
Dynamically Adaptable Software with
Metacomputations in a Staged Language

Bill Harrison and Tim Sheard

Oregon Graduate Institute of Science and Technology
Beaverton, Oregon 97006, USA

wlh@cse.ogi.edu,sheard@cse.ogi.edu,
WWW home page: http://www.cse.ogi.edu/~{wlh,sheard}

Abstract

Profile-driven compiler optimizations take advantage of information gathered at
runtime to re-compile programs into more efficient code. Such optimizations ap-
pear to be more easily incorporated within a semantics-directed compiler struc-
ture than within traditional compiler structure. We present a case study in which
a metacomputation-based reference compiler for a small imperative language
converts easily into a compiler which performs a particular profile-driven opti-
mization: local register allocation. Our reference compiler is implemented in the
staged, functional language MetaML and takes full advantage of the synergy be-
tween metacomputation-style language definitions and the staging constructs of
MetaML. We believe that the approach to implementing profile-driven optimiza-
tions presented here suggests a useful, formal model for dynamically adaptable
software.

1 Introduction

Dynamically adaptable software—software which can reconfigure itself at run-
time in response to changes in the environment—is the focus of much current
interest [2, 13, 18]. A classic example is the Synthesis Kernel [19] which dynam-
ically specializes operating system kernel code to take advantage of runtime
information. Staged programming [24] provides high-level abstractions for mod-
eling such behavior. In this paper, we consider a particular kind of dynamically
adaptable software, namely programming language compilers with profile-driven
dynamic recompilation. The idea is to use staged programming to build a com-
piler for a language where the compiled code may periodically re-compile itself
to take advantage of runtime information. A compiler constructed using staged
programming does not have to rely on ad hoc techniques for specifying such
optimizations.

Profile-driven compiler optimizations use information about a program’s run-
time behavior gathered during test executions to re-compile the program into
more efficient code. An example of a profile-driven optimization is local register
allocation [15, 1]. The idea behind this optimization is that, if the memory loca-
tion bound to a program variable x is accessed sufficiently often during testing

runs of the program, then it may improve the runtime performance of the pro-
gram to recompile it with x stored in a register because access time for x would
be reduced. This “usage count” heuristic may also be used to guide the inlining
of procedures.

This paper makes two contributions. (1) We present a case study which sug-
gests that profile-driven optimizations can be remarkably straightforward to im-
plement in a semantics-directed compilation scheme based on metacomputations
[7, 6]. We will demonstrate that the metacomputation structure makes it possible
to achieve interoperability between static computation (e.g., program compila-
tion) and dynamic computation (e.g., program execution), and we exploit this
ability to implement a compiler which performs local register allocation. (2) We
believe that the use of a staged language to construct code that reconfigures it-
self in response to dynamic stimuli illustrates an instance of a general model for
constructing dynamically adaptable software in a concise and high level manner.

1.1 Compilation as Staged Computation

The usual semantics-directed paradigm is to write an interpreter and stage it,
thereby producing a compiler. Typically, one may use a partial evaluator [11, 3]
or a staged language [23, 21] to accomplish this. A compiler based on metacom-
putations and staging [7, 6] factors the language specification into separate static
and dynamic parts, where each of these parts is represented as a distinct monad.
For a language L, the compiler typically has type (L->(Value D)S) where mon-
ads S and D represent the static and dynamic parts of L. We use ML-style postfix
type constructor application (e.g., “Value D” instead of “D Value”). The meta-
computation (S ◦ D) is a S-computation which produces a D-computation, and
although it is defined in terms of monads, it is generally not a monad itself.

A logical next step is to express metacomputation-style compilers within
a staged functional language like MetaML. The effect of staging is visible in
the type of the compiler, which is now (L->(<Value D> S)). Here the brackets
(< ... >) indicate the MetaML code type constructor. Code values are first-class
in MetaML and may be inspected as any other program data. An immediate
advantage of using MetaML in this endeavor is that object code produced by
the metacomputation-based compiler (i.e., code values of type <Value D>) are
both observable as data and executable as MetaML programs.

When one applies a staged interpreter to a source program, a code valued
object program is obtained which is a compiled version of the source program.
That object program expresses instructions of an abstract machine, that is closer
to the hardware than the source language. The dynamic monad plays an impor-
tant role by encapsulating the abstract machine of the object code [21, 6, 14],
and cleanly separating dynamic computation from static computation.

Although the guiding principle of previous work [7, 6] was to separate static
from dynamic explicitly, we intentionally mix static with dynamic in one monad
M = S+D1 and use the MetaML code annotation <...> to distinguish static from

1 Please pardon our abuse of language. The monads discussed here are constructed
from monad transformers [14] and thus the additive notation is appropriate.

dynamic. Doing so allows us to compile using S features, execute using D features,
and then re-compile, etc., all within the single monad M, and this interoperability
between compilation and execution is essential to the current undertaking.

Because the static monad and the dynamic monad are the same, a very
flexible approach to compilation is made possible. Dynamic computations can
be performed at compile time (when information is available), and the dynamic
computation can re-compile sub-components when needed. The use of a staged
language makes the expression of such programs concise, high-level and natural.

When the abstract machine is able to perform staging, an object program
can take advantage of this ability to adapt to runtime information. The following
illustrates this matter concretely:

interpret : Program -> input -> Value M

compile : Program -> <input -> Value M> M

adaptcompile : Program -> training -> <input -> Value M’> M’

where M’ contains profiling information along with features from M. The func-
tion interpret is a monadic interpreter for the Program language, which when
staged using metacomputation-style staging, produces compile. Enriching the
monad M to M’ yields a setting in which adaptable compilation becomes possible.
Here, training is a set of training data to be used as an input. The compiled
program is run on the training data collecting profile information, and is then
recompiled to take advantage of the information learned in the training run.
Using metacomputation and staging, this is easy to express, and can be added
as a small delta to the program compile. It is the thesis of this paper that this
technique can describe a wide variety of dynamically adaptable software.

