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Abstract—FPGA programmability remains a concern with
respect to the broad adoption of the technology. One reason for
this is simple: FPGA applications are frequently implementations
of concurrent algorithms that could be most directly rendered in
concurrent languages, but there is little or no first-class support
for concurrent applications in conventional hardware description
languages. It stands to reason that FPGA programmability
would be enhanced in a hardware description language with
first-class concurrency. The starting point for this paper is a
functional hardware description language with built-in support
for concurrency called ReWire. Because it is a concurrent
functional language, ReWire supports the elegant expression of
common concurrency paradigms; we illustrate this with several
case studies.

I. INTRODUCTION

FPGA programmability must improve if they are to gain
wider acceptance within computing generally [1]. Andrews [2]
argues that a paradigm shift for reconfigurable computing
towards what, for lack of a better term, might be called soft-
ware engineering virtues—abstraction, modularity, program
comprehensibility, etc.—is a necessary precondition for wider
adoption of reconfigurable technology. Rather than focusing
exclusively on performance metrics, the new paradigm must
focus as well on dimensions that enable productivity, rapid
modifiability, reuse, and scalability. What is required are pro-
gramming models for reconfigurable computing that embrace
the software engineering virtues.

One frequently proposed remedy to the programmability
issue is high-level synthesis from functional languages [3], [4],
because hardware logic has a functional flavor. More to the
point, functional languages support the software engineering
virtues through higher-order abstractions and type systems.
But many FPGA applications—especially at the system-on-
chip level—are implementations of concurrent algorithms, and
there is generally little or no first-class support for concurrency
in either conventional HDLs or functional languages.

The starting point for this work is a functional language with
first-class support for concurrency called ReWire. ReWire,
being a concurrent language, offers direct expression of high-
level concurrency templates, which, we contend, frees pro-
grammers to think at a high level of abstraction, thereby
making the programming flow less error prone and effort
intensive. High-level concurrency templates in ReWire remove
the necessity for programmers to continually reinvent wheels.

ReWire goes one better on previous approaches to high-level
synthesis from functional languages by proceeding from a
functional language for concurrency; this, in turn, supports
the direct expression of concurrency templates in ReWire.

The efficiency of the ReWire compiler has been demon-
strated in previous work [5]–[7]. The software engineering
virtues we ascribe to the ReWire programming model are
inherently qualitative in nature: abstraction, modifiability, etc.,
do not readily admit quantitative measurement. Therefore,
we evaluate the software engineering virtues of the ReWire
programming model by presentation of a series of use cases
that illustrate the ease, elegance, and economy of expression
within the ReWire language.

This case studies presented in this article are arranged in
increasing order of complexity. First, we show how useful
synchronization constructs—mutex (Section IV), triple mod-
ular redundancy (Section V), and barriers (Section VI)—are
expressed directly in ReWire. These concurrency templates are
abstract, modular, and may be modified or extended to other
purposes. Fig. 1 presents our most complex example: a dual
core system with a secure memory controller (Section VII)
expressed in ReWire. It includes two DLX processors [8], high
dlxH and low dlxL, a memory controller (memCtrl) and a
memory (memory). The ReWire specification for this system
is also pictured below the diagram and will be described in
detail in a later section.

The dual core system is “parametric” in the number of cores
and in the memory access and scheduling policies, by which
it is meant that these concerns may be easily modified or
updated. This is supported directly by the ReWire language
through its type system, which helps to separate concerns with
functional abstraction and static typing. Different concerns
(e.g., memory access policies) may be expressed as distinct
abstractions and these abstractions are maintained by the type
system. ReWire does not merely allow separation of concerns,
but supports it directly in its language semantics as well.

One might counter saying that modular specifications may
be written in VHDL as well and, while true, it is not the case
that VHDL and other traditional HDLs support modularity
directly. This direct support of the software engineering virtues
can alleviate some of the burden of design and refactor from
engineers. Static typing, for example, can catch many design
errors automatically as such errors can often manifest as type
errors, thus supporting rapid modification and refactoring.978-1-5090-2520-6/16/$31.00 c©2016 IEEE



memory memCtrl dlxH dlxL 

dlx` :: Dev (Instr`,Rsp`) (Next`,Req`)
memCtrl :: Dev (Data,ReqH,ReqL) (Req,RspH,RspL)
memory :: Dev Req Data
system :: Dev (InstrH,InstrL) (NextH,NextL)
system =
refold

systemOut
systemIn
(dlxH <&> dlxL <&> memCtrl <&> memory)

Fig. 1: A Dual Core System realized in ReWire. The ReWire
code is described in more detail in Section VII-F. Here,
security levels ` ∈ {H, L}.

