems like
an unnecessary detour in that the definition above conveys
the essence of the definition found in the codebase. For
(i,es) :: CFG Adr, the CFL constraint equation for the re-
served word begin is given similarly depending on whether i
has one, two, or no successors.

C. The Device Type of a CFI Monitor

The Haskell/ReWire type of a CFI monitor is
Device (Port Adr) (Maybe Bit). The Bit type and
Port type constructor are defined as:
data Bit = C | S - - c l e a r and set , r e s p .

data Port a = PC a | DontCare | Enable | Reset

A value of type Port W8, for example, will have the form:
PC w for some w :: W8, DontCare, Enable, or Reset. Form
PC w signifies that instruction address w is available at the port.
Obviously, DontCare stands for a non-informative “don’t care”
input. Inputs Enable and Reset indicate that the CFI monitor
should begin and cease, respectively, monitoring control-flow.

The output type of a CFI monitor is Maybe Bit. The Maybe

type constructor, built-in to Haskell/ReWire, is defined below:
data Maybe a = Just a | Nothing

A Nothing output signifies that control-flow monitoring is not
currently underway. A Just b output signifies that control-
flow monitoring is currently being performed and b :: Bit

is its current status: C meaning “all flow legal so far” and S

meaning “illegal flow has occurred.”

D. High-level Structure of Generated CFI Monitors

Fig. 3 presents a high-level structural account of CFI moni-
tors generated from CFL programs. The diagram has the shape
of a state machine, although the diagram is at a higher level
than that. In particular, each of the labelled boxes—cfimon,
begin, alarm, and stop—are Haskell/ReWire definitions
that will be given shortly. The dashed-lined box—labelled
“Inlined CFG”—is the code generated by the Haskell/ReWire
embedding of CFL discussed in detail in the next section.

The monitor starts at cfimon. If cfimon receives any in-
put other than Enable, it makes no transition. On Enable,
the monitor transitions to begin, which will start the CFI
monitoring activity. Without loss of generality, the diagram
in Fig. 3 assumes that the first instruction address to be
checked is 1 and that the equation for begin is of the form,
begin = predict 1 k; it could, in practise, be a branch or
stop constraint. If the input address is not 1, it transitions to
alarm. Within the “Inlined CFG,” any anomalous control-flows
will result in transition to alarm while program termination
will result in transition to stop (from where it will immediately

https://drive.google.com/open?id=1xhAcIz1iYr98wSor3NfKHgPsbQyN1iwM

cfimon alarm

begin

stop

Inlined
CFG

Reset

Reset Enable

Enable control
flow

violation

PC 1

PC
 1

program termination

start

Fig. 3: Structure of a Generated CFI Monitor

transition back to cfimon). The monitor remains in alarm until
it receives a Reset signal.

E. Haskell/ReWire Embedding of CFL

This section defines the Haskell/ReWire embedding of
CFL. Part of the embedding consists of giving definitions
for predict and branch operations shown in Figures 1b and
2b. Rather than give the definitions for the Haskell/ReWire
embedding compiler (which can be found in the codebase),
we describe the embedding by explaining its output on the
running example of Fig. 2b.

Note on Notation: Haskell/ReWire use “do notation” to
chain together Device operations (Fig. 4a) in which n op-
erations are chained together using do. First, operation1 is
executed, producing value i1, then operation2 is executed,
producing value i2, and so on, until the final operation,
operationn , is reached. The value is produced by operationn

is the value returned by sequence. The signal operation is
used to receive input and produce output each clock cycle.
The code snippet (Fig. 4b) sets the output port to o and waits
to receive the new input i. Intuitively speaking, signaling
indicates the dividing line between clock cycles. The signal o

occurs at the end of the current clock cycle and the receipt of
input i marks the beginning of the next clock cycle in which
continue may now process i.

The cfimon operation is a loop that waits until an Enable

signal is received on the input port. While it waits, cfimon

signals Nothing to indicate that the CFI monitor is inactive.
Each cycle, it receives from the input port (pa) and pattern-
matches against it. If Enabled, it continues to begin.

cfimon :: Device (Port Adr) (Maybe Bit)
cfimon = do

pa <- signal Nothing
case pa of

Enable -> begin
_ -> cfimon

The fourth line above takes the input from the port,
pa :: Port Adr and pattern matches against it with a case

expression. Each line in a case expression has the form
“pattern -> value”. Above, if the pattern matches pa, it returns
corresponding value. Pattern matching proceeds in top to
bottom order. The underscore “_” is a wildcard pattern.

The begin operation signals Just C to indicate that the
monitor is operational and has not observed a control-flow

sequence = do
i1 <- operation1

⋮

i(n−1) <- operation(n−1)
operationn

(a) Haskell/ReWire “do” notation.

do
i <- signal o
continue

(b) ReWire’s signal operator.