2 Related Work

Traditionally constructed compilers [1, 15] have one key virtue: they can produce
very high-quality target code through sophisticated program analysis techniques
and aggressive code optimization. But their complicated structure makes them
infamously difficult to prove correct. In contrast, semantics-based approaches
to compilation [4, 7, 12, 28] are more amenable to formal proofs of correctness,
but they fall short by comparison in the area of code optimization. The com-
piler writer appears to be in a dilemma, having to choose between performance
(traditional compilers) and formal correctness (semantics-directed approaches).
One purpose of this paper is to show that certain compiler optimizations may
be easier to incorporate within a semantics-directed compilation scheme than
within a traditional approach.

There is a synergy between the metacomputation-based approach to compi-
lation and the staged language MetaML making it straightforward to implement
profile-driven compiler optimizations. We found MetaML to be ideal because:

– Metacomputation-based language specifications, being explicitly staged, can
be easily translated into the staged, functional language MetaML.

The first author developed metacomputation-based compilation as part of
his thesis [6]. Previously, implementing the approach involved first trans-
lating the metacomputation-based specification into standard ML to ensure
type correctness, and then translating it to Scheme by hand to apply par-
tial evaluation. This involved annotating the resulting Scheme code (again
by hand) with type information (and some black magic as well) to enable
type-directed partial evaluation [3]. The result of partial evaluation is an
observable Scheme program representing target code.
Given the same metacomputation-based specification written in standard
ML, in contrast, achieving compilation is merely a matter of supplying the
explicit staging annotations. This is orders of magnitude easier than the
above process.

– MetaML’s meta and object languages are the same making it easy to test
metacomputation-based compilers written in MetaML and to test the object
programs that they produce as well because both compiler and object code
are MetaML programs.

– Metacomputation-based compiler specifications in MetaML are type-checked,
thereby avoiding all sorts of latent errors.

– Profiling information may be added easily to metacomputation-based com-
piler specifications because metacomputations are structured by monad trans-
formers [14].

Our framework for dynamically adaptable software may be viewed as an al-
ternative to the “architectural composition” problem, where rich “architectures”
are composed from modules or components. Such components need general inter-
faces which may be redundant or unnecessary in a larger composite architecture,
and removing unnecessary component code is critical to making the approach
practical for large systems. Architectural optimization usually consists of per-
forming cross-component inlining to remove these unused interface components.
The optimizer must treat the component code as data, observing their struc-
ture to determine which pieces to fuse. Treating “code as data” is integral to
staged programming, and so in a dynamically adaptable software system as we
have described, this “code as data” problem is handled at a much higher level
of abstraction.

The remainder of this paper describes our case study in dynamically adapt-
able software and discusses its relevance as a model for such software. Section 3
defines a metacomputation-based compiler for a small imperative language with
loops. Section 4 defines adaptcompile and discusses the minimal changes nec-
essary to add dynamic reconfigurability to our reference compiler. Section 5
presents an example compilation. Section 6 outlines the general approach to
adding a profile-driven optimization to a metacomputation-based compiler. Fi-
nally, Section 7 concludes with a discussion of how the techniques developed
in this paper apply to adaptable software in general. In Appendix A, we have
placed a short tutorial on the staging annotations and use of monads in MetaML.
Appendix B gives an overview of the abstract machine and the monads used in
the paper.

3 The Metacomputation-based Reference Compiler

*********** Source Language ************

datatype Src = IntLit of int | Negate of Src | Add of Src*Src

| Leq of Src*Src | ProgVar of Name | Assign of Name*Src

| Seq of Src*Src | WhileDo of Src*Src;

datatype Program = Program of (Name list)*Src;

*********** Static Operations **********

datatype Location = Loc of int | Reg; rdEnv : Env M

datatype Env = env of Name -> Location; rdAddr : Addr M

type Addr = int; inEnv : Env -> a M -> a M

type Label = int; inAddr : Addr -> a M -> a M

newlabel : Label M

***** Abstract Machine Operations *****

datatype Value = code of <Value M> | Z of int | Void;

push : int -> Value M branch : Label -> Label -> Value M

pop : Value M read,store : Addr -> Value M

ADD,LEQ,NEG : Value M pushReg,loadReg : Value M

jump : Label -> Value M newSeg,endlabel : Label->Value M->Value M

Fig. 1. Source, Static & Abstract Machine Operations for the Reference Compiler

Figure 1 presents the source language for our compiler. We have deliberately
kept this language quite simple, because we wish to keep our metacomputation-
based compiler as simple as possible. Src is a simple imperative language with
while loops. A program is represented as (Program (globals,body)), where
globals are the globally-defined integer program variables with command body

of type Src. body is either an assignment (Assign(x,e)), a loop (WhileDo(b,c)),
or a sequence of such statements (Seq(c1,c2)). Variables are defined only in
the declarations in the top-level Program phrase. Src has integer expressions
(IntLit i), (Negate e), and (Add(e1,e2)) representing integer constants,
negation, and addition, respectively. (ProgVar x) is the program variable x

when used as an expression. Src has only one boolean expression (Leq(e1,e2))

standing for (≤).

In this Section we present a staged metacomputation-based compiler for
Program. We use the combined monad approach discussed earlier. The monad
M has two sets of operations, a set for static operations and another for dy-
namic operations. The static operations encapsulate the information needed at
compile-time (e.g., mapping variable names to runtime locations), and the dy-
namic operations are the operations of the abstract machine.

The static operations of the monad M include mechanisms for manipulating
environments, keeping track of free addresses, and generating fresh labels. They

are given in the second part of Figure 1. The combinator rdEnv returns the cur-
rent environment and rdAddr returns the current free address. For environment
r, (inEnv r x) evaluates computation x in r. For address a, (inAddr a x)

evaluates computation x with the “next free” address set to a. The combinator
newlabel returns a fresh label.

