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Abstract—There is a conceptual divide between the ways
cryptographic algorithms are defined (i.e., informal imperative
pseudocode) and commodity hardware design languages (e.g.,
Verilog). How does one even begin to compare a pseudocode
to an HDL design that purports to implement it in hardware?
Bridging this divide requires substantial manual intervention
and, consequently, “shrinking the divide” can drastically reduce
the cost of high-assurance cryptographic hardware by reduc-
ing the cost of formal verification. We present a correct-by-
construction methodology for the functional hardware design
language, ReWire, in which a reference cryptographic algorithm
is transformed into a provably correct hardware design with
a program transformation called temporal staging. We illus-
trate this methodology with case studies including one for the
BLAKE2b cryptographic hash function. Because the reference
algorithm, the temporal staging transformation, and the resulting
implementation are all expressed in ReWire, formal verification
can proceed immediately via a published ReWire semantics.

Index Terms—Formal methods for hardware, Specification
models and methodologies for hardware, Rapid-design ap-
proaches for application-specific processors.

I. INTRODUCTION

Correct-by-construction software methodologies—i.e., con-
structing correct implementations from abstract specifications
by applying verifiable transformations—have been around for
many decades [1]–[5], but, to the best knowledge of the
authors, such techniques have never been applied to hardware
languages. Temporal staging is a novel correct-by-construction
(CbyC) methodology for cryptographic hardware developed
by the authors and introduced here. The contributions of this
article are: (1) we introduce the temporal staging methodology
and transformation; and (2) we illustrate temporal staging with
significant case studies including BLAKE2b. Temporal staging
was successfully applied to produce a verified cryptographic
component for the BLAKE2b hash function that is now
included in an FHE ASIC in production.

Figure 1 presents the temporal staging methodology. The
input is informal, imperative pseudocode defining a crypto-
graphic function, a typical example of which is presented in
Figure 2. Input pseudocode is formalized by transliterating
it into ReWire (i.e., the “Reference Algorithm” in Figure 1)
where it may be executed on test cases to gain confidence.

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA) program Data Protection in Virtual
Environments (DPRIVE).
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Fig. 1: High-level Overview of Temporal Staging Methodol-
ogy. The focus of this article is on phases within the dotted
line. Full explication of other phases (e.g., performance and
formal verification) will be left to a follow-on publication.

The staging transformations (described in Section III) are then
applied to obtain the “Staged Algorithm” in ReWire, that
can be (1) compiled with the ReWire compiler to produce a
performant implementation or (2) embedded into, and verified
with, a theorem prover.

The genesis of this research is a project in high-assurance
hardware design and implementation in which the authors
were part of a team building a chip supporting fully ho-
momorphic encryption (FHE) [6]. We were called upon to
develop a performant, correct hardware implementation of the
BLAKE2b cryptographic hash function. One approach would
have been to repeat the methodology we had used previously
on the project—i.e., let the hardware engineers produce Ver-
ilog for BLAKE2b and have the formal methods team verify
its correctness using ReWire solely for formal modeling [7].
A second approach creates and verifies the BLAKE2b design
in ReWire, and compiles the verified design to Verilog with
the ReWire compiler. The second approach was attractive
because it requires less time from both the hardware and for-
mal methods teams. The first approach modeled hand-written
Verilog produced by the hardware team with a meticulous,
time-consuming manual process. The second approach came
with risks, though, because the ReWire-produced BLAKE2b
implementation had to have satisfactory performance to be
used. The ReWire-produced implementation did, indeed, have
satisfactory performance and is now part of an ASIC currently
scheduled for production [6].

The remainder of this section introduces temporal staging.
Section II presents the ReWire programming model and, in
light of this model, Section III introduces temporal staging in
ReWire. Section IV presents the first case study illustrating
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3.  BLAKE2 Processing

3.1.  Mixing Function G

   The G primitive function mixes two input words, "x" and "y", into
   four words indexed by "a", "b", "c", and "d" in the working vector
   v[0..15].  The full modified vector is returned.  The rotation
   constants (R1, R2, R3, R4) are given in Section 2.1.