II. THE REWIRE PROGRAMMING MODEL

This section presents a quick overview of Haskell—and,
hence, ReWire—syntax necessary to understand this paper.
Throughout the paper, we have attempted to explain the
meaning of ReWire code as we present it to minimize the
burden to the reader. For those requiring more information
about ReWire, please consult the references [5], [6].

ReWire is a subset of the Haskell functional programming
language [9]—i.e., ReWire programs are Haskell programs,
but not necessarily vice versa. All ReWire programs can be
compiled to synthesizable VHDL with the ReWire compiler.
The principal difference between Haskell and ReWire is that
recursion in ReWire is restricted to tail recursion so that
every ReWire program requires only a finite, bounded memory
footprint. Unbounded recursion requires an unbounded stack
or heap for compilation and such dynamic control structures
are anathema to hardware’s fixed storage.

Haskell [9] is a strongly-typed, purely functional language.
A Haskell program consists of a number of function and
datatype declarations. The type of a function from type a to
type b is written, a -> b. The type for a tuple with first and
second components a and b, resp., is written (a, b). The fact
that a Haskell expression e has type a is written e :: a.

In Haskell/ReWire, we can introduce new datatypes with the
data keyword. ReWire has built-in types for words. A 32-bit
(128-bit) word belongs to the type W32 (W128), for example.
Examples of Haskell data types can be found in Listing 7.

ReWire includes operators for the compositional construc-
tion of devices from other devices. ReWire enables two
or more existing devices to be composed in parallel and
connected together. ReWire supports a compositional style
of hardware design akin to structural VHDL. Formulating
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Fig. 2: Device Constructors: (a) Device d is iter f. (b) The
device is d1 <&> d2. (c) the device is refold out conn d.

the design of a hardware device may be accomplished as in
previous work [5], or, existing devices may be composed with
ReWire operations into bigger devices.

There is a type constructor Dev for synchronous devices in
ReWire. There are three basic architectural constructors in the
ReWire language. The first, iter, constructs a synchronous
device from a pure function from inputs to outputs. The
second, 〈&〉, composes two devices in parallel. The third,
refold, is a recursion operator that is used to interconnect
devices and/or express feedback loops (i.e., feed back device
outputs to inputs).

There is one basic unit of ReWire, devices, for which we
introduce the following type: Dev i o for any types i and o.

d 

o 

i 

clk 

d :: Dev i o

A term of type, Dev i o, represents a clocked
computation that, for each clock cycle, takes
an input of type i, produces an output of
type o, and may possess internal storage. We
eschew the formal definition of Dev as it is
unnecessary to understanding ReWire and its
uses. Device d is clocked, as illustrated in the
inset figure. The clock is represented by the
underlying structure of Dev i o, rather than
as an explicit parameter. A device is created in ReWire by
either iterating a function or through composition of exist-
ing devices. We introduce operators for constructing devices
and composing them into larger, interconnected devices. All
ReWire operations are constructors for Dev, meaning that they
are functions producing Dev i o values for some i and o types.

a) Iteration: The most basic ReWire constructor, iter,
iterates a pure function of type i -> o, producing an output
corresponding to the input at each clock cycle. The Haskell
definition of iter is as follows:

iter :: (i -> o) -> o -> Dev i o
iter f o = do i <- signal o

iter f (f i)

Fig. 2(a) illustrates the device created with the iter oper-
ation. The type declaration above means that iter is a device
constructor that takes a function from inputs i to outputs o

and an initial output value and constructs a corresponding
device. The device (iter f o) will, at the first clock cycle,
return output o and, in the next clock cycle after consuming an
input i, will produce a new output, (f i). This pattern repeats
recursively ad infinitum. The (signal o) operator outputs its
argument o and returns the next input. The definition of the
(iter f o) constructor above may be read as (1) output o (i.e.,



signal o), (2) receive the next input (i.e., do i<− signal o),
and then (3) repeat the pattern with new “initial” output (f i).