The abstract machine targeted by our compiler is a simple stack machine
with one general purpose register Reg. This is typical of target machines found
in standard compiler textbooks [1, 15]. The key differences are that we give exe-
cutable definitions for the abstract machine operations as monadic functions in
MetaML, and we rely on MetaML’s staging annotations to produce inspectable
code. Our approach is similar to the way that type-directed partial evaluation
was used in previous work [4, 8, 7, 6]. The operations of the targeted abstract
machine are shown in the third part of Figure 1.

The MetaML definitions of these operations and of the monad M are given
in Appendix B. The instruction (push i) pushes i onto the runtime stack and
pop pops the runtime stack. The arithmetic instruction, ADD, pops the top two
elements off of the stack, adds them, and pushes the result back on. The boolean
test, LEQ, is defined similarly, although booleans are encoded as integer values
(see the definitions of encode/decode in Appendix B.2 for further details). The
jump (jump L) sends control to the code at label L, while (branch L1 L2)

pops the stack and sends control to label L1 (L2) if that value is true (false).
Memory operation (read a) pushes the contents of address a onto the stack,
while (store a) pops the top value from the stack and stores it in address
a. Instructions pushReg and loadReg are similar to read and store, except
that the source and target of the respective operation is the register Reg. Code
store operation (newSeg L pi) defines a new code segment at L. Note that
(newSeg L pi) does not execute pi, because pi is only executed if control is
sent to label L with a jump or a branch. A forward jump is an instruction (jump

L), where the label L occurs after the jump instruction. Following Reynolds [20],
we define a binding mechanism (endlabel L pi) defines a label L “at the end”
of the code pi. One would pretty-print (endlabel L pi) as “pi ; L:”. Forward
jumps (jump L) within (endlabel L pi) simply branch to the “end” of pi.

Figure 2 presents the first compiler for the source language corresponding
to the function compile from Section 1. compile is a MetaML function with
type (Program -> <int list -> Value M> M). Given a Program, it performs
a computation which produces a piece of code with type (int list -> Value

M). The (int list) corresponds to the input to the program, which are the
initial values for the global variables of the program.

Our reference compiler is similar to previous metacomputation-based com-
pilers [7, 6] with two differences. Firstly, MetaML staging annotations appear
explicitly in the definition of compile thereby eliminating the need for a par-
tial evaluator to generate code (because compile produces “residual” code values
<...> itself). The use of staging annotations in compile is evident in its type—
note that the range of compile is a MetaML code value. A second difference
between compile and previous metacomputation-based compilers [8, 7, 6] is that

(* ccsrc : Src -> <Value M> M *)

fun ccsrc e =

case e of

(IntLit i) => Return M <push (~(lift i))>

| (Negate e) => Do M { pi <- (ccsrc e) ; Return M <Do M { ~pi ; NEG }>}

| (Add (e1,e2)) => Do M { phi1 <- (ccsrc e1)

; phi2 <- (ccsrc e2)

; Return M <Do M { ~phi1 ; ~phi2 ; ADD }>}

| (Leq (e1,e2)) => Do M { phi1 <- (ccsrc e1)

; phi2 <- (ccsrc e2)

; Return M <Do M { ~phi1 ; ~phi2 ; LEQ }>}

| (Seq (c1,c2)) => Do M { phi1 <- ccsrc c1

; phi2 <- ccsrc c2

; Return M <Do M { ~phi1 ; ~phi2 }> }

| (WhileDo (b,c)) =>

Do M { Lk <- newlabel ; Lc <- newlabel ; Lb <- newlabel

; phi_b <- ccsrc b

; phi_c <- ccsrc c

; Return M

<endlabel ~(lift Lk)

(Do M { (newSeg ~(lift Lc)

(Do M { ~phi_c

; jump ~(lift Lb) }))

; (newSeg ~(lift Lb)

(Do M { ~phi_b

; branch ~(lift Lc) ~(lift Lk) }))

; jump ~(lift Lb) })> }

| (ProgVar n) => Do M { (env rho) <- rdEnv

; let val bnd_x = rho n

in case bnd_x of

Loc a => Return M <read ~(lift a)>

| Reg => Return M <pushReg> end}

| (Assign (x,e)) =>

Do M { phi_e <- (ccsrc e)

; env rho <- rdEnv

; let val bnd_x = (rho x)

in case bnd_x of

Loc a => Return M <Do M { ~phi_e ; store ~(lift a) }>

| Reg => Return M <Do M { ~phi_e ; loadReg}> end}

(* compile : Program -> <int list -> Value M> M *)

fun compile (Program (globals,main)) =

Do M { fcode <- AllocVars (zip globals (upto (length globals - 1)))

(ccsrc main)

; Return M <fn input => ~(fcode <input>)> };

Fig. 2. Compiler for Src and Program

compile is not explicitly derived from a denotational semantics for Program. We
believe that this will make compile easier to understand.

The MetaML function ccsrc is a monadic version of what are sometimes
called semantic translation schemas [1]. To see what is meant by this, consider
first how the integer literals and negation in Src would be typically compiled
into a stack language. Source expression (IntLit i) would be translated into
the operation (push i). Compiling (Negate e) would produce the stack code
“pi ; NEG”, where pi is the stack code translation of e and NEG is a command
which pops the top value off of the stack and pushes its negation back on. It is
assumed that executing pi results in the value for e being pushed on the stack.

Both of these translation schemas are easily made formal in MetaML. The
code for (IntLit i) is just <push (~(lift i))>2, and so (ccsrc (IntLit i)) is
just: (Return M <push (~(lift i))>). If (pi : <Value M>) is the code for the
expression e, then <~pi ; NEG> is the code for (Negate e). Note that we had to
splice pi into this code (i.e., use ~pi instead of pi) because it is a MetaML code
value. Now (ccsrc (Negate e)) can be simply defined as:

Do M { pi <- (ccsrc e) ; Return M <Do M { ~pi ; NEG }>}

The other arithmetic and boolean expressions are compiled in a similar fashion.