       FUNCTION G( v[0..15], a, b, c, d, x, y )
       |
       |   v[a] := (v[a] + v[b] + x) mod 2**w
       |   v[d] := (v[d] ^ v[a]) >>> R1
       |   v[c] := (v[c] + v[d])     mod 2**w
       |   v[b] := (v[b] ^ v[c]) >>> R2
       |   v[a] := (v[a] + v[b] + y) mod 2**w
       |   v[d] := (v[d] ^ v[a]) >>> R3
       |   v[c] := (v[c] + v[d])     mod 2**w
       |   v[b] := (v[b] ^ v[c]) >>> R4
       |
       |   RETURN v[0..15]
       |
       END FUNCTION.

Saarinen & Aumasson           Informational                     [Page 7]

Fig. 2: Informal Pseudocode: This example (BLAKE2b Func-
tion G) taken directly from Saarinen and Aumasson [8].

temporal staging of a simple carry-save adder. This first case
study is small enough to present in its entirety. Section V
overviews the BLAKE2b development using temporal staging.
This second case study is too large to present in its entirety
here due to page restrictions; however, sufficient detail is
presented to demonstrate that temporal staging scales up.
Section VI reviews related work. Section VII summarizes this
work and outlines future directions.

Temporal Staging for CbyC Cryptographic Hardware

Figure 3 illustrates the temporal staging methodology and
the program transformation it is based on. The starting point
for temporal staging is a cryptographic algorithm defined as
imperative pseudocode—this is how such algorithms are fre-
quently defined [8]–[10]. Figure 2 presents such an example—
the pseudocode for the “mixing” function G of BLAKE2b as
it appears in its official definition [8]. Given an imperative
pseudocode for a cryptographic algorithm, it is transliterated
into an executable reference algorithm in Haskell (Figure 3a)
written in terms of a state monad (i.e., Storage as described
below in Section II). (N.b., the reference algorithm in Figure 3a
is generic and not intended to represent the G function from
Figure 2.) The resulting reference algorithm is executable and
can be evaluated against test cases that are typically provided
in Haskell.

Figure 3b displays the results of the temporal staging trans-
formation to the reference algorithm. The precise definitions
of the staging functions, stagei and stage, are given below
in Section III, but, intuitively for now, they are constructors
for Mealy machines that create machine transitions from
imperative actions (c1 x), (c2 y), and (c3 z). The codomain
of staged reflects this Mealy construction. The reference
algorithm returns its value a; the staged algorithm places it
on the Mealy machine’s output port with signal (Val a).

Reference algorithms (Figure 3a) define the correctness
standard and conformance to this standard by the transformed
algorithm (Figure 3b) is what correctness verification entails.
Conformance here means that, given the arguments x, y,
and z on successive clock cycles (Figure 3c), then the (Val

a) is identical to the value returned by reference x y z.
Conformance is demonstrated in Coq using properties of
stage, etc., proved using ReWire’s mechanized semantics [7].

reference :: i → i → i → Storage s a
reference x y z = do c1 x

c2 y
a ← c3 z
return a

(a) Imperative Reference Algorithm performs c1, c2, and c3 in
sequence on inputs x, y, and z producing answer a.

data Ans a = DC | Val a -- don’t care/valid
staged :: i → Mealy i s (Ans o) i
staged x = do y ← stagei (c1 x)

z ← stagei (c2 y)
a ← stage (c3 z)
signal (Val a)

(b) Staged Algorithm in ReWire performs these same steps, but now
accepts inputs interactively with answer a signaled on output port.
Changes from reference algorithm are highlighted in red.

x/DC y/DC z/DC _/Val a

(c) Compiling staged with ReWire compiler creates Mealy ma-
chine fragment. Applying staging functions stage and stagei
schedule c1, c2, and c3 on successive clock cycles.

Fig. 3: Temporal Staging Transformations for Correct-by-
Construction Cryptographic Hardware.

