
A Programming Model for Reconfigurable
Computing Based in Functional Concurrency

Bill Harrison, Ian Graves, Adam Procter,
Michela Becchi, & Gerard Allwein

ReCoSoC 2016

Introduction

Mission/Safety-critical, ∗Reconfigurable∗ Systems

I Highly (Re)configurable Architectures/FPGAs
I Many Specially Tailored, “One Off” Components
I Reuse of Off-the-shelf components
I “Mix and Match” comes to Hardware

I Challenge: High Assurance in this environment
I Want the flexibility and speed of development
I . . .but also need formal guarantees of security & safety for critical

systems

I Unpleasant Reality: Traditional HW Verification cannot cope with
“Mix & Match”

I Too slow & expensive for “one off” components
I Why? Time spent “formalizing” hardware design

Bill Harrison ReCoSoC16 2 / 20

Introduction

Mission/Safety-critical, ∗Reconfigurable∗ Systems

I Highly (Re)configurable Architectures/FPGAs
I Many Specially Tailored, “One Off” Components
I Reuse of Off-the-shelf components
I “Mix and Match” comes to Hardware

I Challenge: High Assurance in this environment
I Want the flexibility and speed of development
I . . .but also need formal guarantees of security & safety for critical

systems
I Unpleasant Reality: Traditional HW Verification cannot cope with

“Mix & Match”
I Too slow & expensive for “one off” components
I Why? Time spent “formalizing” hardware design

Bill Harrison ReCoSoC16 2 / 20

Introduction

Language-based Approach to High Assurance Hardware
FILLER

I “The Three P’s”
I DSLs & Language

Virtualization
I Delite [Olukoton,Ienne]

I ReWire
I Fourth P: Provability
I Rigorous Semantics supports

High Assurance
I Security & Safety

Properties
I Formal Methods

Productivity

Hardware Synthesis from Domain
Specific Languages

• Delite [Olukotun, Ienne, et al.]

•  DSLs and Language
Virtualization

•  “The Three P’s”
• ReWire

•  Fourth P: Provability
•  DSL with rigorous

semantics
•  Modular Monadic Semantics

•  High assurance
•  Security & safety properties
•  Formal methods Productivity

Productivity

Performance Portability

Provability

Bill Harrison ReCoSoC16 3 / 20

Introduction

Focus on Productivity
A Programming Model for Reconfigurable Computing Based in Functional Concurrency

I Recent Work:
I Provability [FPT15]
I Performance [ARC15]
I Portability [LCTES15]

I Software Engineering “Virtues”
I Abstraction, Modularity,

Program Comprehension, etc.
I ReWire

I Functional Language
supporting Concurrency

I ...thereby common
concurrency templates

Hardware Synthesis from Domain
Specific Languages

• Delite [Olukotun, Ienne, et al.]

•  DSLs and Language
Virtualization

•  “The Three P’s”
• ReWire

•  Fourth P: Provability
•  DSL with rigorous

semantics
•  Modular Monadic Semantics

•  High assurance
•  Security & safety properties
•  Formal methods Productivity

Productivity

Performance Portability

Provability

Bill Harrison ReCoSoC16 4 / 20

Background

ReWire Functional Hardware Description Language

ReWireHaskell Synthesizable
VHDL

VHDL

ReWire Compiler

I Inherits Haskell’s good qualities
I Pure functions & types, monads, equational reasoning, etc.
I Formal denotational semantics [HarrisonKieburtz05,Harrison05]

I Language design identifies HW representable programs
I Mainly restrictions on recursion in functions and data
I Built-in abstractions for clocked/parallel computations
I “Connect Logic”: Types & operators for HW abstractions.

Bill Harrison ReCoSoC16 5 / 20

Background

Reasoning about ReWire Programs

Ordinary Equational Reasoning on Functional Programs:

e1 = e2 = . . . = en

replaces “equals for equals”, uses induction/coinduction, etc.