Before Profiling Transformation: x and y are stored on stack

<(fn a =>
Do M { push (nth (a,0))

; push (nth (a,1))
; endlabel 100

(Do M { newSeg 101
(Do M { read 0 ; push 1 ; ADD ; store 0

; read 0 ; store 1 ; jump 102 })
; newSeg 102 (Do M { read 0 ; push 3 ; LEQ ; branch 101 100 })
; jump 102

})
; pop
; pop })>

After Profiling Transformation: x is now stored in Reg

<(fn a =>
Do M’ { push (nth (a,0))

; loadReg
; push (nth (a,1))
; endlabel 103

(Do M’ { newSeg 104
(Do M’ { pushReg ; push 1 ; ADD ; loadReg

; pushReg ; store 0 ; jump 105 })
; newSeg 105 (Do M’ { pushReg ; push 3 ; LEQ ; branch 104 103 })
; jump 105

})
; pop })>

Fig. 3. Compiling (Program([x,y], while x<=3 { x:=x+1 ; y:=x }))

2 Here, the ~(lift i) merely inlines the stage-0 value i into the stage-1 value
<push...>.

Command sequencing (Seq (c1,c2)) is a straightforward formalization of the
translation:

(Seq(c1, c2)) 7→ “code for c1”;“code for c2”

(WhileDo (b,c)) is a formalization of the following translation schema:

(WhileDo(b, c)) 7→ For three new labels Lk, Lc, and Lb, emit:
Lc: “code for c” ; jump Lb

Lb: “code for b” ; branch Lc Lk

jump Lb

Lk:

The interesting cases for this compiler are the constructs involving use of
program variables, because these may be stored in either stack locations or the
register Reg. Specifically, these are (ProgVar x), (Assign(x,e)), and (Program

(globals,main)). (ccsrc (ProgVar x)) must emit code either reading the cur-
rent value of x. It checks whether x has been assigned a stack location a or
the register Reg, and emits appropriate instruction (read a) or loadReg, respec-
tively). Similarly, (ccsrc (Assign(x,e))) must determine where to store the top
of stack (i.e., where x is kept). Initially, we assume that all program variables are
stored on the stack, and ((compile (Program (globals,main))) input) uses the
function AllocVars to allocate stack locations for the global variables globals.
The helper function (var2loc x g) allocates a new address a, and then runs the
computation g in an extended environment in which x is bound to a:

(* var2loc : [’a]. string -> ’a M -> ’a M *)
fun var2loc x g = Do M { a <- rdAddr

; r <- rdEnv
; initProfile x a
; inAddr (a+1) (inEnv ((xEnv x (Loc a)) r) g) };

(* AllocVars : [’a]. (string * int) list -> (string * ’a) Maybe ->
<Value M> M -> <int list> -> <Value M> M *)

fun AllocVars vars phi =
case vars of

[] => Do M { body <- phi ; Return M (fn input => body) }
| (x,n)::xs =>

var2loc x
(Do M { fcode <- (AllocVars xs phi)

; (Return M (fn input =>
<Do M { push (nth(~input,~(lift n)))

; ~(fcode input)
; pop
}>))});

In a call (AllocVars vars phi), (vars : (Name*int)list) is a list of global
variables paired with an index into the input list of initial values, while (phi :

<Value M>M) is a code generator (i.e., an M-computation which produces code
of type <Value M>). For each (x,n) in vars, the code produced by phi (i.e.,
~(fcode input) above) is enclosed within instructions which allocate and deallo-
cate storage for x. Respectively, these instructions are a push of the n-th element
of the input list to allocate and a pop to deallocate. Within the code produced
by phi, x will be bound to the appropriate stack location.

A sample compilation is presented in the top half of Figure 3 (marked “Be-
fore”). In that figure, the accesses to x (which is bound to stack location 0) are
underlined.

3.1 Why Use MetaML <...> Instead of Concrete Syntax?

We could have defined an abstract syntax for the target stack language (e.g.,
datatype Target = Push of int...) and made compile a Target-valued compu-
tation. That is, compile could have been given type Src -> Target M and been
defined as compile (IntLit i) = Return M (Push i), etc. However, Target pro-
grams would not be immediately executable.

Because the target is an abstract machine parameterized by the monad M,
simple changes to this machine can be used to collect profile information. We can
extend the monad M to contain the material for both compiling Src programs,
executing target machine programs, and profiling. This lays the foundation for
dynamic adaptability.

4 Introducing Dynamic Profiling

What extensions are necessary to add dynamic profiling to the compiler in Fig-
ure 2? Having written compile in metacomputation-style, it is a simple matter
to construct adaptcompile. We would like to write the following function and be
done:

fun adaptcompile e training =

Do M { pi <- compile e ; (run pi) training ; compile e };

As this point, however, the second call to compile would return the same
code (modulo different Labels) as the first call (assuming ((run pi) training)

terminates). But remember, (compile e) is a monadic computation and can be
affected by any states encapsulated in the monad and we run the first com-
piled version on the training data with the purpose of changing these states. To
accomplish dynamic re-compilation, we must enrich the monad M to include a
profile state and alter the abstract machine (compile) to make (or respond to)
changes in the profile state.

We want to make minimal changes to compile to make adaptcompile work.
Amazingly enough, the only changes needed are changes to the monad and the
mechanism that compile uses to map variable names to locations. The exact
changes are:

1. Enriched the monad M with a profile state (type Profile = (string*int*int)

list). Call this new monad M’. Each element of this list is a profile of the
form (var,addr,count), where var is the program variable, addr is the address
where it is stored, and count keeps track of the accesses to var. Define a
function (incUsageCount a : Value M’) which when executed will increment
the count component of a profile (var,a,count).

2. Include a call to (incUsageCount a) in the definitions of (read a) and (store

a).