II. DIGITAL DESIGN IN REWIRE

This section presents an overview of the ReWire high-level
synthesis language. ReWire (Figure 4a) is a domain-specific
language embedded within the Haskell functional language.
Because every ReWire program is a Haskell program, ReWire
programs may be evaluated just as any Haskell program using,
for example, the GHCi interpreter. The ReWire compiler
translates programs directly into synthesizable Verilog, and
ReWire has a formal semantics mechanized in the Coq and
Isabelle provers [7]. Of necessity, we assume basic familiarity
with functional programming and Haskell.

The Mealy machine (Figure 4b) is a standard mental model
of hardware for digital designers and it is also a motivat-
ing idea underlying the design of ReWire. Mealy machines
have input, storage, and output lines i, s, and o, resp. At
the beginning of any clock cycle, the combinational logic
“internal” computes the next values on the s and o lines,
which are latched at the end of the clock cycle. The ReWire
programming model views these lines as individual types, i,
s, and o. Type constructors representing Mealy machines in
ReWire are (Storage s) and (Mealy i s o) (Figure 4c).

The internal combinational logic and storage s are encap-
sulated by (Storage s) and its associated operations, the type
declarations of which are given in Figure 4c. In type (Storage

s a), the parameter s signifies the type of storage and the a

parameter is the value type. For example, a register file type
with three eight bit words could be represented as a triple,
(W 8,W 8,W 8), where W n is the built-in type of n-bit words
(for any n), so that (Storage (W 8,W 8,W 8) a) represents
a computation using those registers and returning a value of
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(a) ReWire is a Functional High Level Synthesis (FHLS) language
embedded in Haskell with a formalized semantics. ReWire’s com-
piler translates programs into synthesizable HDL.
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(b) The Mealy machine is a standard mental model of synchronous
hardware in digital design [11], [12].

type Storage s
runST :: Storage s a → s → (a , s)
return :: a → Storage s a
get :: Storage s s
put :: s → Storage s ()

type Mealy i s o
lift :: Storage s a → Mealy i s o a
signal :: o → Mealy i s o i

(c) ReWire Types & Operators for Constructing Mealy Machines.

Fig. 4: ReWire in a Nutshell

type a. Given term x of type (Storage s a) and a store st,
runST x st runs x with store st, returning a value and new
store, (a , st’). For a value a, return a expresses a trivial
computation that just returns a without updating the storage.
The get operation reads the current storage and, hence, returns
the current storage as its value without updating the storage;
for the above example, get would return current values of
the three registers. The put operation sets the storage to its
argument; for the above register file type, put (0x0,0x0,0x0)

zeroes out the storage.
Computations in Storage and Mealy are chained together

using Haskell’s do notation, examples of which are given
below. Mealy machines are constructed by combining lifted
Storage computations with input/output signals. (signal o)

completes a clock cycle, placing o on the output port.
Figure 5 presents a ReWire specification of a simple carry-

save adder, where the function purecsa (Figure 5a) is a
ReWire translation of the definition from the carry-save adder
Wikipedia entry. Function purecsa is instantiated for words of
width 8 (i.e., built-in ReWire type W 8); “lit” is a convenience
that constructs a bit-word from an integer. The symbols .&.,
.|., ˆ, and <<. are ReWire built-in operations representing
bitwise and, or, xor, and left shift, resp.

Figure 5b shows the input/output behavior as a Mealy
machine and Figure 5c displays one possible ReWire imple-
mentation of that machine. The constructors for the Ans data
type stand for “Don’t Care” and “Valid”. The csa device takes
inputs a, b, and c as inputs over three successive clock cycles,
each time putting DC on the output port to signify that no value

purecsa :: W 8 → W 8 → W 8 → (W 8 , W 8)
purecsa a b c =
let anb = a .&. b in
let anc = a .&. c in
let bnc = b .&. c in
let tmp1 = anb .|. anb .|. bnc <<. lit 1 in
let tmp2 = (a ˆ b) ˆ c
in

(tmp1 , tmp2)

(a) Carry-Save Addition function

start

a/DC

b/DC

_/Val(f a b c)

c/DC

(b) Synchronous Hardware as a Mealy Machine

data Ans a = DC | Val a
csa :: Mealy (W 8) (W 8 , W 8 , W 8) (Ans (W 8, W 8)) ()
csa = do a ← signal DC

b ← signal DC
c ← signal DC
_ ← signal (Val (purecsa a b c))
csa

(c) Simple Carry-Save Adder.

