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Abstract—Building memory protection mechanisms into em-
bedded hardware is attractive because it has the potential to
neutralize a host of software-based attacks with relatively small
performance overhead. A hardware monitor, being at the lowest
level of the system stack, is more difficult to bypass than
a software monitor and hardware-based protections are also
potentially more fine-grained than is possible in software: an
individual instruction executing on a processor may entail multi-
ple memory accesses, all of which may be tracked in hardware.
Finally, hardware-based protection can be performed without the
necessity of altering application binaries. This article presents a
proof-of-concept codesign of a small embedded processor with
a hardware monitor protecting against ROP-style code reuse
attacks. While the case study is small, it indicates, we argue,
an approach to rapid-prototyping runtime monitors in hardware
that is quick, flexible, and extensible as well as being amenable
to formal verification.

Index Terms—Reconfigurable architectures, Hardware secu-
rity, High level synthesis, Model driven development

I. INTRODUCTION

Given their growing prevalence across a wide swath
of application domains (e.g., automotive, military, medical,
Internet-of-Things, etc.), embedded systems have increasingly
become targets for security exploitation. Embedded systems
are also lightweight systems—of necessity and by design—
and, therefore, lack the computing resources to support the
“industrial strength” security protections of larger computing
systems. Consequently, any approach to securing embedded
systems must also be lightweight, in terms of both resource
consumption (e.g., power consumption, FPGA fabric real
estate, etc.) and development cost.

Development costs for security mechanisms suited to the
diversity of embedded systems could be kept lower if devel-
opment tool flows supported “software engineering virtues” of
abstraction, modularity, extensibility, etc.: the more quickly a
particular protection mechanism can be adapted or extended
to meet the needs of a particular embedded system, the
less expensive it is. Tool flows with software engineering
virtues can reduce time-to-deployment for embedded hardware
generally and, in particular, for security mechanisms. However,
it is generally recognized that reconfigurable technology has a
“programmability” problem [1] and therein lies the challenge:
can we develop useful security mechanisms for embedded

hardware that are also suitably adaptable, reprogrammable,
and extensible?

This paper substantiates the affirmative answer to this
question, presenting a proof-of-concept codesign of a pro-
cessor with a hardware runtime monitor enforcing a stack
integrity mechanism that protects against code reuse attacks.
The approach we take relies heavily on the pure functional
languages—Haskell and ReWire—because of their indige-
nous “software engineering virtues” (abstraction, modularity,
expressiveness, etc.) and because of their susceptibility to
formal methods. ReWire is a functional hardware description
language (HDL) which is a subset of the Haskell functional
language—i.e., every ReWire program is a Haskell program,
but not vice versa.

This paper explores Haskell and ReWire as vehicles for the
model-driven codesign of a processor and memory protection
runtime monitor in hardware. Both the processor and monitor
are “roughed out” in Haskell first in Sections IV and V.
The advantage of this is significant: developing the hardware
prototypes first as functional programs in Haskell is relatively
quick, because the developer can leverage Haskell tools and
concepts (e.g., its strong type system, GHC interpreter, step-
wise development, etc.) as a means of quickly formulating,
testing, and debugging new features of the codesigned models.
Compilation to VHDL can then be accomplished by the
ReWire compiler, as long as the codesigned Haskell models
are within the ReWire subset.

It is the authors’ intention to make this article accessible
to readers with no experience in functional programming and,
that being said, we will endeavor to explain Haskell/ReWire
notation throughout. Some material has been included for
completeness’ sake, understanding the details of which are
not necessary to comprehending this work and we label that
material accordingly. All of the code discussed in this article
is available online.

Section II describes the protection mechanism in detail.
Section III presents a high-level overview of the case study to
make its significance apparent without delving into the details.
The processor UNSAFE is defined in ReWire in Section IV.
The codesign of the stack integrity monitor is described in
Section V. Related work is discussed in Section VI and future
work and conclusions are presented in Section VII.

https://www.haskell.org
http://mu-chaco.github.io/ReWire/
https://harrisonwl.github.io/assets/code/rsp18code.tar.gz
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Fig. 1: (a) With classic stack smashing, code is injected (e.g.,
via buffer overflow). (b) Code reuse attacks inject control-flow
rather than code. (c) Affixing a shadow bit to track integrity.