3. Change the definition of (AllocVars vars phi) so that it picks a single pro-
gram variable x with a maximal usage count from the Profile state and allo-
cates the general-purpose register Reg for x.

4. Alter compile so that it computes the variable which should be stored in Reg

(and call the resulting compiler compile’):

fun compile’ (Program (globals,main)) =

Do M’ { maxP <- maxProfile (* compute maximally-used variable *)

; fcode <- AllocVars (zip globals (upto (length globals - 1)))

maxP

(ccsrc main)

; Return M’ <fn input => ~(fcode <input>)> };

After Step 3, AllocVars looks like:

fun useReg x maxP = case maxP of Nothing => false | Just (v,u) => v=x;

fun var2reg x g = Do M’ { r <- rdEnv ; inEnv (xEnv x Reg r) g };

fun AllocVars vars maxP phi =
case vars of

[] => Do M’ { body <- phi ; Return M’ (fn input => body) }
| (x,n)::xs =>

if (useReg x maxP) then
var2reg x

(Do M’ { fcode <- (AllocVars xs Nothing phi)
; (Return M’ (fn input =>

<Do M’ { push (nth(~input,~(lift n)))
; loadReg
; ~(fcode input)}>))

})
else

var2loc x
(Do M’ { fcode <- (AllocVars xs Nothing phi)

; (Return M’ (fn input =>
<Do M’ { push (nth(~input,~(lift n)))

; ~(fcode input)
; pop
}>))});

5 Example of Dynamic Recompilation

fun adaptcompile e training =

Do M’ { pi <- compile’ e ; (run pi) training ; compile’ e }

Fig. 4. Making adaptcompile from compile is a one-liner.

Figure 4 displays the compiler, adaptcompile, which dynamically recompiles
its source program based on runtime profile information. Figure 3 shows “before
and after” snapshots of compiling a program first without profiling and then with
profiling information. Note first that the variable x is accessed most frequently in
the sample program. In the “Before” snapshot, x is stored on the stack in location
0, and accesses to x (which are underlined in both snapshots) are either store or
read instructions. In the “After” snapshot, x is stored in the register Reg. First,
the 0-th member of the input list a is pushed onto the stack and loaded into Reg.
Then, accesses to x are now performed with pushReg and loadReg instructions
instead of read and store instructions. Finally, only one pop occurs at the end
of the object code to deallocate y.

6 How to Add a Profile-driven Optimization to Any
Metacomputation-based Compiler

Starting with compiler (C:(L -> (input -> Value D)S)):

1. Define M to be (S + D) incorporating all the operations of both monads. Use
of monad transformers simplifies this step. Interpreting C within M has a
different type, (L -> (input -> Value M) M), but produces identical results.

2. Stage C by adding MetaML staging annotations to produce a new metacomp-
utation-based compiler (C’ : L -> (<input -> Value M>) M) for language L

and monad M.
3. Fix the type of profile data Profile for the specific optimization. To add

usage counts for program variables as we do in the present work, this is the
type (string*int*int) list.

4. Form a new monad M’ combining all of the features of the monad M with
Profile. Because M is assumed to be constructed with monad transformers
[14], this is a simple task. In our case study, Profile is added with a state
monad transformer.

5. The metacomputation-based compiler (C’ : L->(<input -> Value M’>) M’)

behaves just as (C’ : L -> (<input -> Value M>) M).
6. Alter the target language combinators to use Profile information. In our

case, we change only (read a) and (store a).
7. Construct a new version of adaptC that observes profile data (when it exists)

and compiles accordingly.

7 Conclusions and Future Work

How compiler optimizations are to be performed within a semantics-based ap-
proach to compilation has frequently been unclear. In this paper we have out-
lined a general technique for adding a whole class of compiler optimizations—
those that are profile-driven—within a particular form of semantics-directed
compiler. Adding profiling to the metacomputation-based reference compiler
shown here was quite simple, mainly because the static and dynamic aspects

of a metacomputation-based compiler can easily be combined. We did not in-
clude performance measures, as our goal was the development of a structure
encapsulating dynamic adaptability rather than demonstrating the usefulness of
any particular compiler optimization.

For the purpose of specifying and proving correctness, there is a significant
advantage to keeping separate static and dynamic monads, S and D, instead of
combining them into one monad (as we did here with the monad M). But this
creates a complication in implementing the systems as we have in this paper
in that a D computation is not immediately executable within a S computation.
One approach is to introduce a “lift” morphism, which embeds a D computation
into a S computation. In this setting, adaptcompile would look like:

compile : Program -> <input -> Value D> S;

lift : a D -> a S;

adaptcompile : Program -> training -> <input -> Value D> S

fun adaptcompile e training =

Do S { pi <- compile e ; lift ((run pi) training) ; compile e }

We believe this technique is an instance of a general structure for modeling
dynamically adaptable programs. If a staged programming language is used to
implement both the compiler for a language, and the run-time system of the
language, one essentially gets run-time re-compilation for free. This allows the
expression of a whole range of dynamically adaptable behaviors at a very high
level of abstraction.

Staged metacomputation-based compilers provide a high-level interface for
describing adaptable systems. Suppose a system which evolves periodically, and
for which significant speed-ups are possible if the source could be re-compiled to
take advantage of configuration changes.

The system might be a network driver, and its configuration information
may be the capacities of switches, lines, and the network topography. Or, the
system might be an operating system service, and its configuration information
may be the number, locations, and types of disk drives. Imagine that significant
performance improvements can be made by compiling the code to take advantage
of new configuration information. Several choices are possible:

1. One can pre-compile a number of anticipated configurations and dynamically
switch between these when configurations change. The disadvantages of this
mechanism are that it might be hard or impossible to anticipate all such
changes.

2. Write an interpreter over the configuration states (with the consequent loss
of performance that interpretation implies).

3. Bring down the system when configurations change for re-compilation. Ob-
viously this involves human interference and significant loss of service.