Fig. 5: Carry-Save Addition in ReWire (explained in text)

has yet been computed. Given all the inputs, (purecsa a b c)

is computed and placed on the output port while the input for
this cycle is ignored (e.g., bound to the wildcard pattern “_”).

Technical Aside: ReWire is a monadic language, meaning
that ReWire programs are written in terms of a particular
family of concurrency monads called reactive resumption
monads over state. No previous knowledge of these monads
nor of monadic semantics generally is required to understand
the results presented in this paper, as we have taken pains
to explain ReWire’s constructs using intuitive examples. For
readers interested in these technical underpinnings, please
consult Harrison et al. [7] (and, in particular, its appendix)
and the codebase [13]. Both Storage and Mealy are monads
that would be defined in Haskell as follows using monad
transformers StateT and ReacT:

type Storage s = StateT s Identity
type Mealy i s o = ReacT i o (Storage s)

III. TEMPORAL STAGING TRANSFORMATIONS

This section defines the temporal staging functions in
ReWire and outlines their properties. There are equational
theorems that precisely characterize the behavior of the staging
functions and one of them (Theorem 1 below) is discussed at
the end of this section. The discussion is necessarily high-level
and informal because these theorems are expressed in terms
of ReWire’s mechanized semantics [7].

Figure 6 presents the ReWire definitions of the staging
functions. Each function can be viewed as a Mealy machine
constructor, taking an action x of type (Storage s a) and
creating a Mealy machine transition. (stage x) is a transition
that computes a value v, signals DC on the output port, ignores
the next input, and returns the value v. (stagei x) is a
transition that performs x ignoring its computed value, signals

https://en.wikipedia.org/wiki/Carry-save_adder
https://hackage.haskell.org/package/monad-resumption


data Ans a = DC | Val a
stage :: Storage s a → Mealy i s (Ans o) a
stage x = do

v ← lift x
signal DC
return v

stagei :: Storage s a → Mealy i s (Ans o) i
stagei x = do

lift x
i ← signal DC
return i

stage_ :: Storage s a → Mealy i s (Ans o) ()
stage_ x = do

lift x
signal DC
return ()

Fig. 6: ReWire Definitions of Staging Functions.

DC on the output port, and returns the next input i. (stage_
x) is a transition that performs x ignoring its computed value,
signals DC on the output port ignoring the next input, and
returns the nil value ().

Each application of a staging function creates a distinct
Mealy machine transition. Given, for example, two compu-
tations x and y of type (Storage s ()) for type s, define one

and two as:
one = stage_ (do x two = do (stage_ x)

y) (stage_ y)

Although one and two are both of type Mealy i s o () for
some types i and o, they are distinct: one ̸= two. Intuitively,
one is a single Mealy transition consuming a single clock cy-
cle, while two are two transitions in sequence consuming two
clock cycles. Operationally, this gives designers coarse-grained
control over the “size” of transitions in the ReWire source and
we used this to tune the BLAKE2b staged algorithm.

Technical Aside: Although stage functions have the same
type as lift, they are not monad transformer liftings. The
lift function in ReWire is an example of monad transformer
lifting, meaning intuitively that it redefines a (Storage s a)

computation as a (Mealy i s o a) computation, and also that
it must obey the lifting laws [14]. Recall that do-notation is
syntactic sugar for Haskell’s bind operation: do { v ← x ; f

v } ≜ x >>= f, then the lifting laws are:

lift (returnS v) = returnM v

lift (x >>=S f) = (lift x) >>=M (lift ◦ f)

in which the monadic return and bind operations for Storage

and Mealy are distinguished with subsecripts S and M, resp.
This means that lifting x followed by f must be identical to
lifting x and following it by lifting f.