II. STACK INTEGRITY & THE UNSAFE INSTRUCTION SET

This section motivates the stack integrity mechanism for
which we develop a monitor as well as the instruction set,
UNSAFE, used in this case study. UNSAFE is named in
contradistinction to SAFE [2] to emphasize the absence of
protection mechanisms in UNSAFE’s semantics.

A. Stack Integrity Check

This section presents an overview of a memory protection
mechanism that is a countermeasure against “code reuse” style
attacks. The stack integrity mechanism presented here was
integrated into the “SAFE” formal semantics [2] for a simple
instruction set architecture, about which we will have more to
say later.

Fig. 1a illustrates a classic “stack smashing” code injection
attack. Code is injected into the host system’s stack or heap
at address L via, perhaps, a buffer-overflow exploit, and then
control is shifted to that payload in some manner (in Fig. 1a,
executing a “return from call” instruction would accomplish
this shift of control). A number of countermeasures against
code injection attacks were proposed and widely adopted,
including DEP (data execution prevention) a.k.a. W⊕X (write
xor execute). W⊕X insists that, for any address a, a program
may write data to a or jump to a, but not both, and thereby
effectively prevents code injection attacks.

Code reuse attacks inject control-flow instead of code as
a means of circumventing W⊕X-style protections. As illus-
trated in Fig. 1b, the attack contrives to configure the stack
for a call into a codebase presumed to exist on the target
host (here, the libc library). This tactic forms the basis of
“return-into-lib” exploits and their progeny [3].

A countermeasure against code reuse style attacks (Fig. 1c)
attaches an extra integrity bit, invisible from software, to
mark whether stack items are legitimate addresses to return
to. An address is legitimate if, for example, it is a return
address pushed onto the stack resulting from executing a
call instruction and, in which case, its integrity bit is set to
1. However, if the stack item were the result of a normal
calculation, it might be regarded as an illegitimate code pointer
and, as such, the underlying hardware should set its integrity
bit set to 0. Treating that stack item as a legitimate address
(e.g., “returning into it” as depicted in Fig. 1c) should be
recognized as an integrity fault by the underlying hardware
and handled accordingly. For example, the code snippet,
“push 0b1100; ret”, should always generate an integrity
fault because the data word stored by push will have the 0

data UNSAFE
= Push W4
| Call
| Ret
| Add
| Output
| Load
| Store
| Jump
| Bnz W4
| Nop

decode :: W8 -> UNSAFE
decode w = case w of

0b0001d3d2d1d0 -> Push 0bd3d2d1d0
0b0110 _ _ _ _ -> Call
0b0111 _ _ _ _ -> Ret
0b0000 _ _ _ _ -> Add
0b0010 _ _ _ _ -> Load
0b0011 _ _ _ _ -> Store
0b0100 _ _ _ _ -> Jump
0b0101d3d2d1d0 -> Bnz 0bd3d2d1d0
0b1000 _ _ _ _ -> Output
_ -> Nop

Fig. 2: Instruction Set Mnemonics as Haskell Datatype (l) and
Its Decode Function in Haskell (r). W4 and W8 are the built-in
ReWire types for 4 and 8 bit words.

integrity bit affixed (push not being a call instruction), and
so executing ret will set off the alarm. The extra integrity bit
affixed to each stack item is an example application of shadow
memory [4], [5].

B. Designing a Monitor for Stack Integrity

Fleshing out the monitor design for enforcing the aforemen-
tioned stack integrity protection mechanism requires making
some reasonable assumptions about the underlying architec-
ture and instruction set. We assume a Harvard architecture—
i.e., code and data are stored in distinct address spaces. The
choice of instruction set is important as well because the
memory access patterns of call and return instructions as well
as their encodings vary across instruction sets. Memory access
patterns are important for this particular protection mechanism
because the monitor must recognize when a word being:

1) stored in memory is a return address being pushed; and
2) read from memory will be used as a return address.