The great thing about staged computation is that we can express at a high-
level a single solution which incorporates the best aspects of all three of these
solutions all at a modest cost. We take the second approach, choosing an in-
terpreter because of its great flexibility. Staging it produces a compiler giving

us the benefits of the first option. But there is no need to anticipate changes
as new versions can be produced on demand. Merging the static and dynamic
computations (and thereby enabling staging at the abstract machine level) cap-
tures in a high-level and concise manner both the kinds of policies implicit in the
third option and the procedures that would be used to implement them. The ap-
proach outlined here brings together compilation, scripting languages, execution
and monitoring abilities into one unified framework. For example, the high-level
description of the above scenario is concisely described by:

adaptcompile prog config = Do M { code <- compile e config

; handle (run code)

(fn c => adaptcompile prog c) }

Here the monad has an exception mechanism which is raised when changes in
the configuration occur. The function (handle body handler) runs body, which
may raise an exception when the configuration state changes. At that point,
handler continues execution until the next safe state is reached. Then, control is
then passed to handler which, when supplied with the new configuration state,
re-compiles and continues. Note that the configuration information config may
contain a label specifying the entry (or re-entry) point in the code.

Acknowledgments

The work described here was supported by NSF Grant CDA-9703218, the M.J.
Murdock Charitable Trust and the Department of Defense.

The authors would also like to thank Sam Kamin and Emir Pasalic for dis-
cussions of these ideas.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Reading, Mass.: Addison-Wesley, 1985.

2. C. Consel and F. Noël. A general approach for run-time specialization and its
application to C. In ACM, editor, Conference record of POPL ’96, 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages: papers
presented at the Symposium: St. Petersburg Beach, Florida, 21–24 January 1996,
pages 145–156, New York, NY, USA, 1996. ACM Press.

3. O. Danvy. Type-directed partial evaluation. In ACM, editor, Conference record
of POPL ’96, 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages: papers presented at the Symposium: St. Petersburg Beach,
Florida, 21–24 January 1996, pages 242–257, New York, NY, USA, 1996. ACM
Press.

4. O. Danvy and R. Vestergaard. Semantics-based compiling: A case study in type-
directed partial evaluation. Lecture Notes in Computer Science, 1140:182–209,
1996.

5. R. Glück and J. Jørgensen. Efficient multi-level generating extensions for program
specialization. In S. D. Swierstra and M. Hermenegildo, editors, Programming Lan-
guages: Implementations, Logics and Programs (PLILP’95), volume 982 of Lecture
Notes in Computer Science, pages 259–278. Springer-Verlag, 1995.

6. W. Harrison. Modular Compilers and Their Correctness Proofs. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, 2001.

7. W. Harrison and S. Kamin. Metacomputation-based compiler architecture. In
Mathematics of Program Construction – MPC200, Proc. 5th International Confer-
ence on the Mathematics of Program Construction, Ponte de Lima, Portugal, vol-
ume 1837 of Lecture Notes in Computer Science, pages 213–229. Springer-Verlag,
2000.

8. W. L. Harrison and S. N. Kamin. Modular compilers based on monad transformers.
In Proceedings of the 1998 International Conference on Computer Languages, pages
122–131. IEEE Computer Society Press, 1998.

9. P. Hudak, S. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M. Guzman,
K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partian, and
J. Peterson. Report on the programming language haskell, version 1.2. Sigplan,
27(5), May 1992. Hudak, Wadler, Arvind, Boutel, Fairbairn, Fasel, Hughes, Johns-
son, Kieburtz, Nikhil, Peyton Jones, Reeve, Wise, Young; Version 1.0: Functional
Programming (Languages?) and Computer Architecture 89, pp123, 1989.

10. M. P. Jones. A system of constructor classes: Overloading and implicit higher-
order polymorphism. In Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, pages 52–64, New York, NY, USA, June
1993. ACM Press.

11. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall International, International Series in Computer
Science, June 1993. ISBN number 0-13-020249-5 (pbk).

12. P. Lee. Realistic Compiler Generation. Foundations of Computing Series. MIT
Press, 1989.

13. M. Leone and P. Lee. A declarative approach to run-time code generation. In
Workshop on Compiler Support for System Software (WCSSS), Feb. 1996.

14. S. Liang, P. Hudak, and M. Jones. Monad transformers and modular interpreters.
In ACM, editor, Conference record of POPL ’95, 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: papers presented at the Sym-
posium: San Francisco, California, January 22–25, 1995, pages 333–343, New York,
NY, USA, 1995. ACM Press.

15. S. S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers, 2929 Campus Drive, Suite 260, San Mateo, CA 94403, USA, 1997.

16. M. Odersky and K. Läufer. Putting type annotations to work. In ACM, editor,
Conference record of POPL ’96, 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages: papers presented at the Symposium: St. Pe-
tersburg Beach, Florida, 21–24 January 1996, pages 54–67, New York, NY, USA,
1996. ACM Press.

17. J. Peterson, K. Hammond, et al. Report on the programming language haskell, a
non-strict purely-functional programming language, version 1.3. Technical report,
Yale University, May 1996.

18. Calton Pu and Jonathan Walpole. A study of dynamic optimization techniques:
Lessons and directions in kernel design. Technical Report OGI-CSE-93-007, Oregon
Graduate Institute of Science and Technology, 1993.

19. C. Pu, H. Massalin, and J. Ioannidis. The synthesis kernel. Usenix Journal,
Computing Systems, 1(1):11, Winter 1988.

20. J. C. Reynolds. The essence of algol. In J. W. de Bakker and J. C. van Vliet,
editors, Algorithmic Languages, pages 345–372, Amsterdam, 1981. North-Holland.

21. T. Sheard, Z. El-Abidine Benaissa, and E. Pasalic. DSL implementation using
staging and monads. In Proceedings of the 2nd Conference on Domain-Specific
Languages, pages 81–94, Berkeley, CA, Oct. 3–5 1999. USENIX Association.