The ReWire formal semantics in Coq, J−K, is motivated by
the Mealy machine in Figure 4b in which, conceptually, the
operation of a Mealy machine can be viewed as an infinite
stream of “snapshots” of type (i , s , o). Given a ReWire
term e of type Mealy i s o a, an initial snapshot w0, and an
infinite stream of inputs is :: Stream i, then (J e K w0 is) is
a sequence of snapshots defining the operation of e. (We use ◁
to denote the cons operation for streams and sequences.) The
staging theorem characterizing stage is:

impcsa :: W 8 → W 8 → W 8 → Storage RegFile (W 8, W 8)
impcsa a b c = do

setReg RA a
setReg RB b
setReg RC c
do a ← readReg RA

b ← readReg RB
setReg A_and_B (a .&. b)

do a ← readReg RA
c ← readReg RC
setReg A_and_C (a .&. c)

do b ← readReg RB
c ← readReg RC
setReg B_and_C (b .&. c)

tmp1 ← do anb ← readReg A_and_B
anc ← readReg A_and_C
bnc ← readReg B_and_C
return (anb .|. anb .|. bnc <<. lit 1)

tmp2 ← do a ← readReg RA
b ← readReg RB
c ← readReg RC
return ((a ˆ b) ˆ c)

return (tmp1 , tmp2)

data RegFile = RegFile { ra , rb , rc
, a_and_b , a_and_c , b_and_c :: W 8 }

data Reg = RA | RB | RC | A_and_B | A_and_C | B_and_C

readReg :: Reg → Storage RegFile (W 8)
readReg RA = do RegFile ra = w ← get

return w
. . .

readReg B_and_C = do RegFile b_and_c = w ← get
return w

setReg :: Reg → W 8 → Storage RegFile ()
setReg r w = do

rf ← get
case r of

RA → put (rf ra = w )
. . .

B_and_C → put (rf b_and_c = w )

Fig. 7: Reference Algorithm: Carry-Save Adder. This refor-
mulates purecsa from Figure 5a in an imperative style in
which let bound variables are represented as registers. Some
intermediate values are stored in these registers.

Theorem 1 (Staging Theorem): Assuming that x has type
Storage s a, f has type a → Mealy i s o b, For all snap-
shots (i , s , o) and input streams (i′ ◁ is),

Jstage x >>=M fK (i, s, o) (i′ ◁ is)
= (i, s, o) ◁ (J f K a (i′, s′ , DC) is)

where
(a , s′) = runST J x K s

Theorem 1 shows how to unwind stage x starting from ini-
tial snapshot (i, s, o) with input stream i′ ◁ is. Computation
x is run in initial store s, producing value a and updated store
s′. Then, J f K a is unwound starting from the next snapshot,
(i′, s′, DC), that reflects the next input i′, updated store s′,
and the output signal DC. The staging theorems indicate how
to unwind the staging functions and, importantly, how the
temporal staging maintains the identical computed values.

IV. FIRST CASE STUDY: CARRY-SAVE ADDER

This section describes the first case study in applying
temporal staging to the construction of a carry-save adder
implementation. The construction follows the steps outlined
previously in Figure 3 of Section I. We first present the



a/DC

_/Val(tmp1,tmp2)

start

b/DC c/DC _/DC _/DC

_/DC
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(a) Mealy Machine for Pipelined Input CSA Device
pcsa :: Mealy (W 8) RegFile (Ans (W 8, W 8)) ()
pcsa = do
a ← signal DC
b ← stagei (setReg RA a)
c ← stagei (setReg RB b)
stage_ (setReg RC c)
stage_ (do a ← readReg RA

b ← readReg RB
setReg A_and_B (a .&. b) )

stage_ (do a ← readReg RA
c ← readReg RC
setReg A_and_C (a .&. c) )

stage_ (do b ← readReg RB
c ← readReg RC
setReg B_and_C (b .&. c) )

tmp1 ← stage (do anb ← readReg A_and_B
anc ← readReg A_and_C
bnc ← readReg B_and_C
return (anb .|. anb .|. bnc <<. lit 1) )

tmp2 ← stage (do a ← readReg RA
b ← readReg RB
c ← readReg RC
return ((a ˆ b) ˆ c) )

signal (Val (tmp1 , tmp2))
pcsa

start :: Mealy (W 8) RegFile (Ans (W 8, W 8)) ()
start = pcsa

(b) ReWire for Pipelined Carry-Save Adder

Fig. 8: Carry-Save Adder with Pipelined Input

reference algorithm, which is based on purecsa (Figure 5a) in
which its inputs and let-bound variables are treated as registers.
We then construct two example adders using temporal staging,
one with pipelined input and the other with asynchronous
input. The full correctness verification of the second example
can be found in the codebase [13].