Recognizing these situations requires observing when a call
or return is being executed (which depends on the instruction
encodings and access to the instruction word arriving from
instruction memory) as well as determining which memory
access occurring during call or return execution involves the
writing or reading (resp.) of code addresses. The recognition
of these access patterns will be elaborated on further below in
Section V.

C. The UNSAFE Instruction Set

From the preceding discussion, it is clear that monitoring
for stack integrity necessarily depends on the instruction set
semantics. The opposite—that the instruction set semantics
depends on the monitor somehow—should not be the case. It is
a methodological goal that instruction set semantics (or, rather,
the processor implementing those semantics) be independent
of the monitoring activities in the sense that, in the absence
of an anomalous situation, the observable behavior of the
processor should be equivalent whether monitored or not. This
is what is achieved in this proof-of-concept study.

The UNSAFE instruction set used in this proof-of-concept
is precisely that of Azevedo de Amorim et al. [2]. UNSAFE
is a simple stack machine language, represented in Fig. 2 (l).
Fig. 2 (r) presents the instruction decode function.



ι(n) = Pushm

µ [σ] n
τ
→ µ [m,σ] (n+1)

ι(n) = Ret

µ [n′;σ] n
τ
→ µ [σ] n′

ι(n) = Call

µ [n′, a, σ] n
τ
→ µ [a, (n+1);σ] n′

Fig. 3: Simplified form of the SAFE Semantics with Securi-
ty/Integrity Checks (taken from Fig. 3 of Azevedo de Amorim
et al [2]).

Note on Notation: The first line of the decode declaration is
its type declaration, which indicates that decode is a function
that takes a W8 word as input and produces an UNSAFE instruc-
tion as output. The second line takes the function argument,
w and pattern matches against it with a case expression; each
subsequent line has the form “pattern -> value”. If the pattern
matches w, it returns value and pattern matching proceeds in
top to bottom order. The underscore “_” is a wildcard pattern.
We have taken some liberties here with the concrete syntax of
Haskell patterns for readability’s sake; in particular, there is
no built-in syntax for binary numbers.

D. UNSAFE & Its SAFE Semantics

The ReWire semantics of UNSAFE is presented in part in
Fig. 8 in Section IV and we defer its discussion until then.
The remainder of this section discusses the original SAFE
semantics [2] for UNSAFE instruction set. This section is not
strictly necessary to the understanding of this article, and,
although it does motivate the memory model presented in
Section IV-B, it assumes some familiarity with programming
language semantics.

There is an enormous body of work on the semantics of
imperative software languages that are organized around a
notion of state transformer in one form or another. That is,
an imperative action is defined as taking an input state and
transforming it into an output state and composed actions
“thread” the state through actions in succession. There are
denotational, relational, and operational formulations of this
idea that view as well as that are so well-known as to obviate
the need for further description.

The standard software view of state—a.k.a., “memory”
or “store”—is incomplete in the context of hardware where
memories are generally devices operating in parallel with
the processor. A processor reading and writing to and from
memory involves a potentially sequence of interactions in
parallel according to a hand-shaking protocol of some form
and such parallelism, bound up as it is intrinsically with a
notion of timing, simply does not fit within the usual notion
of state transformer.

Figure 3 presents the formal specification of several UN-
SAFE instructions as a small-step semantics; this is a simpli-
fied form of the published semantics with the infrastructure for
information flow control erased. At first glance, this semantics
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(a) Monitor Pattern

monitor ::
Device i o -> - - p

Device (mi,r) (a,mo) -> - - m

((o,mo) -> o’) -> - - c

(i’ -> (i,mi)) -> - - s

Device (i’,r) (o’,a)
monitor p m c s =

connect (p <&> m) out conn
where
(i,mi) = s i’
out (o,(a,mo)) = (c (o,mo),a)
conn _ (i’,reset) = (i,(mi,r))

(b) Function in Haskell/ReWire

Fig. 4: (a) Generic Hardware Monitor Pattern and (b) Its
Realization as a function in Haskell/ReWire.

is just what one would expect for a simple stack language. The
transition relation takes an instruction memory (ι), a memory
(µ), a stack ([σ]), and a program counter (n), and produces
an output (in these cases, τ ) and resulting memory, stack, and
program counter.