Fig. 4: Notation: Chaining and Signaling in Haskell/ReWire.

violation. If its input pa represents an instruction address (i.e.,
has form PC a’), it checks that the address is the starting
address of the code and proceeds to k1; otherwise, it transitions
to alarm to indicate the control-flow violation.

begin :: Device (Port Adr) (Maybe Bit)
begin = do

pa <- signal (Just C)
case pa of
PC a’ | a’==1 -> k1

| otherwise -> alarm
DontCare -> begin
Enable -> begin
Reset -> cfimon

The alarm operation repeatedly signals Just S, signifying
that an anomalous control-flow has been identified, until it
receives a Reset signal. Upon Reset, it transitions to cfimon,
thereby restarting the monitor.

alarm :: Device (Port Adr) (Maybe Bit)
alarm = do
pa <- signal (Just S)
case pa of
Reset -> cfimon
_ -> alarm

The stop operation indicates that the program has termi-
nated without incident and the monitor should cease operation
and return to waiting for an Enable signal.

stop :: Device (Port Adr) (Maybe Bit)
stop = cfimon

We illustrate the Haskell/ReWire embedding of predict,
branch, and stop constraints by the translation of several
equations from Fig. 2b. Fig. 5 shows the translation of several
such equations. Within the translation of k1 = predict 2 k2,
the input from the port, pa, is received and checked using a
case expression. If an instruction address a’ is received, it
transitions to k2 if a’ is the expected next address; if a’ is not
the expected address, a control-flow violation has occurred and
it transitions to alarm. Given DontCare or Enable, it remains
at k1. For Reset, it restarts the monitor by transitioning to
cfimon. The other cases are similarly defined.

III. SUMMARY, CONCLUSIONS, AND FUTURE WORK

Development costs for security mechanisms suited to the
diversity of embedded systems could be kept lower if devel-
opment tool flows supported “software engineering virtues” of
abstraction, modularity, extensibility, etc.: the more quickly a
particular protection mechanism can be adapted or extended
to meet the needs of a particular embedded system, the less
expensive it is. This challenge motivates the approach taken

https://drive.google.com/open?id=1xhAcIz1iYr98wSor3NfKHgPsbQyN1iwM

- - E m b e d d i n g of : k1 = p r e d i c t 2 k2

k1 :: Device (Port Adr) (Maybe Bit)
k1 = do

pa <- signal (Just C)
case pa of
PC a’ | a’==2 -> k2

| otherwise -> alarm
DontCare -> k1
Enable -> k1
Reset -> cfimon

- - E m b e d d i n g of : k5 = b r a n c h (2 , k2) (6 , k6)

k5 :: Device (Port Adr) (Maybe Bit)
k5 = do

pa <- signal (Just C)
case pa of
PC a’ | a’==2 -> k2

| a’==6 -> k6
| otherwise -> alarm

DontCare -> k5
Enable -> k5
Reset -> cfimon

- - E m b e d d i n g of : k6 = s t o p

k6 :: Device (Port Adr) (Maybe Bit)
k6 = stop

Fig. 5: Haskell/ReWire Embedding of CFL: Running Example

here: i.e., the application of programming languages ideas—
specifically, embedded domain-specific languages—to the con-
struction of security mechanisms for embedded hardware.

This article presents a proof-of-concept domain-specific
language, CFL, with abstractions expressing control-flow con-
straints along with an embedding into the ReWire functional
HDL (and, consequently, an embedding into Haskell). These
embeddings serve dual purposes as a means for both develop-
ing and implementing of hardware-based CFI monitors and,
potentially, other varieties of hardware-based security monitors
as well. Hardware-based security monitors (in this case, CFL
monitors) may be type-checked, tested, and formally verified
just as any Haskell program using existing tools and techniques
(e.g., Haskell’s strong type system, the GHC Haskell compiler,
stepwise development, etc.). This paper has left formal verifi-
cation for future work, but we would argue that it is significant,
in and of itself, that hardware-based runtime monitors can be
described in a framework in which there are many well-known
paths forward for formal verification. Once design, testing, and
verification goals are met, the monitors can be translated to
synthesizable VHDL using the ReWire compiler.

What has not been addressed in this article is performance.
Calculating accurate CFGs is a challenge in itself [9] and
we have left performance analysis and tuning for follow-
on research. Ongoing research has developed Haskell/ReWire
models for RISC-V (specifically, the 32-bit integer ISA) and
for the Xilinx MicroBlaze soft processor. In future work, we
will leverage these ReWire models, along with tool suites
for RISC-V and MicroBlaze, to perform an extensive “test
and measure” study of the flow described in this article.
All that being said, previous work has established that the
ReWire compiler produces circuits with very good timing
and space characteristics in the domain of regular expression
compilation [21] and the CFI monitors developed here are

quite similarly structured, so there is good reason to believe
that similar performance characteristics are achievable.

