
Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Temporal Staging for Correct-by-Construction Cryptographic
Hardware*

Yakir Forman 1 Bill Harrison 2

1Two Six Technologies, Inc.

2Idaho National Laboratories

* This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA)
program Data Protection in Virtual Environments (DPRIVE). The views, opinions and/or findings expressed are
those of the author(s) and should not be interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 1

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Temporal Staging for Correct-by-Construction Cryptographic Hardware

Software program transformation approach [Burstall, Dijkstra, Scherlis,. . .] applied to deriving
correct, performant hardware

Semantics-preserving transformations : Reference⇝ . . .⇝ Implementation
Here, all transformations take place in a functional HLS language

Resulting formally verified hardware designs included in FHE accelerators currently
being fabricated

Meet my coauthor, Yakir Forman (who did 90% of the work):

Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Graduate School of Arts and Sciences Dissertations

Spring 2022

Localization and Cantor Spectrum for Quasiperiodic Discrete Localization and Cantor Spectrum for Quasiperiodic Discrete
Schrödinger Operators with Asymmetric, Smooth, Cosine-Like Schrödinger Operators with Asymmetric, Smooth, Cosine-Like
Sampling Functions Sampling Functions

Yakir Moshe Forman
Yale University Graduate School of Arts and Sciences, yakir.forman@yale.edu

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations

Recommended Citation Recommended Citation
Forman, Yakir Moshe, "Localization and Cantor Spectrum for Quasiperiodic Discrete Schrödinger
Operators with Asymmetric, Smooth, Cosine-Like Sampling Functions" (2022). Yale Graduate School of
Arts and Sciences Dissertations. 593.
https://elischolar.library.yale.edu/gsas_dissertations/593

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more
information, please contact elischolar@yale.edu.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 2

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Temporal Staging for Correct-by-Construction Cryptographic Hardware

Software program transformation approach [Burstall, Dijkstra, Scherlis,. . .] applied to deriving
correct, performant hardware

Semantics-preserving transformations : Reference⇝ . . .⇝ Implementation
Here, all transformations take place in a functional HLS language

Resulting formally verified hardware designs included in FHE accelerators currently
being fabricated

Meet my coauthor, Yakir Forman (who did 90% of the work):

Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Graduate School of Arts and Sciences Dissertations

Spring 2022

Localization and Cantor Spectrum for Quasiperiodic Discrete Localization and Cantor Spectrum for Quasiperiodic Discrete
Schrödinger Operators with Asymmetric, Smooth, Cosine-Like Schrödinger Operators with Asymmetric, Smooth, Cosine-Like
Sampling Functions Sampling Functions

Yakir Moshe Forman
Yale University Graduate School of Arts and Sciences, yakir.forman@yale.edu

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations

Recommended Citation Recommended Citation
Forman, Yakir Moshe, "Localization and Cantor Spectrum for Quasiperiodic Discrete Schrödinger
Operators with Asymmetric, Smooth, Cosine-Like Sampling Functions" (2022). Yale Graduate School of
Arts and Sciences Dissertations. 593.
https://elischolar.library.yale.edu/gsas_dissertations/593

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more
information, please contact elischolar@yale.edu.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 2

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

ReWire Functional High Level Synthesis Language

Haskell ReWire HDLSynthesizable
HDL

ReWire
compiler

Inherits Haskell’s good qualities
Pure functions, strong types, monads, equational reasoning, etc.

ReWire compiler produces Verilog, VHDL, or FIRRTL

Freely Available: https://github.com/twosixlabs/rewire

ReWire Formalization in ITP Systems (Isabelle, Coq, Agda)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 3

https://github.com/twosixlabs/rewire

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

Running in GHCi

ghci> f 40 25 20
(48,37)

ghci> f 41 25 20
(50,36)

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

CSA Device in ReWire

csa :: (W8, W8, W8) → Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do

i ← signal (f a b c)
csa i -- N.b., tail-recursive

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

CSA Device in ReWire

csa :: (W8, W8, W8) → Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do

i ← signal (f a b c)
csa i -- N.b., tail-recursive

Stream Semantics [NFM23]