a) Reference Algorithm for Carry-Save Adder: The im-
perative reference algorithm is presented in Figure 7. The
function impcsa reflects the structure of the purecsa function
(Figure 5a) although impcsa is typed in Storage RegFile. The
inputs (a, b, and c) are stored in corresponding registers (resp.,
RA, RB, and RC) that are included in RegFile as are registers
for some of the intermediate values let-bound in purecsa.
The register file for both CSA designs is defined in Figure 7.
There are six registers included in RegFile with corresponding
names defined in data type Reg. There are operations for
reading and writing individual registers—resp., readReg and
writeReg. These operations are defined in terms of Storage

primitives put and get.
b) Carry-Save Adder with Pipelined Input: The first

carry-save adder is defined in Figure 8 with its control behavior
expressed conventionally by the Mealy machine at the top of
the figure. During the first three clock cycles, it accepts inputs
a, b, and c and stores them in corresponding registers. For the
next seven cycles, it computes and stores intermediate values
while ignoring inputs. In the eleventh cycle, the computed

start

(A w)/DC

(B w)/DC

(C w)/DC

Nop/DC

_/Val(f a b c)

Go/DC _/DC

_/DC

_/DC_/DC

(a) Mealy Machine for Asynchronous Input CSA Device
data In w = A w | B w | C w | Nop | Go
acsa :: In (W 8) →

Mealy (In (W 8)) RegFile (Ans (W 8, W 8)) ()
acsa Nop = do i ← signal DC

acsa i
acsa (A a) = do i ← stagei (setReg RA a)

acsa i
acsa (B b) = do i ← stagei (setReg RB b)

acsa i
acsa (C c) = do i ← stagei (setReg RC c)

acsa i
acsa Go = do

stagei (do a ← readReg RA
b ← readReg RB
setReg A_and_B (a .&. b) )

stagei (do a ← readReg RA
c ← readReg RC
setReg A_and_C (a .&. c) )

stagei (do b ← readReg RB
c ← readReg RC
setReg B_and_C (b .&. c) )

tmp1 ← stage (do
anb ← readReg A_and_B
anc ← readReg A_and_C
bnc ← readReg B_and_C
return (anb .|. anb .|. bnc <<. lit 1) )

tmp2 ← stage (do a ← readReg RA
b ← readReg RB
c ← readReg RC
return ((a ˆ b) ˆ c) )

i ← signal (Val (tmp1 , tmp2))
acsa i

start :: Mealy (In (W 8)) RegFile (Ans (W 8, W 8)) ()
start = acsa Nop

(b) ReWire for Asynchronous Input CSA Device

Fig. 9: Designs with Asynchronous Inputs.

carry-save addition of the inputs is signaled to the output port.
N.b., pcsa performs the same computations as the reference
algorithm impcsa, but the computation is time-sliced by the
staging functions. The pcsa is a tail-recursive function, looping
ad infinitum just as the Mealy machine in the top of the figure.
ReWire designs must include a defined start to be compiled.

c) Carry-Save Adder with Asynchronous Input: A second
carry-save adder is presented in Figure 9. This design accepts
inputs asynchronously (and potentially out of order), saving
them to registers. The carry-save addition computation is then
triggered by the Go input. The control-flow for this design is
expressed by the Mealy machine in Figure 9a, and the full
ReWire design is in Figure 9b.

This style of asynchronous input is common in digital
design, and it is the input style used for the BLAKE2b design
described in the next section. The correctness verification in
Coq for this design can be found in the codebase [13].



data Reg =
V0 | V1 | V2 | · · · | V15 -- working vectors v[0..15]

| M0 | M1 | M2 | · · · | M15 -- message buffer m[0..15]
| H0 | H1 | H2 | · · · | H7 -- hash state h[0..7]

data RegFile = RegFile
{ v0 , v1 , v2 , · · · , v15
, m0 , m1 , m2 , · · · , m15
, h0 , h1 , h2 , · · · , h7 :: W 64 }

Fig. 10: RegFile for BLAKE2b Reference & Staged Speci-
fications. The readReg and writeReg operations are defined
analogously to Figure 7.