REFERENCES

[1] “The 5 worst examples of IoT hacking and vulnerabilities
in recorded history.” [Online]. Available: https://www.iotforall.com/
5-worst-iot-hacking-vulnerabilities/

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security, ser. CCS ’05. New York, NY, USA:
ACM, 2005, pp. 340–353.

[3] R. de Clercq and I. Verbauwhede, “A survey of hardware-based control
flow integrity (CFI),” CoRR, vol. abs/1706.07257, 2017.

[4] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Comput. Surv., vol. 50, no. 1, pp. 16:1–16:33, Apr. 2017.

[5] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM CCS, 2007, pp. 552–561.

[6] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the effectiveness
of control-flow integrity under stack attacks,” in ACM Conference on
Computer and Communications Security, 2015.

[7] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in Pro-
ceedings of the 24th USENIX Conference on Security Symposium, ser.
SEC’15, 2015, pp. 161–176.

[8] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” 2014 IEEE Symposium on
Security and Privacy, pp. 575–589, 2014.

[9] G. Tan and T. Jaeger, “CFG construction soundness in control-flow
integrity,” in Proceedings of the 2017 Workshop on Programming
Languages and Analysis for Security, ser. PLAS ’17, 2017, pp. 3–13.

[10] Z. Guo, R. Bhakta, and I. G. Harris, “Control-flow checking for
intrusion detection via a real-time debug interface,” in 2014 International
Conference on Smart Computing Workshops, Nov 2014, pp. 87–92.

[11] S. Mao and T. Wolf, “Hardware support for secure processing in
embedded systems,” IEEE Transactions on Computers, vol. 59, no. 6,
pp. 847–854, June 2010.

[12] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Hardware-assisted
run-time monitoring for secure program execution on embedded pro-
cessors,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 14, no. 12, pp. 1295–1308, Dec 2006.

[13] M. Rahmatian, H. Kooti, I. G. Harris, and E. Bozorgzadeh, “Hardware-
assisted detection of malicious software in embedded systems,” IEEE
Embedded Systems Letters, vol. 4, no. 4, pp. 94–97, Dec 2012.

[14] M. Muench, F. Pagani, Y. Shoshitaishvili, C. Kruegel, G. Vigna, and
D. Balzarotti, “Taming transactions: Towards hardware-assisted control
flow integrity using transactional memory,” in Research in Attacks, In-
trusions, and Defenses, F. Monrose, M. Dacier, G. Blanc, and J. Garcia-
Alfaro, Eds. Cham: Springer International Publishing, 2016, pp. 24–48.

[15] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,
“HCFI: Hardware-enforced control-flow integrity,” in Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’16. New York, NY, USA: ACM, 2016, pp. 38–49.

[16] P. Gammie, “Synchronous digital circuits as functional programs,” ACM
Comput. Surv., vol. 46, no. 2, pp. 21:1–21:27, Nov. 2013.

[17] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis,
J. Wawrzynek, and K. Asanovic, “Chisel: constructing hardware in a
scala embedded language,” in DAC, 2012, pp. 1216–1225.

[18] D. Andrews, “Will the future success of reconfigurable computing re-
quire a paradigm shift in our research community’s thinking?” Keynote,
ARC, 2015, http://hthreads.csce.uark.edu/mediawiki/images/d/d8/Arc-
presentation.pdf.

[19] A. Procter, W. L. Harrison, I. Graves, M. Becchi, and G. Allwein, “A
principled approach to secure multi-core processor design with ReWire,”
ACM TECS, vol. 16, no. 2, pp. 33:1–33:25, Jan. 2017.

[20] I. Graves, A. M. Procter, W. Harrison, and G. Allwein, “Provably
correct development of reconfigurable hardware designs via equational
reasoning,” in FPT, 2015, pp. 160–171.

[21] I. Graves, A. Procter, W. Harrison, M. Becchi, and G. Allwein, “Hard-
ware synthesis from functional embedded domain-specific languages: A
case study in regular expression compilation,” in ARC, 2015, pp. 41–52.

https://www.haskell.org/ghc/
https://riscv.org
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities/
https://www.iotforall.com/5-worst-iot-hacking-vulnerabilities/

	Introduction
	CFL: A Domain-Specific Language for Control-Flow Constraints
	CFG Representation for the CFL Flow
	Generating CFL programs from CFGs
	The Device Type of a CFI Monitor
	High-level Structure of Generated CFI Monitors
	Haskell/ReWire Embedding of CFL

	Summary, Conclusions, and Future Work
	References