((40,25,20),(),(0,0)), ((41,25,20),(),(48,37)), ((40,25,20),(),(50,36)), ...

tick0 tick1 tick2

(i0, s0, o0), (i1, s1, o1), (i2, s2, o2), ...

tick0 tick1 tick2

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

CSA Device in ReWire

csa :: (W8, W8, W8) → Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do

i ← signal (f a b c)
csa i -- N.b., tail-recursive

Stream Semantics [NFM23]

((40,25,20),(),(0,0)), ((41,25,20),(),(48,37)), ((40,25,20),(),(50,36)), ...

(48,37) = f 40 25 20

(50,36) = f 41 25 20

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function

f :: W8 → W8 → W8 → (W8, W8)
f a b c = (((a & b) || (a & c) || (b & c)) << ’0’ , a ⊕ b ⊕ c)

CSA Device in ReWire

csa :: (W8, W8, W8) → Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do

i ← signal (f a b c)
csa i -- N.b., tail-recursive

ReWire Compiler

$ rwc CSA.hs --verilog
$ ls -l CSA.v

-rw-r--r-- 1 william.harrison staff 2159 Nov 14 08:33 CSA.v

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Carry-Save Adders in ReWire
“Curried” CSA takes inputs one per cycle

data Ans a = DC | Val a -- "don’t care" and "valid"

pcsa :: W8 → Re W8 () (Ans (W8, W8)) ()
pcsa a = do

b ← signal DC
c ← signal DC
a’ ← signal (Val (f a b c))
pcsa a’

Stream Semantics

((40,25,20),(),(0,0)), ((41,25,20),(),(48,37)), ((40,25,20),(),(50,36)), ...

(48,37) = f 40 25 20

(50,36) = f 41 25 20

(40,(),DC), (25,(),DC), (20,(),DC), (41,(),Val (48,37)), …

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 4

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Semantics & Staging Functions

Mealy Machine

output & next state logic

storage s

outputs oinputs i

storage feedback

internal

Corresponding ReWire monad

type M s = StateT s Identity
-- ReWire monad

type Re i s o = ReacT i o (M s)
-- consume/produce inputs & outputs synchronously

signal :: o → Re i s o i

Formal Semantics [NFM23] is stream of “snapshots” : Stream (i , s , o)

Staging Functions
stage :: M s a → Re i s (Maybe o) i
stage x = do

lift x
i’ ← signal Nothing
return i’

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 5

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Semantics & Staging Functions

Mealy Machine

output & next state logic

storage s

outputs oinputs i

storage feedback

internal

Corresponding ReWire monad

type M s = StateT s Identity
-- ReWire monad

type Re i s o = ReacT i o (M s)
-- consume/produce inputs & outputs synchronously

signal :: o → Re i s o i

Formal Semantics [NFM23] is stream of “snapshots” : Stream (i , s , o)
Staging Functions

(stage x) turns computation x into single cycle of hardware device

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 5

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Temporal Staging Methodology

Reference
Algorithm

Staged
Algorithm

Staging
Theorems

Coq
VerificationHardware

Pseudocode

Staging transformation: applying stage functions to parts of reference algorithm

stage functions are akin to lift functions of monad transformers

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 6

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Temporal Staging Methodology

Imperative Algorithm

Pseudocode Transliterated to Haskell

“Imperative” ⇒ use State Monad

Staged Algorithm in ReWire

Performant HW via ReWire compiler

Coq Theorems relate stage(xi) to xi

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 7

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

BLAKE2 Case Study

Background

Cryptographic hash function
Input: message blocks of 16 64-bit words
Output: 8 64-bit words

Can be used for pseudorandom number generation, e.g., in openFHE library
Defined as imperative pseudocode in

RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 8

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Cryptographic Functions in ReWire
Functions are just Functions

Blake2 Mixing Function Pseudocode *

RFC 7693 BLAKE2 Crypto Hash and MAC November 2015

3. BLAKE2 Processing

3.1. Mixing Function G

 The G primitive function mixes two input words, "x" and "y", into
 four words indexed by "a", "b", "c", and "d" in the working vector
 v[0..15]. The full modified vector is returned. The rotation
 constants (R1, R2, R3, R4) are given in Section 2.1.