V. SECOND CASE STUDY: BLAKE2B

This section describes the second case study applying
temporal staging to the construction of a BLAKE2b hardware
implementation. As before, the construction followed the same
steps outlined in Figure 3 of Section I. Because BLAKE2b is a
much larger specification than the carry-save adder examples,
however, we can only present an overview of the construction
here. The full reference algorithm, staged algorithm, and
correctness verification for BLAKE2b can be found in the
codebase [13]. Importantly, while the BLAKE2b construction
is larger than the previous carry-save adder examples, it does
follow along precisely the same lines as before—i.e., temporal
staging worked at this larger scale.

Figures 2 and 12a present examples of functions from
which the BLAKE2b is composed. An executable reference
algorithm for BLAKE2b is created by transliterating these
pseudocodes and others into ReWire. Figures 12a and 12c
provide a representative example of this transliteration.

Figure 10 presents the definition of the RegFile for the
reference algorithm. BLAKE2b uses three vectors of 64-bit
words. These are the 16 working and message buffer vectors,
v and m, and the hash state vector containing eight words.
These are represented by the Reg data type whose contents
are represented by the RegFile data type. (Storage RegFile)

maintains the current register file and has operations to read
and write each register, readReg and setReg, that are defined
analogously to the previous section. An assignment operation
<== is defined that corresponds directly to := in Figure 12a.

The BLAKE2b reference algorithm is also just a Haskell
program, written in imperative style using Storage, and it is
useful to take advantage of this fact to test the reference algo-
rithm itself. Figure 11 presents an example of this conformance
testing. The documentation for BLAKE2b [8] contains sample
inputs with the correct outputs so that designers can perform
“sanity checks” on their implementations. Figure 11a presents
one of these examples taken directly from the BLAKE2b
documentation. The file Blake2b-reference.hs from the fig-
ure includes the reference algorithm and it is loaded in the
figure into GHCi, the Glasgow Haskell interpreter. There is
a wrapper function _BLAKE2b_512 that runs the reference on
the appropriate inputs and formats the resulting hash value.
The authors of the BLAKE2 documentation also provided a C
program, and we ran extensive tests that conformed to outputs
of this program.

(a) BLAKE2b document contains examples to check implementation
conformance. Screenshot from RFC7693 [8], Appendix A.
$ ghci Blake2b-reference.hs
GHCi, version 9.2.5: https://www.haskell.org/ghc/
[1 of 1] Compiling (Blake2b-reference.hs, interpreted )
ghci> _BLAKE2b_512 "abc"

BA 80 A5 3F 98 1C 4D 0D 6A 27 97 B6 9F 12 F6 E9
4C 21 2F 14 68 5A C4 B7 4B 12 BB 6F DB FF A2 D1
7D 87 C5 39 2A AB 79 2D C2 52 D5 DE 45 33 CC 95
18 D3 8A A8 DB F1 92 5A B9 23 86 ED D4 00 99 23

(b) Reference conformance checked with ghci Haskell interpreter.

Fig. 11: Reference Algorithms & Conformance Checking.

VI. RELATED WORK

Cryptol [15] is a domain-specific language for specifying
cryptographic algorithms. The purpose of Cryptol is to verify
properties of what we have termed “reference” algorithms
and the purpose of the present work (and previous work [7])
with ReWire is to produce high assurance hardware imple-
mentations of cryptographic algorithms. As such, ReWire and
Cryptol are neatly orthogonal: one could easily imagine, for
example, building a ReWire backend for Cryptol.

Earlier work by the second author [16] presented a case
study of rapid hardware design of the SHA-256 cryptographic
function. This work demonstrated how a reasonable design for
SHA-256 can be formulated quickly in ReWire. At the time
of that writing, the ReWire language and compiler were still
at an early stage of development. Formal verification was not
part of that effort.