22. J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Semantics. MIT Press, Cambridge, Massachusetts, 1977.

23. W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1999.

24. W. Taha and T. Sheard. Multi-stage programming with explicit annotations.
In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM-97), volume 32, 12 of ACM SIG-
PLAN Notices, pages 203–217, New York, June 12–13 1997. ACM Press.

25. P. Wadler. Comprehending monads. Mathematical Structures in Computer Science,
2:461–493, 1992.

26. P. Wadler. The essence of functional programming. In ACM, editor, Conference
record of POPL ’92, 19th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages: papers presented at the Symposium: Albuquerque, New
Mexico, January 1992, pages 1–15.

27. P. Wadler. Monads for functional programming. Lecture Notes in Computer Sci-
ence, 925:24–52, 1995.

28. M. Wand. Deriving target code as a representation of continuation semantics.
ACM Transactions on Programming Languages and Systems, 4(3):496–517, July
1982.

A MetaML Tutorial

MetaML is almost a conservative extension of Standard ML. Its extensions in-
clude four staging annotations. To delay an expression until the next stage one
places it between meta-brackets. Thus the expression <23> (pronounced “bracket
23”) has type <int> (pronounced “code of int”). The annotation, ~e splices the
deferred expression obtained by evaluating e into the body of a surrounding
Bracketed expression; and run e evaluates e to obtain a deferred expression,
and then evaluates this deferred expression. It is important to note that ~e is
only legal within lexically enclosing Brackets. We illustrate the important fea-
tures of the staging annotations in the short MetaML sessions below.

-| val z = 3+4;

val z = 7 : int

Users access MetaML through a read-type-eval-print top-level. The declara-
tion for z is read, type-checked to see that it has a consistent type (int here),
evaluated (to 7), and then both its value and type are printed.

-| val quad = (3+4, <3+4>, lift (3+4), <z>);

val quad = (7, <3 %+ 4>, <7>, <%z>) :

(int * <int> * <int> * <int>)

The declaration for quad contrasts normal evaluation with the three ways
objects of type code can be constructed. Placing brackets around an expression
(<3+4>) defers the computation of 3+4 to the next stage, returning a piece of
code. Lifting an expression (lift (3+4)) evaluates that expression (to 7 here)
and then lifts the value to a piece of code that when evaluated returns the same
value. Brackets around a free variable (<z>) creates a new constant piece of code
with the value of the variable. Such constants print with a % sign to indicate they
are constants. We call this lexical-capture of free variables. Because in MetaML
operators (such as + and *) are also identifiers, free occurrences of operators in
constructed code often appear with % in front of them.

-| fun inc x = <1 + ~x>;

val inc = Fn : [’a].<int> -> <int>

The declaration of the function inc illustrates that larger pieces of code can
be constructed from smaller ones by using the escape annotation. Bracketed
expressions can be viewed as frozen, i.e. evaluation does not apply under brack-
ets. However, is it often convenient to allow some reduction steps inside a large
frozen expression while it is being constructed, by “splicing” in a previously con-
structed piece of code. MetaML allows one to escape from a frozen expression
by prefixing a sub-expression within it with the tilde ()̃ character. Escape must
only appear inside brackets.

-| val six = inc <5>;

val six = <1 %+ 5> : <int>

In the declaration for six, the function increment is applied to the piece of
code <5> constructing the new piece of code <1 %+ 5>.

-| run six;

val it = 6 : int

Running a piece of code, strips away the enclosing brackets, and evaluates
the expression inside. To give a brief feel for how MetaML is used to construct
larger pieces of code at runtime consider:

-| fun mult x n = if n=0 then <1> else < ~x * ~(mult x (n-1)) >;

val mult = fn : <int> -> int -> <int>

-| val cube = <fn y => ~(mult <y> 3)>;

val cube = <fn a => a * (a * (a * 1))> : <int -> int>

-| fun exponent n = <fn y => ~(mult <y> n)>;

val exponent = fn : int -> <int -> int>

The function mult, given an integer piece of code x and an integer n, produces
a piece of code that is an n-way product of x. This can be used to construct the
code of a function that performs the cube operation, or generalized to a generator
for producing an exponentiation function from a given exponent n. Note how the
looping overhead has been removed from the generated code. This is the purpose
of program staging and it can be highly effective as discussed elsewhere [2, 5, 13,
18, 24].

A.1 Monads in MetaML

We assume the reader has a working knowledge of monads [25, 27]. We use the
unit and bind formulation of monads [26]. In MetaML a monad is a data structure
encapsulating a type constructor M and the unit and bind functions.

datatype (’M : * -> *) Monad = Mon of

([’a]. ’a -> ’a ’M) * (* unit function *)

([’a,’b]. ’a ’M -> (’a -> ’b ’M) -> ’b M); (* bind function *)

This definition uses ML’s postfix notation for type application, and two non-
standard extensions to ML. First, it declares that the argument (’M : * -> *)

of the type constructor Monad is itself a unary type constructor [10]. We say that
’M has kind: * -> *. Second, it declares that the arguments to the constructor
Mon must be polymorphic functions [16]. The type variables in brackets, e.g.
[’a,’b], are universally quantified. Because of the explicit type annotations in
the datatype definitions the effect of these extensions on the Hindley-Milner
type inference system is well known and poses no problems for the MetaML
type inference engine.