There is a notationally-subtle stack integrity mechanism
integrated into these rules. Notice that the Pushm instruction
puts m at the top of the stack with a “,” while the Call

instruction pushes the return address (n+1) on the stack with
a “;”. Furthermore, the Ret rule only applies to a “;” address
(i.e., one created by Call) and so The distinction between
“,” and “;” in the semantics serves to cause misbehaving
programs to “get stuck”; i.e., to reach a configuration in which
no rules apply to signify the breaking of policy by a program.
The semantics in Fig. 3 gives a crisp impression as to what
the stack integrity mechanism from earlier in this section is
intended to do, its model of memory is still that of software—
i.e., a state transformer. As such, it does not provide an path
forward to hardware implementation.

III. SEMANTICS-DIRECTED PROTOTYPING OF A
HARDWARE RUNTIME MONITOR

This section presents an high-level overview of the method-
ology developed in this paper with the purpose of providing the
reader with “roadmap” indicating where we are going before
delving deeply into the details. A generic monitor pattern is
described in Section III-A and then formulated as a Haskel-
l/ReWire function monitor in Section III-B. In Section III-C,
by applying monitor to the processor unsafe and monitor
stack integrity (both developed below in Sections IV and
V, resp.), a new processor safer is created in which stack
integrity is monitored. Finally, in Section III-D illustrates
how the operation of both the unmonitored and monitored
processors may be simulated in Haskell.

A. Generic Monitor Pattern

Fig. 4a presents a diagrammatic design of a class of hard-
ware monitors. The main elements in the design pattern are
a processor device p placed in parallel with monitor device
m. On each clock cycle, p consumes an input of type i and
produces an output of type o. In parallel on the same clock,



sequence = do
i1 <- operation1

⋮
i(n−1) <- operation(n−1)
operationn

(a) Haskell/ReWire “do” notation.

do
i <- signal o
continue

(b) ReWire’s signal operator.

Fig. 5: Notation: Chaining and Signaling in Haskell/ReWire.

monitor m consumes a pair of inputs (resp., of types mi and r)
and produces a pair of outputs (resp., of types mo and a). Types
r and a represent reset and alarm signals. Monitor m connects
to the processor p’s inputs and outputs via combinational
logic s and c (resp., for sampling and combine functions).
Appropriately typed p, m, s, and c can be composed into an m-
monitored version of p, and this entire composition itself forms
a device (indicated by the gray dotted line) with inputs, i′ and
r, and outputs, o′ and a. This composed device produces an
alarm a when the monitor m detects anomalous behavior based
on p’s inputs.

Note on Notation.: The double colon ∶∶ is read “has type”;
e.g., “x ∶∶ a” says that expression or variable x has type a.
ReWire has a built-in type constructor for devices, Device;
e.g., d ∶∶ Device i o signifies that d describes a clocked device
that, on each clock cycle, consumes an input and produces an
output of types i and o, resp.

B. Expressing the Monitor Pattern in Haskell/ReWire

The design pattern in Fig. 4a is generic in the sense that it
parameterizes over processor p, monitor m, and the sample and
combine functions, s and c. This monitor pattern can be ex-
pressed in Haskell/ReWire directly in Fig. 4b. by the monitor

function. The processor and monitor are placed together in
parallel with the ReWire parallelism operator, p <&> m, and
are then connected with the connect operator (called refold

previously [6]). The connection and output functions, conn and
out, are defined in terms of the sample and combine functions,
s and c, and passed to connect.

N.b., the significance of the code in Fig. 4b is that monitor
design patterns can be expressed directly as Haskell functions,
so that designs created by applying monitor are themselves
executable Haskell code, thereby enabling testing directly on
the source code. The reader need not understand this code in
detail.