Listings 1 and 8 use another iteration primitive, iterS,
which behaves similarly to iter.

b) Parallelism: Parallelism is expressed with the device
constructor, 〈&〉, that composes two existing devices, d1 and
d2, into a single device, d1 〈&〉 d2, in which both devices
operate in parallel and in isolation from one another. N.b., we
are assuming, here and elsewhere, that both arguments d1 and
d2 are non-terminating. The type declaration of 〈&〉 is:

〈&〉 :: Dev i1 o1 ->
Dev i2 o2 ->

Dev (i1,i2) (o1,o2)

Fig. 2(b) presents a pictorial version of d1 〈&〉 d2. The
type signature of 〈&〉 means that the input and output types
of constructed device d1 〈&〉 d2 are pairs of the inputs and
outputs of d1 and d2, resp. Both subdevices d1 and d2
are isolated from one another in d1 〈&〉 d2—i.e., there is
no intercommunication or shared state between them. Such
interaction may be added explicitly using the refold operator
described below. The parallelism operator may be generalized
to arbitrary numbers of devices (i.e., beyond two), but, for lack
of space, we only present the simplest case.

c) Interdevice Communication & Feedback: Making in-
terconnections between devices occurs using another device
level operator, refold. The refold operator can be used
to connect sub-devices within its third argument and to hide
internal connections as well. The use of refold is illustrated
in Fig. 2(c). Given a device d :: Dev i1 o1, and two pure
functions, out :: o1 -> o2 and conn :: (o1 -> i2 -> i1),
refold out conn d is a new device with the following be-
havior. Given an external input i′ and current value output o
by internal device d, the new input to d is conn o i′ and the
new external output is out o. The type of refold is:

refold :: (o1 -> o2) ->
(o1 -> i2 -> i1) ->
Dev i1 o1 ->
Dev i2 o2

Listing 4 uses a function, refoldT that behaves similarly to
refold.

III. RELATED WORK

One approach to the programmability issues with FP-
GAs is to provide languages and tools for high-level syn-
thesis. The most popular strategy adapts C-like languages:
LegUp [10], Vivado HLS [11], FPM [12], Streams-C [13] and
ROCCC [14]. Such tools confront the challenges of extracting
coarse-grain parallelism from C-like languages [15].

High-level synthesis (HLS) based on languages and libraries
for parallelism [16], [17] are common. Applying functional
languages to HLS is also quite common [3], [4], [18] be-
cause aspects of hardware’s notion of computation (notably
combinational circuitry) are inherently functional in nature.
The ReWire methodology combines aspects of both of these
camps, differing in that ReWire is a concurrent functional
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Fig. 3: Mealy Machine for Mutex. The “ ” stands for a
wildcard pattern.

language. ReWire exhibits all of the benefits of a functional
approach (e.g., expressiveness and concision) while allowing
the specification of fine-grain concurrent algorithms and mech-
anisms. ReWire was designed as a formal methods tool [6] and
the authors are motivated by the prospect of verifying security
properties of hardware artifacts.

Nikhil [4] argues that conventional software languages are
unsuitable for hardware design because of their adherence to
a von Neumann programming model. Hardware parallelism is
“massive, fine-grain, heterogeneous and reactive” and, as such,
is fundamentally inharmonious with conventional languages
like C, C++, etc. Nikhil then argues that Bluespec, a functional
language based on term-rewriting, does fit well with hard-
ware’s notion of computation. ReWire’s language design is
organized by a reactive resumption monad [5], a mathematical
structure that models hardware parallelism which may be
directly represented in Haskell.

Huffmire et al. [19] present a domain-specific language
for memory access policies, based in regular expressions,
and a compilation flow implementing it. Their DSL thus
encapsulates a class of memory controllers with configurable
security policies. How memory access policies are represented
here is different in that policies are encapsulated as functions
of type Policy expressed directly in ReWire. Given previous
work on regular expression compilation in ReWire [7], this
DSL approach could be easily adapted to ReWire.