In MetaML, Monad is a first-class, although pre-defined or built-in type. In
particular, there are two syntactic forms which are aware of the Monad datatype:
Do and Return. Do and Return are MetaML’s syntactic interface to the unit and
bind of a monad. We have modeled them after the do-notation of Haskell [9, 17].
An important difference is that MetaML’s Do and Return are both parameterized
by an expression of type ’M Monad. Do and Return are syntactic sugar for the
following:

(* Syntactic Sugar Derived Form *)

Do (Mon(unit,bind)) { x <- e; f } = bind e (fn x => f)

Return (Mon(unit,bind)) e = unit e

In addition the syntactic sugar of the Do allows a sequence of xi <- ei forms,
and defines this as a nested sequence of Do’s. For example:

Do m { x1 <- e1; x2 <- e2 ; x3 <- e3 ; e4 } =

Do m { x1 <- e1; Do m { x2 <- e2 ; Do m { x3 <- e3 ; e4 }}}

Users may freely construct their own monads, though they should be very
careful that their instantiation meets the monad axioms. The monad axioms,
expressed in MetaML’s Do and Return notation are:

Do {x <- Return e ; z} = z[e/x]

Do {x <- m ; Return x} = m

Do {x <- Do { y <- a ; b } ; c} = Do {y’ <- a ; Do { x <- b[y’/y] ; c }}

= Do {y’ <- a ; x <- b[y’/y] ; c}

B Executable Definition of Target Code

This appendix describes the executable specification of the abstract machine
which is the target of the compiler in Figure 2.

We assume that the reader is familiar with monads [26, 27, 25, 14]. The mon-
ads used in this paper are constructed from monad transformers [14]. A monad
transformer creates a new monad from an existing monad and adds new data
and operations to manipulate that data. The following table summarizes the
monad transformers used in this paper:

M.T. Associated Operation(s) Meaning
rdT : T M current T environmentTEnv T

inT: T->a M->a M (inT t x) evals x in T-env t

updateS : (S->S)->S M (updateS f) applies f to current S

TSt S state, returning the resulting state

getS : S M getS = (updateS id) returns current S state

TCPS A CallCC:(a->A M)->A M (CallCC f) passes f the current contin.

There are four monads used (sometimes implicitly) in this paper. They are:

S = TEnv Env (TEnv Addr (TSt Label Id))

D = TCPS Value (TSt Sto (TSt Code Id))

M = TEnv Env (TEnv Addr (TCPS Value (TSt Sto (TSt Label (TSt Code Id)))))

M
′ = TEnv Env (TEnv Addr (TCPS Value (TSt Sto (TSt Label (TSt Code (TSt Profile Id))))))

S and D are the static and dynamic monads, respectively, from the original
metacomputation-based compiler for Src. One can recover this compiler from
Figure 2 by replacing each occurrence of M occurring within <...> as D and all
other occurrences with S. Erasing the staging annotations would then recover the
original compiler. M arises as the combination S+D in step 1 on page 12. Finally,
M’ is the monad S+D+Profile from step 3 on page 12.

For the monad M’ above:

Env = string -> Location (where Location = Loc of int | Reg)

Addr = Label = int

Value = code of <Value M’> | Z of int | Void

Sto = Addr*int*(Addr->Value)

Code = segm of Label -> Value M’

Profile = (string*int*int) list

In (sp,Reg,sigma):Sto, sp is the current stack pointer, Reg is the current
contents of the general register, and sigma is the memory map (only integer values
are stored in sigma). The code store Code is used to store continuations. Modeling
jumps with a stored continuations is a common technique from denotational
semantics [22].

B.1 Static Operations of M

The only static operation of the monad M not defined directly by the monad
transformers is newlabel:

val newlabel = Do M { L <- updateLabel (fn l => l)

; _ <- updateLabel (fn l => l+1) ; Return M L};

B.2 The Abstract Machine

All of the following are defined in terms of the operations provided by the above
monad transformers. Except for read and store, their definitions in M’ are iden-
tical.
Stack operations:

fun tweek l v sigma = fn l’ => if l = l’ then v else sigma l’;

fun update f = Do M { _ <- updateSto f ; Return M Void};

fun writeLoc a i = update (fn (sp,reg,sigma) => (sp,reg,tweek a i sigma));

fun rdLoc a = Do M { (sp,reg,sigma) <- getSto ; Return M (Z (sigma a)) };

fun setSP sp = update (fn (_,reg,sigma) => (sp,reg,sigma));

fun setReg reg = update (fn (sp,_,sigma) => (sp,reg,sigma));

val SP = Do M { (sp,reg,sigma) <- getSto ; Return M sp };

val Reg = Do M { (sp,reg,sigma) <- getSto ; Return M reg };

fun push i = Do M { sp <- SP ; writeLoc sp i ; setSP (sp+1) };

val pop = Do M { sp <- SP ; setSP (sp-1) ; rdLoc (sp-1) };

val pushReg = Do M { reg <- Reg ; push reg };

val loadReg = Do M { (Z i) <- pop ; setReg i };

fun read a = Do M { Z i <- rdLoc a ; push i };

fun store a = Do M { (Z i) <- pop ; writeLoc a i };

Profiling operations:

fun incUsage a pl = case pl of

((n,a’,i)::prf) => if (a = a’) then ((n,a’,i+1)::prf)

else ((n,a’,i)::incUsage a prf)

| [] => [];

fun incUsageCount a = updateProfile (incUsage a);

fun read a = Do M’ { Z i <- rdLoc a ; incUsageCount a ; push i };

fun store a = Do M’ { (Z i) <- pop ; incUsageCount a ; writeLoc a i };

Arithmetic/Boolean operations:

val NEG = Do M { (Z i) <- pop ; push (neg i) };

val ADD = Do M { (Z i) <- pop ; (Z j) <- pop ; push (i + j) };

fun encode tf = if tf then 888 else 999;

fun decode i = (i=888);

val LEQ = Do M { (Z v1) <- pop ; (Z v2) <- pop ; push (encode (v2<=v1)) };

Control-flow operations:

fun rdSeg L = Do M { (segm Pi) <- getCode ; Pi L };

fun newSeg L x = updateCode (fn (segm Pi) => segm (tweek L x Pi));

fun endlabel L pi = CallCC (fn k => Do M { _ <- newSeg L (k Void) ; pi });

fun jump L = CallCC (fn _ => rdSeg L);

fun branch Lt Lf = Do M { (Z bv) <- pop

; if (decode bv) then (jump Lt) else (jump Lf) };