C. Instantiating a Generic Monitor Pattern

Section IV and V describe the codesign of the unsafe

processor and stack integrity monitor. These are devices
with the following types:

unsafe :: Device (Port W8, Port W8)
(Port W8, Port W8, Port W8, Port W8)

stack_integrity :: Device (Port W8,Port Bit,Bit) (Bit,Bit)

These Port types characterize the types of the inputs and
outputs of unsafe and stack integrity, but their precise
meaning is not important at this point.

unsafe ::
Device
(Port W8, - - d a t a i n

Port W8) - - i n s t r

(Port W8, - - f e t c h
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Fig. 6: The unsafe & safer processors.

What is significant is that we can now create the design of
the the safer processor by function application:
safer = monitor unsafe stack_integrity combine sample

where
combine = ...
sample = ...

The safer processor is a stack integrity-monitored form of
unsafe and is portrayed in Fig. 6 (r). N.b., the data input and
output ports for safer now are 9 bits wide, the additional
bit accommodating the integrity bit. The safer processor
also includes a new reset input and alarm output. It is also
executable Haskell code from which synthesizable VHDL may
be produced via the ReWire compiler.

D. Testing unsafe and safer

Note on Notation: ReWire has built-in word types (e.g., W4,
W8, and W9 for 4, 8, and 9 bit words, resp.). It also has a built-in
Bit type and we also define a Port type constructor as well:
data Bit = C | S - - c l e a r and set , r e s p .

data Port a = Val a | DC | Cmp

A value of type Port W8, for example, will have the form:
Val w for some w ∶∶ W8, DC, or Cmp. Form Val w signifies that
w is available at the port, DC stands for “don’t care”, and Cmp

stands for complete signifying a completed write operation.
The RSP18 codebase for this paper includes two testing

functions for each processor in Haskell:
testunsafe :: [UNSAFE] -> Int -> [Port W8]
testsafer :: [UNSAFE] -> Int -> [(Port W8, Bit)]

Each test function creates code and data memory devices,
places them in parallel with the processor, and connects them
appropriately. A call, testunsafe p c, assembles the UNSAFE
code p, loads it into the code memory, and executes unsafe

for c cycles. What is returned is a c-length list recording all
of the outputs to unsafe’s output port (this port can be written
to by the Output instruction; see the RSP18 codebase for
details). testsafer is defined similarly, although its outputs
also include an alarm bit, which, if set, indicates that the
monitor in safer has detected a stack integrity fault.

Within safer, the monitor should not interfere with the
normal operation of the unsafe processor and we can test this
proposition directly on the respective processor designs in us-
ing the Glasgow Haskell Compiler’s interpreter, GHCi. Below,
we run an UNSAFE program, fibcode, which calculates and
Outputs each item of the fibonacci sequence, for 1000 cycles;
we filter out the valid outputs using Haskell’s filter function:

https://harrisonwl.github.io/assets/code/rsp18code.tar.gz
https://harrisonwl.github.io/assets/code/rsp18code.tar.gz


async_read a = do
i <- signal (DC,Val a,DC,DC)
wait_read a i

where
wait_read a (datain,_) =
case datain of

Val w -> return w
_ -> do

i <- signal (DC,Val a,DC,DC)
wait_read a i

async_write a w = do
i <- signal (DC,Val a,Val w,DC)
wait_write a w i

where
wait_write a w (datain,_) =
case datain of

Cmp -> return ()
_ -> do

i <- signal (DC,Val a,Val w,DC)
wait_write a w i

popM = do pushM w = do
sp <- getSP sp <- getSP
putSP (sp-1) let sp’ = sp+1
async_read sp putSP sp’

async_write sp’ w

Fig. 7: Memory Model: Read and Write Operations

GHCi> filter isVal (testunsafe fibcode 1000)
[Val 0b00000000,Val 0b00000001,Val 0b00000001,
Val 0b00000010,Val 0b00000011,Val 0b00000101,
Val 0b00001000]

GHCi> filter (isVal . fst) (testsafe fibcode 1000)
[(Val 0b00000000,0),(Val 0b00000001,0),
(Val 0b00000001,0),(Val 0b00000010,0),
(Val 0b00000011,0),(Val 0b00000101,0),
(Val 0b00001000,0)]

Here, GHCi is the interpreter prompt. Notice that both proces-
sors return the same sequence of numbers, although safer’s
outputs also include a 0 alarm signal, meaning that no stack
integrity faults occurred.