IV. STATE MACHINE CONSTRUCTORS: MUTEX

We implement a non-blocking mutex for two hard-
ware threads as a device with three states: Unlocked,
LeftLocked, and RightLocked. The states are repre-
sented by the type State below in Listing 1. On any clock
cycle, the left and right threads may request the lock, release
the lock, or make no request; these requests are defined as the
Req type in Listing 1. The mutex will provide two responses
on each clock cycle, one for the left and right threads, resp.
The mutex may respond by granting the lock, acknowledging



Listing 1 Transition function corresponding to Fig. 3

data State = Unlocked | LeftLocked | RightLocked
data Req = ReqLock | Release | NullReq
data Rsp = LockGrant | Ack | NullRsp

delta :: State -> (Req,Req) -> (State,(Rsp,Rsp))
delta Unlocked (ReqLock,_)

= (LeftLocked, (LockGrant,NullRsp))
delta Unlocked (_,ReqLock)

= (RightLocked, (NullRsp,LockGrant))
delta Unlocked (_,_)

= (Unlocked, (NullRsp,NullRsp))
delta LeftLocked (Release,_)

= (Unlocked, (Ack,NullRsp))
delta LeftLocked (_,_)

= (LeftLocked, (LockGrant,NullRsp))
delta RightLocked (_,Release)

= (Unlocked, (NullRsp,Ack))
delta RightLocked (_,_)

= (RightLocked, (NullRsp,LockGrant))

mutex :: Dev (Req, Req) (Rsp, Rsp)
mutex = iterS delta (Unlocked,(NullRsp,NullRsp))

a release, or with no response; these responses are encoded
by the Rsp type in Listing 1.

The Mealy machine for the mutex is presented in Fig. 3.
The transition function for this machine appears as the delta

function in Listing 1. Note that this mutex is left-biased
because of the top-to-bottom order in which pattern-matching
proceeds in ReWire/Haskell. For example, in UnLocked, if
both left and right request the lock in the same cycle (i.e.,
(ReqLock,ReqLock)), the first clause (line 2 above) will
match always because it occurs above the second clause (line
4 above). This biasing is not expressed directly in Fig. 3. The
ReWire code for this device is presented in its entirety in
Listing 1.

V. DEVICES IN PARALLEL: TRIPLE MODULAR
REDUNDANCY

Electronic components can suffer from single event upsets
(SEUs) or non-destructive, “soft errors” that change the state
of a circuit to an erroneous one. One approach to mitigating
the risk of error propagation in mission-critical devices is
through redundancy. Redundancy regimes have been studied
extensively for decades and one of the most common regimes,
the Triple Modular Redundancy (TMR) regime [20]. In TMR
regimes, the core logic is replicated typically three times and
executes over the same input, yielding the same output in ideal
conditions. The output of each redundant device is then given
to voting logic. In the event of an SEU corrupting one of
the redundant devices, the other two devices will yield correct
output to carry forward to the voting process and the correct
result prevails.

Devices constructors in ReWire express TMR in a trans-
parent, straightforward and scalable way (Listing 2). The
voting constructor uses majority-wins vote on the output of
three different devices. The tmr constructor replicates a given
device three times using the voter constructor.

Listing 2 Simple TMR with ReWire

vote :: ((a,a),a) -> a
vote ((a1,a2),a3) | a1 == a2 = a1

| a1 == a3 = a1
| a2 == a3 = a2
| otherwise = a1

fan :: a -> i -> ((i,i),i)
fan _ i = ((i,i),i)

voter :: Dev i o -> Dev i o -> Dev i o -> Dev i o
voter d1 d2 d3 = refold vote fan (d1 <&> d2 <&> d3)

tmr :: Dev i o -> Dev i o
tmr dev = voter dev dev dev

Reuse and Extensibility: The simple TMR regime described
by Listing 2 has a flaw: the voting logic is not redundant. If
an SEU were to affect the voting logic, then the correct results
of the devices would be for naught!

Listing 3 modifies the previous construction to replicate
the voting logic. The ftmr constructor replicates a device
three times and routes unique inputs to each device. The
output is computed by three different redundant voting devices
(pure logic, so this is indicated by the application of the pure
function vote) in voteRed. The ftmr device constructor
changes the input and output types because logic to “merge”
the outputs would create a single point of failure.

VI. DEVICE SYNCHRONIZATION: BARRIERS

A common synchronization construct in hardware and soft-
ware is the barrier. Barriers act as a synchronization point
between concurrent threads. Given a collection of threads
synchronized to a single barrier, a single thread must pause
execution once it reaches the barrier until all other threads
synchronized to the barrier reach the barrier. Once all of the
threads in the barrier have reached the barrier, all threads are
subsequently un-paused and concurrent execution can resume
in the same manner as before: running until they reach the
barrier again, pausing, and continuing yet again.