 FUNCTION G(v[0..15], a, b, c, d, x, y)
 |
 | v[a] := (v[a] + v[b] + x) mod 2**w
 | v[d] := (v[d] ^ v[a]) >>> R1
 | v[c] := (v[c] + v[d]) mod 2**w
 | v[b] := (v[b] ^ v[c]) >>> R2
 | v[a] := (v[a] + v[b] + y) mod 2**w
 | v[d] := (v[d] ^ v[a]) >>> R3
 | v[c] := (v[c] + v[d]) mod 2**w
 | v[b] := (v[b] ^ v[c]) >>> R4
 |
 | RETURN v[0..15]
 |
 END FUNCTION.

Saarinen & Aumasson Informational [Page 7]

*RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 9

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Cryptographic Functions in ReWire
Functions are just Functions

Blake2 Mixing Function Pseudocode *

RFC 7693 BLAKE2 Crypto Hash and MAC November 2015

3. BLAKE2 Processing

3.1. Mixing Function G

 The G primitive function mixes two input words, "x" and "y", into
 four words indexed by "a", "b", "c", and "d" in the working vector
 v[0..15]. The full modified vector is returned. The rotation
 constants (R1, R2, R3, R4) are given in Section 2.1.

 FUNCTION G(v[0..15], a, b, c, d, x, y)
 |
 | v[a] := (v[a] + v[b] + x) mod 2**w
 | v[d] := (v[d] ^ v[a]) >>> R1
 | v[c] := (v[c] + v[d]) mod 2**w
 | v[b] := (v[b] ^ v[c]) >>> R2
 | v[a] := (v[a] + v[b] + y) mod 2**w
 | v[d] := (v[d] ^ v[a]) >>> R3
 | v[c] := (v[c] + v[d]) mod 2**w
 | v[b] := (v[b] ^ v[c]) >>> R4
 |
 | RETURN v[0..15]
 |
 END FUNCTION.

Saarinen & Aumasson Informational [Page 7]

Reference in ReWire (pretty printed by hand)

_G :: Reg → Reg → Reg → Reg → Reg → Reg → M ()
_G a b c d x y = do

a <== a + b + x
d <== (d ^ a) >>> _R1
c <== c + d
b <== (b ^ c) >>> _R2
a <== a + b + y
d <== (d ^ a) >>> _R3
c <== c + d
b <== (b ^ c) >>> _R4

*RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 9

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Checking against RFC7369
Screenshot from RFC7693, Appendix A

Run Tests in Haskell
$ ghci Blake2b-reference.hs
GHCi, version 9.2.5: https://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling (Blake2b-reference.hs, interpreted)
ghci> _BLAKE2b_512 "abc"

BA 80 A5 3F 98 1C 4D 0D 6A 27 97 B6 9F 12 F6 E9
4C 21 2F 14 68 5A C4 B7 4B 12 BB 6F DB FF A2 D1
7D 87 C5 39 2A AB 79 2D C2 52 D5 DE 45 33 CC 95
18 D3 8A A8 DB F1 92 5A B9 23 86 ED D4 00 99 23

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 10

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Checking against RFC7369
Screenshot from RFC7693, Appendix A

Run Tests in Haskell
$ ghci Blake2b-reference.hs
GHCi, version 9.2.5: https://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling (Blake2b-reference.hs, interpreted)
ghci> _BLAKE2b_512 "abc"

BA 80 A5 3F 98 1C 4D 0D 6A 27 97 B6 9F 12 F6 E9
4C 21 2F 14 68 5A C4 B7 4B 12 BB 6F DB FF A2 D1
7D 87 C5 39 2A AB 79 2D C2 52 D5 DE 45 33 CC 95
18 D3 8A A8 DB F1 92 5A B9 23 86 ED D4 00 99 23