Ex: Hardware Verification from [FPT15]

Theorem (Correctness of Iterative Salsa20)
For all nonces n, n0, . . . , n9 :: W 128 and input streams is of the form
[(High,n), (Low,n0), · · · , (Low,n9), . . .], then:

salsa20 n = nth 10 (feed is sls20dev)

Bill Harrison ReCoSoC16 6 / 20

Background

Reasoning about ReWire Programs

Ordinary Equational Reasoning on Functional Programs:

e1 = e2 = . . . = en

replaces “equals for equals”, uses induction/coinduction, etc.

Ex: Hardware Verification from [FPT15]

Theorem (Correctness of Iterative Salsa20)
For all nonces n,n0, . . . ,n9 :: W128 and input streams is of the form
[(High,n), (Low,n0), · · · , (Low,n9), . . .], then:

salsa20 n = nth 10 (feed is sls20dev)

Bill Harrison ReCoSoC16 6 / 20

ReWire Programming Model

Abstract Types for Devices

I Built-in Type Dev i o
I Parameterized by input and output types,
i and o

I Construct devices by building Dev i o
values with constructors

I ReWire compiler translates Dev i o into
synthesizable VHDL

I Dev i o is a “reactive resumption monad”
I Algebraic structure for clocked,

synchronous parallelism
I Useful for specifying secure systems

[LCTES15,JCS09]

d

o

i

clk

Bill Harrison ReCoSoC16 7 / 20

ReWire Programming Model Constructors for Devices

Iteration Constructor

iter :: (i -> o) ->
o ->
Dev i o

d = iter f o

d
f(it)

it+1

Bill Harrison ReCoSoC16 8 / 20

ReWire Programming Model Constructors for Devices

Parallelism Constructor

<&> :: Dev i1 o1 ->
Dev i2 o2 ->
Dev (i1,i2) (o1,o2)

d1 <&> d2

d1

o1

i1

d2

o2

i2

<&> = d1 d2

(o1,o2)

(i1,i2)

Bill Harrison ReCoSoC16 9 / 20

ReWire Programming Model Constructors for Devices

Feedback Constructor

refold :: (o1 -> o2) ->
(o1 -> i2 -> i1) ->
Dev i1 o1 ->
Dev i2 o2

refold out conn d

d

o

i
conn

i’

o’= out o

Bill Harrison ReCoSoC16 10 / 20

ReWire Programming Model Implementing Devices

Representing Dev i o as a circuit

d

o

i

clk

output
signal

(comb. logic)

current
state

D Q

next
state

(comb. logic)

current
input

D Q

clk

i

o

Bill Harrison ReCoSoC16 11 / 20

Concurrency Templates Mutex

Mealy Machines
Ex: Mealy Machine for Mutex

Unlocked

Left
Locked

Right
Locked

(_,_)/(LockGrant,NullRsp)5

(_,_)/(NullRsp,LockGrant)5

(_,_)5/(NullRsp,NullRsp)5

Bill Harrison ReCoSoC16 12 / 20

Concurrency Templates Mutex

Implementing Mealy Machines in Connect Logic

Unlocked

Left
Locked

Right
Locked

(_,_)/(LockGrant,NullRsp)5

(_,_)/(NullRsp,LockGrant)5

(_,_)5/(NullRsp,NullRsp)5

States

data State = Unlocked | LeftLocked | RightLocked
data Req = ReqLock | Release | NullReq
data Rsp = LockGrant | Ack | NullRsp

Transition Function

delta :: State -> (Req,Req) -> (State,(Rsp,Rsp))
delta Unlocked (ReqLock,_)

= (LeftLocked, (LockGrant,NullRsp))
delta Unlocked (_,ReqLock)

= (RightLocked, (NullRsp,LockGrant))
delta Unlocked (_,_)

= (Unlocked, (NullRsp,NullRsp))
delta LeftLocked (Release,_)

= (Unlocked, (Ack,NullRsp))
delta LeftLocked (_,_)