This code snippet push 0b1100; ret (call it badcode)
should set off the alarm in safe:

GHCi> testsafe badcode 1000
[(DC,0),(DC,0),(DC,0),(DC,0),(DC,0),(DC,0),
(DC,0),(DC,0),(DC,0),(DC,0),(DC,0),(DC,0),
(DC,0),(DC,1),...]

The first component of each of the outputs is DC (“don’t
care”) as badcode never executes an Output instruction, but the
second is 0 for the first thirteen cycles, but on the fourteenth
cycle, the alarm is set to 1. This is the cycle the middle of
executing ret when the illegitimate target label is returned
from the data memory.

IV. THE UNSAFE PROCESSOR

This section presents the design of the UNSAFE processor,
which implements the UNSAFE instruction set described
above in Section II-C. The UNSAFE processor is a ReWire
device, unsafe, declared in Fig. 6 (l), and it is portrayed
graphically in Fig. 6 (r).

Notes on Notation: Haskell/ReWire uses “do notation” to
chain together Device operations (Fig. 5a) and we will see
examples of what constitutes an “operation” below. Given
n operations, we can chain them together using do. First,

unsafe = do
pc <- getPC
iw <- async_fetch pc - - * f e t c h *

let instr = decode iw
exec instr
unsafe

exec Call = do
pc <- getPC
pc’ <- popM - - * c a l l 1 *

arg <- popM - - * c a l l 2 *

putPC pc’
pushM (pc + 1) - - * c a l l 3 *

pushM arg - - * c a l l 4 *

exec Ret = do
pc <- getPC
ra <- popM - - * ret *

putPC ra
⟨. . .other cases elided . . .⟩

(a)

start	

call1 

ret 

other 
cases 

fetch 

call3 

call2 

call4 

(b)

Fig. 8: (a) Fetch-Decode-Execute loop for UNSAFE and (b)
Memory Access Patterns for Call and Ret Instructions.

operation1 is executed, producing value i1, then operation2

is executed, producing value i2, and so on, until the final
operation, operationn , is reached. The value is produced by
operationn is the value returned by sequence.

The signal operation in ReWire is important, as it is used
by a Device to to receive input and produce output each clock
cycle. For example, the code snippet in Fig. 5b sets the output
port to o and waits to receive the new input i. Intuitively
speaking, the <- above indicates the dividing line between
clock cycles. The signalo occurs at the end of the current
clock cycle and the receipt of input i marks the beginning
of the next clock cycle in which continue may now process
i. There are other operations for manipulating registers (e.g.,
getPC and putPC for reading and writing the program counter
and the like) as well.

A. The UNSAFE Processor

The UNSAFE processor (Fig. 6) takes inputs,
(datain,instr) of type (Port W8,Port W8), in which
ports datain and instr are intended to be connected to
the data and instruction memories, resp. The processor
produces outputs, (fetch,read,write,extern), of type
(Port W8,Port W8,Port W8,Port W8). The output port fetch is
connects to instruction memory and may signal the address
of the next instruction to be fetched. The read and write

output ports connect to data memory. The port extern is for
external output.

B. Defining Memory Read, Fetch, and Write

Fig. 7 contains the ReWire code for the data memory
operations. The operation (async read a) signals a request to
read address a in data memory (i.e., (DC,Val a,DC,DC)) and
then waits for datain to return a Val w. During the wait loop, it
continues to signal the read request. Once the valid word w has
been received, it is returned. The (async write a w) operation
sets the output ports to signify a write of word w to address a
(i.e., (DC,Val a,Val w,DC)) and, then, it enters a wait loop in



stack_integrity ::
Device
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Fig. 9: Stack Integrity Monitor.

which it continues to signal the write request until a complete
(i.e., Cmp) is returned on datain. The async fetch operation
behaves almost identically to the async read operation; its
definition is included in the RSP18 codebase. Fig. 7 also
contains some ReWire “microcode” for unsafe for popping
and pushing to data memory. N.b., pushM is not the Push

instruction.
Fig. 8 contains the definition for the unsafe, which boils

down to a fetch-decode-execute loop. Fig. 8a also shows the
data memory access patterns for the Call and Ret instructions.
The state machine in Fig. 8b records these access patterns and
is used directly in the codesign of stack monitor below.