ReWire can express barriers using refoldT. With
refoldT, we can develop barriers that can pause concur-
rently running hardware devices until all devices have reached
the barrier. The barrier device demonstrates a critical applica-

Listing 3 Functional TMR [20] with redundant voting logic.

voteRed :: ((a,a),a) -> ((a,a),a)
voteRed a = let v1 = vote a

v2 = vote a
v3 = vote a

in ((v1,v2),v3)

ftmr :: Dev i o -> Dev ((i,i),i) ((o,o),o)
ftmr dev = refold

voteRed
(\ _ i -> i)
(dev <&> dev <&> dev)



Listing 4 The makeStall device constructor

data Stall a = Stall | Continue a

makeStall :: Dev i o -> Dev (Stall i) o
makeStall dev = refoldT

(\ o -> o)
(\ _ -> \ mi -> mi)
dev

tion of refoldT—managed execution of ReWire devices—
and can be easily generalized to arbitrary nubers of devices.

Before defining the barrier constructor, we need a method by
which to make an arbitrary device a stalling device. Listing 4
defines the function makeStall which transforms a device in
this way using the refoldT primitive. The refoldT func-
tion stalls a device if the input of this function is Stall. The
makeStall function exposes this functionality by extending
the input type i (from a device ReT i o m a) to be Stall
i. Systems using a transformed device then have a method to
pause it, which is to supply Stall instead of Continue a.

The barrier constructor defined on lines 1-5 of Listing 5
takes two devices that yield output in the type of Busy o
and combines them into a single device that accepts a pair of
inputs, one for each device, and yields output in the type Busy
(o1,o2). The types o1 and o2 correspond to the outputs of
the internal devices. The barrier device yields output when
both devices have produced a value. The device parameters
to barrier are transformed to stalling devices by applying
makeStaller to them and then placing them in parallel
with the ReWire parallel combinator. The synchronization of
the devices is managed by the inp input-processing function
defined on lines 7-18. Once a device has produced output in
the form of Complete x, we feed that device Stall to
pause further execution from that device until the other device
has also produced output. Once both devices have produced

Listing 5 Barrier device constructor

data Busy a = Busy | Complete a

barrier :: Dev i1 (Busy o1) ->
Dev i2 (Busy o2) ->
Dev (i1,i2) (Busy (o1,o2))

barrier d1 d2 = refold
out
inp
(makeStall d1 <&> makeStall d2)

where
inp (Busy,Busy) (i1,i2)

= (Continue i1,Continue i2)
inp (Complete l,Busy) (i1,i2)

= (Stall, Continue i2)
inp (Busy,Complete r) (i1,i2)

= (Continue i1,Stall)
inp (Complete l,Complete r) (i1,i2)

= (Continue i1,Continue i2)
out (Busy,_) = Busy
out (_,Busy) = Busy
out (Complete a,Complete b) = Complete (a,b)

Listing 6 Memory protection policies as functional abstraction

- - P o l i c y t y p e :

type Policy = Req -> (Req,Mask)

- - G e n e r i c " a l l a c c e s s " p o l i c y

policy :: Policy
policy NoReq = (NoReq,NoRes)
policy (Read a) = (Read a,ReadRes)
policy (Write a v) = (Write a v, Written)

policyH :: Policy
policyH NoReq = (NoReq,NoRes)
policyH (Read a) = (Read a,ReadRes)
policyH (Write a v) | a >= 0x7FFFFFFF

= (Write a v, Written)
| otherwise
= (NoReq,NoRes)

policyL :: Policy
policyL NoReq = (NoReq,NoRes)
policyL (Read a) | a < 0x7FFFFFFF

= (Read a,ReadRes)
| otherwise
= (NoReq,NoRes)

policyL (Write a v) | addr < 0x7FFFFFFF
= (Write a v,Written)
| otherwise
= (NoReq,NoRes)

output, both are allowed to proceed executing once again. In
the same cycle devices are allowed to proceed, the barrier
yields both of their outputs.

VII. SYSTEM INTEGRATION FOR SOCS: MEMORY
PROTECTION VIA FUNCTIONAL ABSTRACTION

This section describes the construction of the policy-
parameterized memory controller (i.e., memCtrl in Fig 1).
We describe the types underlying it and then discourse fur-
ther on representing memory access policies as functional
abstractions. The memory controller is itself composed of two
subdevices, the request and response masters, and these are
described in Sections VII-C and VII-D, resp. Section VII-E
describes the composition of the request and response masters
into the memory controller. The construction of the dual core
system using memCtrl is presented in Section VII-F.