= (LeftLocked, (LockGrant,NullRsp))
delta RightLocked (_,Release)

= (Unlocked, (NullRsp,Ack))
delta RightLocked (_,_)

= (RightLocked, (NullRsp,LockGrant))

ReWire Device

mutex :: Dev (Req, Req) (Rsp, Rsp)
mutex = iterS delta (Unlocked,(NullRsp,NullRsp))

Bill Harrison ReCoSoC16 13 / 20

Concurrency Templates Mutex

Implementing Mealy Machines in Connect Logic

Unlocked

Left
Locked

Right
Locked

(_,_)/(LockGrant,NullRsp)5

(_,_)/(NullRsp,LockGrant)5

(_,_)5/(NullRsp,NullRsp)5

States

data State = Unlocked | LeftLocked | RightLocked
data Req = ReqLock | Release | NullReq
data Rsp = LockGrant | Ack | NullRsp

Transition Function

delta :: State -> (Req,Req) -> (State,(Rsp,Rsp))
delta Unlocked (ReqLock,_)

= (LeftLocked, (LockGrant,NullRsp))
delta Unlocked (_,ReqLock)

= (RightLocked, (NullRsp,LockGrant))
delta Unlocked (_,_)

= (Unlocked, (NullRsp,NullRsp))
delta LeftLocked (Release,_)

= (Unlocked, (Ack,NullRsp))
delta LeftLocked (_,_)

= (LeftLocked, (LockGrant,NullRsp))
delta RightLocked (_,Release)

= (Unlocked, (NullRsp,Ack))
delta RightLocked (_,_)

= (RightLocked, (NullRsp,LockGrant))

ReWire Device

mutex :: Dev (Req, Req) (Rsp, Rsp)
mutex = iterS delta (Unlocked,(NullRsp,NullRsp))

Bill Harrison ReCoSoC16 13 / 20

Concurrency Templates Mutex

Implementing Mealy Machines in Connect Logic

Unlocked

Left
Locked

Right
Locked

(_,_)/(LockGrant,NullRsp)5

(_,_)/(NullRsp,LockGrant)5

(_,_)5/(NullRsp,NullRsp)5

States

data State = Unlocked | LeftLocked | RightLocked
data Req = ReqLock | Release | NullReq
data Rsp = LockGrant | Ack | NullRsp

Transition Function

delta :: State -> (Req,Req) -> (State,(Rsp,Rsp))
delta Unlocked (ReqLock,_)

= (LeftLocked, (LockGrant,NullRsp))
delta Unlocked (_,ReqLock)

= (RightLocked, (NullRsp,LockGrant))
delta Unlocked (_,_)

= (Unlocked, (NullRsp,NullRsp))
delta LeftLocked (Release,_)

= (Unlocked, (Ack,NullRsp))
delta LeftLocked (_,_)

= (LeftLocked, (LockGrant,NullRsp))
delta RightLocked (_,Release)

= (Unlocked, (NullRsp,Ack))
delta RightLocked (_,_)

= (RightLocked, (NullRsp,LockGrant))

ReWire Device

mutex :: Dev (Req, Req) (Rsp, Rsp)
mutex = iterS delta (Unlocked,(NullRsp,NullRsp))

Bill Harrison ReCoSoC16 13 / 20

Concurrency Templates Mutex

Implementing Mealy Machines in Connect Logic

Unlocked

Left
Locked

Right
Locked

(_,_)/(LockGrant,NullRsp)5

(_,_)/(NullRsp,LockGrant)5

(_,_)5/(NullRsp,NullRsp)5

States

data State = Unlocked | LeftLocked | RightLocked
data Req = ReqLock | Release | NullReq
data Rsp = LockGrant | Ack | NullRsp

Transition Function

delta :: State -> (Req,Req) -> (State,(Rsp,Rsp))
delta Unlocked (ReqLock,_)

= (LeftLocked, (LockGrant,NullRsp))
delta Unlocked (_,ReqLock)