V. CODESIGNING THE INTEGRITY MONITOR

This section presents the codesign of the stack integrity
monitor for the unsafe processor, described in the previous
section. The monitor is represented in Fig. 9 by its type
(left) and as a diagram (right). The monitor inputs have
the type (Port W8,Port Bit,Bit), and, for a typical input
(iword,integ,reset),

● iword is the instruction port to be to be connected to
instruction memory. By inspecting iword, or its top 4 bits,
the monitor may ascertain whether a relevant instruction
(i.e., Call or Ret) is going to be executed;

● integ is the integrity bit port. If this is (Val b), then
b is the integrity bit of a word just received from data
memory;

● reset is the external reset bit.
The monitor outputs have the type (Bit,Bit), and, for a

typical output (alarm,ibit),
● alarm is the alarm bit, which, when set, signifies that

a stack integrity fault of the kind described above in
Section II has occurred;

● ibit is the shadow integrity bit, which should be set only
during the execution of a Call instruction and, within that
timespan, only during the memory write associated with
the pushing of the return label.

Fig. 10 contains the ReWire code for the integrity monitor.
Initially, the monitor signals (C,C). During its execution, it
periodically checks the reset bit with the routine check reset,
which will restart the monitor if the reset bit is set. If it receives
a valid instruction word which decodes to Call or Ret (i.e., one
of the top two branches in the case expression), it proceeds
to call or ret, resp.

The memory access pattern for a Call instruction is por-
trayed in Fig. 8b; it consists of two data memory reads (i.e.,

stack_integrity :: Device (Port W8,Port Bit,Bit) (Bit,Bit)
stack_integrity = do
(pi,_,r) <- signal (C,C)
check_reset r
case pi of
Val (0b0110 _ _ _ _) -> call - - C a l l

Val (0b0111 _ _ _ _) -> ret - - Ret

_ -> stack_integrity - - o t h e r

call = do
check_read C
check_read C
signal (C,S) - - set i b i t

check_write
check_write
stack_integrity

ret = do
check_read S
stack_integrity

check_reset reset =
case reset of
C -> return ()
S -> stack_integrity

Fig. 10: The Integrity Monitor

calls to async read from two successive popMs) followed by
two data memory writes (i.e., calls to async write from
two successive pushMs). The code for the call tracker in
Fig. 10 mirrors this pattern. Note that the ibit is set after the
second popM (i.e., (C,S) is signaled) as the return address (i.e.,
(pc + 1) in Fig. 8a) is about to be pushed. The call tracker
returns to stack integrity after the Call instruction has
been monitored. The routines for tracking individual memory
accesses, check read and check write, are included for the
sake of completeness in Fig. 11.

The Ret instruction makes a single memory read, corre-
sponding to the popM in its definition in Fig. 8a. The address
which is returned from data memory will have nine bits, eight
for the return address (ra in Fig. 8a) and one for the integrity
bit. If the integrity bit received during the execution of a Ret is
0, then integrity alarm (Fig. 11) will be entered; that system
can only leace that state if an external reset is set.

VI. RELATED WORK

The construction of a number of processors in ReWire with
reasonable performance characteristics (i.e., circuit size and
clock speed) has been presented in previous publications [7],
including the Xilinx PicoBlaze [8] and a representative subset
of the DLX instruction set [6]. Previous work has also de-
scribed the design and implementation of ReWire [7], its use
as a target for embedded DSLs [9], its support for equational
reasoning about reconfigurable hardware [7], and the expres-
siveness of its programming model. ReWire is intended as a
tool for producing high assurance hardware and the current
work enables the potential for formally verifying the security
and integrity properties of monitored systems.