Each Harvard-architecture processor receives a instruction
word (Instr`) and a signal from the memCtrl of type Rsp`
with the result of a previous access request. A processor
produces the address of the next instruction to load as well as
a memory access request each cycle (Next` and Req`, resp.).

The memory controller arbitrates processor requests to avoid
starvation and, importantly, to enforce a memory access policy.
The memory controller is parameterized over memory access
policies. A memory access policy is a function of type:

type Policy = Req -> (Req,Mask)

A policy p, applied to a request q, results in a pair (q′, m),
where q′ indicates the request that will ultimately be processed
by memory. If q is an invalid request (e.g., an access out
of bounds), then the resulting pair will be (NoReq, NoRes),
indicating that q is treated as a non-request that produces no
result. The Mask type indicates the sort of result returned.



reqMaster rspMaster 

Fig. 4: Layout Diagram of the Memory Controller. The ReWire
code for this controller is in Listings 8-10.

There is a subdevice of memCtrl—the “request master”
reqMaster_ in Listing 8—which takes the access policies
as functional parameters:

reqMaster_
:: Policy ->

Policy ->
Dev (Req,Req) (Req,(Mask,Mask))

Up to two requests are received in a cycle, are processed by
the policy functions and then scheduled. A single memory
request is sent to the memory module while response Masks
are sent to the response master device. Note that we assume
the memory will always respond to accesses in a single
clock cycle; this is consistent with the behavior of block
RAM resources on Xilinx FPGAs. The design could easily
be adapted to memories that have different timing behavior,
but we focus on this case for simplicity of presentation. The
reqMaster_ takes two access policies and creates a device
enforcing those policies—this is described in detail below in
Section VII-C. Parameterization supports rapid reconfiguration
of memory access policies and it does so as a consequence
of the choice of a functional HDL. To update the memory
access policy, one need only change the Policy functions
accordingly and recompile with the ReWire compiler.

The entirety of the ReWire code for memCtrl is presented
in this section, except in several small cases where noted. The
ReWire compiler and all of the ReWire code for the entire
dual core system is available upon request.

A. Types

The basic types underlying this design are presented in
Listing 7. ReWire contains built-in word types and, for this
case study, instructions (Instr) and addresses (Address)
are 32 bit words and data (Data) are 8 bit words. The type
Req encapsulates the requests that can be made of the bus-
master by the DLX processors: either no request (NoReq) or
a read or write. Responses by the bus-master are: either no
response (NoRsp); Success for successful writes; Retry
to indicate memory was busy; or ReadResult d returning
the successful result d of a read request.

Listing 7 Types for the Dual Core System

type Instr = Word32
type Address = Word32
type Data = Word8

data Req = NoReq | Read Address
| Write Address Data

data Rsp = NoRsp | Success | Retry
| ReadResult Data

data Mask = NoRes
| Written - - M e m o r y w r i t t e n

| Busy - - D e v i c e b u s y / r e a t t e m p t

| ReadRes - - R e s u l t o f R e a d

data Priority = C0 | C1

adv :: Priority -> Priority
adv p = case p of

C0 -> C1
C1 -> C0

B. Policies as Functional Abstractions

In Listing 6 we define memory access policies as two func-
tions. One policy is for the high security domain (policyH)
and the other is for the low security domain (policyL). The
high domain policy function restricts writes to the upper half
the addressable memory bank while the low policy restricts
reads and writes to the lower half. The policies are defined
as transformations on memory accesses given by processor
devices. A function yields a tuple of a memory access crossed
with a response Mask to be fed to the response master. If the
request is not allowed by the policy, it is treated as no request
and silently fails.

C. Request Master

The request master device is one of two subdevices that
comprise the memory segmenting device. A block diagram of
this device is illustrated in Fig. 4 (l.h.s.). This device handles
inbound memory requests from two processors. The requests
are checked by the policy functions and in the event of two
valid requests, a winning request is selected by the scheduler.
Response Masks are sent to the response master subdevice
which is detailed later.