= (RightLocked, (NullRsp,LockGrant))
delta Unlocked (_,_)

= (Unlocked, (NullRsp,NullRsp))
delta LeftLocked (Release,_)

= (Unlocked, (Ack,NullRsp))
delta LeftLocked (_,_)

= (LeftLocked, (LockGrant,NullRsp))
delta RightLocked (_,Release)

= (Unlocked, (NullRsp,Ack))
delta RightLocked (_,_)

= (RightLocked, (NullRsp,LockGrant))

ReWire Device

mutex :: Dev (Req, Req) (Rsp, Rsp)
mutex = iterS delta (Unlocked,(NullRsp,NullRsp))

Bill Harrison ReCoSoC16 13 / 20

Concurrency Templates Triple Modular Redundancy

Simple Triple Modular Redundancy
The Rule of Three

dev dev dev

vote

fan

i

o

vote :: (a,a,a) -> a
vote (a1,a2,a3) | a1 == a2 = a1

| a1 == a3 = a1
| a2 == a3 = a2
| otherwise = a1

fan :: a -> i -> (i,i,i)
fan _ i = (i,i,i)

tmr :: Dev i o -> Dev i o
tmr dev = refold vote fan

(dev <&> dev <&> dev)

Bill Harrison ReCoSoC16 14 / 20

Concurrency Templates Triple Modular Redundancy

Simple Triple Modular Redundancy
The Rule of Three

dev dev dev

vote

fan

i

o

vote :: (a,a,a) -> a
vote (a1,a2,a3) | a1 == a2 = a1

| a1 == a3 = a1
| a2 == a3 = a2
| otherwise = a1

fan :: a -> i -> (i,i,i)
fan _ i = (i,i,i)

tmr :: Dev i o -> Dev i o
tmr dev = refold vote fan

(dev <&> dev <&> dev)

Bill Harrison ReCoSoC16 14 / 20

Concurrency Templates Device Synchronization

Programming Synchronization
Barriers

d2
Complete

d1
Busy

Barrier

Continue

data Status a = Busy | Complete a

barrier :: Dev i1 (Status o1) ->
Dev i2 (Status o2) ->
Dev (i1,i2) (Status (o1,o2))

barrier d1 d2 =
refold out inp

(makeStall d1 <&> makeStall d2)
where
inp (Busy,Busy) (i1,i2)

= (Continue i1,Continue i2)
inp (Complete l,Busy) (i1,i2)

= (Stall, Continue i2)
inp (Busy,Complete r) (i1,i2)

= (Continue i1,Stall)
inp (Complete l,Complete r) (i1,i2)

= (Continue i1,Continue i2)
out (Busy,_) = Busy
out (_,Busy) = Busy
out (Complete a,Complete b) = Complete (a,b)

Bill Harrison ReCoSoC16 15 / 20

Concurrency Templates Device Synchronization

Programming Synchronization
Barriers

d2
Complete

d1
Busy

Barrier

Continue

data Status a = Busy | Complete a

barrier :: Dev i1 (Status o1) ->
Dev i2 (Status o2) ->
Dev (i1,i2) (Status (o1,o2))

barrier d1 d2 =
refold out inp

(makeStall d1 <&> makeStall d2)
where
inp (Busy,Busy) (i1,i2)

= (Continue i1,Continue i2)
inp (Complete l,Busy) (i1,i2)

= (Stall, Continue i2)
inp (Busy,Complete r) (i1,i2)

= (Continue i1,Stall)
inp (Complete l,Complete r) (i1,i2)

= (Continue i1,Continue i2)
out (Busy,_) = Busy
out (_,Busy) = Busy
out (Complete a,Complete b) = Complete (a,b)

Bill Harrison ReCoSoC16 15 / 20

Concurrency Templates System Integration

A Dual Core System realized in ReWire

memory memCtrl dlxH dlxL

dlx` :: Dev (Instr`,Rsp`) (Next`,Req`)
memCtrl :: Dev (Data,ReqH,ReqL) (Req,RspH,RspL)
memory :: Dev Req Data
system :: Dev (InstrH,InstrL) (NextH,NextL)
system =

refold
systemOut
systemIn
(dlxH <&> dlxL <&> memCtrl <&> memory)