Staging transformations for software languages have been
explored for many years; a manifestly incomplete list of such
work includes Scherlis [5] and Taha [17]. The idea behind
staging is to use program transformations or annotations
to distinguish the static and dynamic parts of a (software)
program. Temporal staging obtained its name from this body
of research, although it applies within a hardware context
via the FHLS language ReWire. Temporal staging time-slices
computations into discrete transitions rather than between
traditional software notion of static and dynamic.

High-level synthesis languages have generally been con-
ceived as a means of bringing traditional software virtues
to hardware design—principally the desired software virtues
where abstraction and modularity. FHLS can also act as a
vector to transfer other ideas from functional programming
and languages research into hardware design as well including
software-like formal methods. ReWire—an FHLS language
subset of Haskell—is a monadic language as well, and tem-
poral staging really works along monadic lines. The staging
functions defined in this article are similar (but importantly
distinct as noted) to the lifting functions associated with monad
transformers [14]. There are other FHLS languages [18]–[21]



FUNCTION F( h[0..7], m[0..15], t, f )
| // Initialize local
| // work vector v[0..15]
| ...
| v[12] := v[12] ˆ (t mod 2**w)
| v[13] := v[13] ˆ (t >> w)
| IF f = TRUE THEN
| | v[14] := v[14] ˆ 0xFF..FF
| END IF.
|
| // Cryptographic mixing
| ...
|
| FOR i = 0 TO 7 DO
| | h[i] := h[i] ˆ v[i] ˆ v[i + 8]
| END FOR.
|
| RETURN h[0..7]
|
END FUNCTION.

(a) BLAKE2b Compression Function

type M = Storage RegFile

_F :: W 128 → Bit → M ()
_F t f = do

init_local_work_vector
V12 <== V12 ˆ lowword t
V13 <== V13 ˆ highword t
if f then

V14 <== V13 ˆ 0xF. . .F
else
return ()

cryptographic_mixing
xor_two_halves

(<==) :: Reg → M (W 64) → M ()
w <== e = do v ← e

setReg w v

(b) BLAKE2b Reference Algorithm.

type Dev = Mealy W64x4 RegFile (Ans W64x8)

_F :: W 128 → Bit → Dev ()
_F t f = do

stage (do init_local_work_vector
V12 <== V12 ˆ lowword t
V13 <== V13 ˆ highword t
if f then

V14 <== V13 ˆ 0xF. . .F
else
return () )

stage cryptographic_mixing
stage xor_two_halves

(c) BLAKE2b Staged Algorithm.

Fig. 12: CbyC BLAKE2b Case Study. (a) BLAKE2 Compression Function F (page 8, [8]) abbreviated with ellipses. (b)
Reference algorithm for F is composed from functions like these. (c) After temporal staging of the reference algorithm.

that may be able to incorporate temporal staging in some form.

VII. SUMMARY, CONCLUSIONS AND FUTURE WORK

Temporal staging follows a traditional approach to CbyC
software development [1], [3] in which a given reference algo-
rithm is transformed into an implementation via “semantics-
preserving” program transformations. Reframing these ideas
within a hardware context is, to the authors’ best knowledge,
completely novel. Temporal staging transformations are simply
ordinary function applications of the stage functions (Fig-
ure 6), and these stage functions are themselves just ReWire
functions. The stage functions slice the reference algorithm
temporally, partitioning the reference algorithm into single
Mealy machine transitions that preserve the calculated values
as indicated in Section III. Because the reference algorithm,
the temporal staging transformations, and the resulting imple-
mentation are all expressed in ReWire, formal verification can
proceed immediately via a previously published formalized
ReWire semantics in Coq [7]—i.e., temporal staging can
“shrink the conceptual divide” between reference algorithm
and hardware implementation.

This article has focused on the temporal staging program
transformation while providing some details about correctness
verification. The BLAKE2b implementation we produced had
sufficient performance to be included in an ASIC for FHE [6]
that is, as of this writing, awaiting production. As of this writ-
ing, we are applying temporal staging to other cryptographic
algorithms of equal or greater complexity to BLAKE2b.
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