There are a number of systems for configuring protection
policies for embedded hardware. µShield [10] is a mitigation
system for memory corruption attacks on embedded COTS
hardware. Huffmire et al. [11] present a domain-specific
language for memory access control policies, based in regular
expressions, and a compilation flow implementing it. Their
DSL thus encapsulates a class of memory controllers with
configurable security policies and, given previous work on

https://harrisonwl.github.io/assets/code/rsp18code.tar.gz


check_write = do
(pw,pi,r) <- signal (C,C)
check_reset r
wait4complete (pw,pi,r)
where
wait4complete (_,pi,r)
= do

check_reset r
case pi of
Cmp -> return ()
_ -> do

i <- signal
(C,C)

wait4complete i

check_read b = do
(pw,pi,r) <- signal (C,C)
check_reset r
wait4valid (pw,pi,r)

where
wait4valid (_,pi,r) = do
check_reset r
case (b,pi) of

- - r e t u r n if V a l i d

(C,Val _) -> return ()
- - r e t u r n if i n t e g .

bit set

(S,Val S) -> return ()
(S,Val C) ->

integrity_alarm
_ -> do

i <- signal (C,C)
wait4valid i

integrity_alarm = do
(_,_,r) <- signal (S,S)
check_reset r
integrity_alarm

Fig. 11: Memory Access Trackers

regular expression compilation in ReWire [9], ReWire might
form an implementation path for their DSL approach.

High-level synthesis (HLS) from functional languages [12],
[13] is a commonly proposed remedy for this “programma-
bility” problem [1] in reconfigurable technology. To the best
knowledge of the authors, the current approach is the first
application of HLS to the design and implementation of
hardware runtime monitors. The construction of hardware-
based monitors for security and integrity in embedded systems
is currently an active area of research.

VII. SUMMARY, CONCLUSIONS, AND FUTURE WORK

We took the formal specification of an instruction set “off
the shelf,” converted it into a ReWire processor (i.e.,unsafe)
while simultaneously using its memory access patterns to
develop a run-time monitor enforcing a stack integrity mecha-
nism (i.e., stack integrity). Using the monitor design pattern
from Fig. 4b, the stack integrity monitor can be composed
with the unsafe processor to form the safer processor (the
complete definition is available in the RSP18 codebase).
Developing and testing both processors was straightforward
as both may be run using Haskell. Both the unsafe and safer

processors may be synthesized with the ReWire compiler;
follow-on research will investigate the performance impact of
monitoring constructed according to our methodology.

All that being said, the work described herein is admittedly
preliminary. We have developed ReWire models of the RISCV
RV32I and Xilinx MicroBlaze instruction sets as a means
of evaluating our methodology at scale. There are two other
memory protection mechanisms from SAFE [2]—information
flow control and user/supervisor instruction modes—that, as
of this writing, we have not yet encoded as well as others
from the literature (e.g., CFI [14], hardware-assisted taint-
tracking [15], etc.) that we are beginning to experiment with.
It will be interesting to see how well they fit into the monitor
pattern expressed in Fig. 4 and what, if any, alterations or
extensions they will require.

Another question of interest is to what extent these ReWire
hardware monitors can be composed? There is a sense in
which safer = unsafe + stack integrity and, if the reader
will excuse the further abuse of notation, a natural question is
how easily can we compose further monitors in this additive
fashion, as in, for example, safer′ = unsafe + m1 + . . . + mn for
arbitrary monitors mi? Fig. 8a portrayed the fetch-decode-
execute loop of unsafe side-by-side with its memory access
patterns in Fig. 8b. The description of access patterns has
the flavor of a finite state automaton or, equivalently, a
regular expression. A natural next question, therefore, asks
if one can usefully generalize the work presented here as a
domain-specific language for hardware monitoring in which
the checking actions (e.g., check read and check write used
in Fig. 10) as some sort of primitives? Previous work on
regular expression compilation [9] would seem to provide a
useful starting point.
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