Bill Harrison ReCoSoC16 16 / 20

Concurrency Templates System Integration

The Memory Controller Pattern

reqMaster rspMaster

Access Policies as Functions
reqMaster = reqMaster_ policyH policyL
reqMaster_ ::

Policy ->
Policy ->
Dev (Req,Req) (Req,(Mask,Mask))

Memory Controller Device
memCtrl :: Dev (Data,(Req,Req))

(Req,(Rsp,Rsp))
memCtrl = refold

outputSelect
inputSelect
(reqMaster <&> rspMaster)

Bill Harrison ReCoSoC16 17 / 20

Concurrency Templates System Integration

The Memory Controller Pattern

reqMaster rspMaster

Access Policies as Functions
reqMaster = reqMaster_ policyH policyL
reqMaster_ ::

Policy ->
Policy ->
Dev (Req,Req) (Req,(Mask,Mask))

Memory Controller Device
memCtrl :: Dev (Data,(Req,Req))

(Req,(Rsp,Rsp))
memCtrl = refold

outputSelect
inputSelect
(reqMaster <&> rspMaster)

Bill Harrison ReCoSoC16 17 / 20

Concurrency Templates System Integration

The Memory Controller Pattern

reqMaster rspMaster

Access Policies as Functions
reqMaster = reqMaster_ policyH policyL
reqMaster_ ::

Policy ->
Policy ->
Dev (Req,Req) (Req,(Mask,Mask))

Memory Controller Device
memCtrl :: Dev (Data,(Req,Req))

(Req,(Rsp,Rsp))
memCtrl = refold

outputSelect
inputSelect
(reqMaster <&> rspMaster)

Bill Harrison ReCoSoC16 17 / 20

Related Work, Summary & Future Work

Related Work

Hardware Synthesis from Domain
Specific Languages

• Delite [Olukotun, Ienne, et al.]

•  DSLs and Language
Virtualization

•  “The Three P’s”
• ReWire

•  Fourth P: Provability
•  DSL with rigorous

semantics
•  Modular Monadic Semantics

•  High assurance
•  Security & safety properties
•  Formal methods Productivity

Productivity

Performance Portability

Provability

I HW Synthesis from DSLs
I Delite [Olukotun, Ienne, et al.]
I DSLs and Language Virtualization
I The “Three P’s” + Provability

I Functional HDLs
I Chisel, Bluespec, Lava
I ReWire project motivated by

formal methods & security
I ReWire: functional concurrent language

I [Procter et al., 2015;2016] produce
a verified secure dual-core processor in ReWire

I Cryptol

Bill Harrison ReCoSoC16 18 / 20

Related Work, Summary & Future Work

Summary, Conclusions & Future Work

I FPGA Programmability: [Andrews15] argues SE
virtues precondition for wider adoption of
Reconfigurable Tech

I to enable productivity, reuse, scalability
I Encapsulated a wide variety of concurrency templates

I Synchronization, Memory Protection, Voting
I Each of which displays Abstraction, Modularity and Comprehensibility

I Enabled by functional HDL ReWire
I Approach relies on semantically-faithful compiler

I Mechanization in Coq; Compiler Verification

I Rewire is open source:
https://github.com/mu-chaco/ReWire

Bill Harrison ReCoSoC16 19 / 20

https://github.com/mu-chaco/ReWire

THANKS!

* This research supported by the US National Science Foundation CAREER

Award #0746509 and the US Naval Research Laboratory.

	Introduction
	Background
	ReWire Programming Model
	Constructors for Devices
	Implementing Devices

	Concurrency Templates
	Mutex
	Triple Modular Redundancy
	Device Synchronization
	System Integration

	Related Work, Summary & Future Work