The code for the request master device is listed in Listing 8.
The first three clauses of f handle cases where a single request
or no request is made and the scheduling mechanism is not
invoked. The final two clauses handle contention for the bus.
If the priority is C0, the high processor gets the bus, otherwise
the low processor wins. The priority is then advanced so the
loser will win in the next contention. In this specification,
if a winning processor makes an illegal request during a
contention, it will win the contention, but no read or mutation
will occur on the memory module.

D. Response Master

The response master is the second half of the memory
segmenting device. The block diagram for this subdevice
is illustrated in Fig. 4 (r.h.s.). When a memory request is



made to the memory module, we send response Masks to the
response device to indicate how the result from the memory
unit should be handled in the next clock cycle. Every clock
cycle, the response master reads the Masks and the data from
the memory unit (if necessary) and signals responses to each
processor accordingly.

The code for the response master device is given in List-
ing 9. The response master device computes the responses to
send to both processors based on the output from the memory
module unit and the requests Masks in a given cycle. The
device operates on an input tuple that includes data (typed
Data) from the memory module and a pair of response Masks
(typed (Mask,Mask)) given by the input type of the device.
The device outputs a pair of Rsp responses to be fed to
requesting processors. The function f scrutinizes a pair of
response Masks and acts on all valid pairs of them. Valid pairs
of Masks are ones such that there is one “acting” Mask (i.e. a
read or a write) paired with a non-request (NoRes) or “busy”
Mask (Busy) to imply that the device lost a contention and
should retry. The first nine clauses of f are valid pairs. The
last clause (i.e., “f _ = ...”) handles pathological cases
for which no response is sent to either processor.

E. Composing the Memory Controller

The memory controller, memCtrl, is the top level definition
of the memory protection device. It is given in Listing 10.
We compose it by placing reqMaster and rspMaster
in parallel with the <&> combinator and refolding over
the combined device with routing logic with the functions
inputSelect and outputSelect. We note that the input
and output types of the memCtrl device definition on lines
1 and 2 encapsulate the interconnections between the two
subdevices. That is, the response Masks are kept internal to
memCtrl and are not available for external interfacing in this
definition. The memory controller takes input in the form of
(Data,(Req,Req)). The Data component arrives from
an external memory module and is paired with two memory
access requests. It produces a single memory access request to
an external memory module as well as responses to the pro-
cessors; i.e., it produces a tuple of type (Req,(Rsp,Rsp)).

Listing 8 The request master device

reqMaster = reqMaster_ policyH policyL
reqMaster_ :: Policy ->

Policy ->
Dev (Req,Req) (Req,(Mask,Mask))

reqMaster_ polH polL
= iterS f (C0,(NoReq,(NoRes,NoRes)))

where
f p (NoReq,NoReq) = (p,(NoReq,(NoRes,NoRes)))
f p (req,NoReq) = (p,(acc,(rsp,NoRes)))

where (acc,rsp) = polH req
f p (NoReq,req) = (p,(acc,(NoRes,rsp)))

where (acc,rsp) = polL req
f C0 (high,low) = (C1,(acc,(rsp,Busy)))

where (acc,rsp) = polH high
f C1 (high,low) = (C0,(acc,(Busy,rsp)))

where (acc,rsp) = polL low

Listing 9 The response master device

rspMaster :: Dev (Data,(Mask,Mask)) (Rsp,Rsp)
rspMaster = iter f (NoRsp,NoRsp)

where
f :: (Data,(Mask,Mask)) -> (Rsp,Rsp)
f (dta,(NoRes,NoRes)) = (NoRsp,NoRsp)
f (dta,(ReadRes,NoRes)) = (ReadResult dta,NoRsp)
f (dta,(ReadRes,Busy)) = (ReadResult dta,Retry)
f (dta,(NoRes,ReadRes)) = (NoRsp,ReadResult dta)
f (dta,(Busy,ReadRes)) = (Retry,ReadResult dta)
f (dta,(Written,NoRes)) = (Success,NoRsp)
f (dta,(Written,Busy)) = (Success,Retry)
f (dta,(NoRes,Written)) = (NoRsp,Success)
f (dta,(Busy,Written)) = (Retry,Success)
f _ = (NoRsp,NoRsp)

Listing 10 Memory Controller in ReWire

memCtrl :: Dev (Data,(Req,Req))
(Req,(Rsp,Rsp))

memCtrl = refold
outputSelect
inputSelect
(reqMaster <&> rspMaster)

outputSelect ::
((Req, (Mask, Mask)), (Rsp, Rsp)) ->
(Req,(Rsp,Rsp))

outputSelect ((req,_),rsp2) = (req,rsp2)

inputSelect ::
((Req, (Mask, Mask)), (Rsp, Rsp)) ->
(Data,(Req,Req)) ->
((Req, Req), (Data, (Mask, Mask)))

inputSelect ((_,masks),_) (dta, accs)
= (accs,(dta,masks))

The high security processor is represented by the leftmost
memory access response while the low security processor is
on the right.

F. Using the Memory Controller with Processors

The memory controller is a stand-alone device written in
ReWire that can interface with two processor devices and a
memory module. We illustrate a use case of memCtrl with an
implementation of DLX [8] in ReWire in Fig. 1. In Fig. 1, we
define a system composed of two identical processors proc,
the memCtrl device, and a memory module memory. This
system is composed from these subdevices using the parallel
combinator <&> and refold. N.b., we have not included
the definitions of the systemOut and systemIn function
arguments to refold as they are routine and not illuminating
for this presentation.

The memory module has an input type Req and an output
type Data; it takes a request on cycle n and returns the
ReadResult response on cycle n+1 if the request at cycle
n was a Read. The memory module makes no constraints or
restrictions on requests. These are arbitrated by the memory
controller. The specification is modular in such a way that
making changes with regards to memory units is trivial.

The functions systemIn and systemOut are the routing
functions used in the composition of the parallelized devices.



They operate on the raw input and output of the combined
devices. The function systemOut selects the outputs from
the combined devices that are meant for external interfac-
ing. The output type of the whole dual core system is
(NextH, NextL); these are the addresses of the next instructions
to be fetched. These fetched instructions are the input of the
system (InstrH, InstrL) listed in the type of the system
device on the fourth line of code in Fig. 1. The function
systemIn routes the external input and internal outputs
between the combined devices. The memory acccesses and
responses are routed between the processors, bus, and memory
unit, which is encapsulated by the refold on line 6 of Fig. 1.

This definition encapsulates the memory module used for
reading and writing, but leaves an interface for two separate
program memory modules for the high and low-level proces-
sors. At a given cycle two fetched instructions are provided
as inputs (InstrH, InstrL) and two addresses are yielded for
the next instruction fetch (NextH, NextL).

VIII. CONCLUSIONS AND FUTURE WORK

We demonstrate that a concurrent functional programming
paradigm, when properly designed, can encapsulate a wide va-
riety of popular concurrency templates useful at the hardware
level. Each of these templates exhibits the “software engineer-
ing virtues” including modularity, abstraction, and program
comprehensibility. Our approach has all the advantages of the
usual functional language methodology with respect to FPGA
programming and more: concurrency templates are extensible
and reusable and produced in a language environment that uses
strong, static typing to check designs and detect errors early.

Software is soft—i.e., modifiable, extensible, and reusable.
Pure functional languages like Haskell and ReWire, in par-
ticular, support softness via functional abstraction: design
concerns are encapsulated as individual functions and whole
designs are manifested through functional composition. Hard-
ware is hard—i.e., fixed, difficult to modify, and designed with
tools that do not support abstraction or reasoning. Hardness
makes it difficult, if not impossible, to inoculate hardware
against emerging threats or correct errors via patching. The
crux of Andrew’s argument [2] is that a paradigm shift for
reconfigurable hardware towards softness is necessary for the
broader adoption of reconfigurable technology.

The hypothesis of this work is that the software engineering
virtues are well supported for hardware by the concurrent
functional programming model of ReWire. Maintaining a
reconfigurable hardware system over time presumes the ability
to quickly modify, refactor, and reimplement designs. The case
study supports this hypothesis because, for example, the dual
core system and its subdevices are easily modified and refac-
tored. Furthermore, this refactorability is supported directly
by the ReWire language itself with functional abstraction and
static typing. ReWire provides language constructs for circuit
design that abstract away from implementation issues with
respect to timing, synchronization, and communication.

The authors are currently formalizing ReWire with the
Coq proof assistant [21] as both a means of automating

formal verification of ReWire security specifications and of
verifying the ReWire compiler. Hardware engineers frequently
view designs in graphical terms. We are planning to build a
graphical front end to ReWire to aid hardware engineers and
encourage adoption of the ReWire tools.
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