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 10

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Pseudocode⇝ Reference Algorithm⇝ Staged Algorithm

Blake2 Function Pseudocode*
FUNCTION F(h[0..7], m[0..15], t, f)
|
| // Initialize local work vector v[0..15]
| ...
| v[12] := v[12] ^ (t mod 2**w)
| v[13] := v[13] ^ (t >> w)
| IF f = TRUE THEN
| | v[14] := v[14] ^ 0xFF..FF
| END IF.
|
| // Cryptographic mixing
| ...
|
| FOR i = 0 TO 7 DO
| | h[i] := h[i] ^ v[i] ^ v[i + 8]
| END FOR.
|
| RETURN h[0..7]
|
END FUNCTION.

* From: RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication

Function

Reference Algorithm

_F :: W 128 → Bit → M ()
_F t f = do

init_work_vector
V12 <== V12 ^ lowword t
V13 <== V13 ^ highword t
if f then

V14 <== V13 ^ 0xF. . .F
else

return ()
cryptomixing
xor_two_halves

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 11

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Pseudocode⇝ Reference Algorithm⇝ Staged Algorithm

Blake2 Function Pseudocode*
FUNCTION F(h[0..7], m[0..15], t, f)
|
| // Initialize local work vector v[0..15]
| ...
| v[12] := v[12] ^ (t mod 2**w)
| v[13] := v[13] ^ (t >> w)
| IF f = TRUE THEN
| | v[14] := v[14] ^ 0xFF..FF
| END IF.
|
| // Cryptographic mixing
| ...
|
| FOR i = 0 TO 7 DO
| | h[i] := h[i] ^ v[i] ^ v[i + 8]
| END FOR.
|
| RETURN h[0..7]
|
END FUNCTION.

* From: RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication

Function

Staged Algorithm

_F :: W 128 → Bit → Re ()
_F t f = do

stage $ init_work_vector
V12 <== V12 ^ lowword t
V13 <== V13 ^ highword t
if f then

V14 <== V13 ^ 0xF. . .F
else

return ()
stage cryptomixing
stage xor_two_halves

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 11

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Staging Theorems

Theorem (Staging Theorem)

For all snapshots (i , s , o) and input streams (i′ ◁ is),

J stage x >>= f K (i, s, o) (i′ ◁ is) = (i, s, o) ◁ J f a K (i′, s′ , Nothing) is
where
(a , s′) = runST J x K s

Each flavor of stage has a similar theorem

All are formalized and proved in Coq

*The symbol ◁ is stream “cons”.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 12

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Correctness Theorem*

refb2b: reference version of BLAKE2b
cycle formalizes the action of the device on a single input
Let staged be the unrolling:

staged = cycle Start >>= cycle >>= cycle >>= cycle >>= cycle >>= cycle

Theorem (Correctness)

Staged and Reference Algorithms compute identical values on identical inputs; i.e.,

o = a

where
(a , _) = runST (refb2b (m0, m1, m2, m3, p)) s
(_ ◁ . . . ◁ _︸ ︷︷ ︸
wait 6 cycles

◁ (_, _, o)) =JstagedK (i, s, o) (m0 ◁ m1 ◁ m2 ◁ m3 ◁ p ◁ is)

*Proved in Coq using staging theorems.Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 13

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Summary, Conclusions, & Future Work

IEEE Spectrum 12/22/23

Hardware Verification in the large

DARPA DPRIVE Project with
Duality; starting Phase 3

Verifying Aggressively Optimized
Hardware Accelerators for FHE

See Formalized High Level
Synthesis with Applications to
Cryptographic Hardware [NASA Formal

Methods 2023] for semantics, etc.

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 14

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

Summary, Conclusions, & Future Work

Summary
Functional HLS is a vector for transferring software science to hardware design
Temporal Staging slices computations by clock cycle, whereas classic SW staging
separates static from dynamic [Scherlis,Taha,. . .]

Related Work
Previous work [NFM23] used ReWire to model/verify complex, highly optimized Verilog
designs for FHE
Here, we use ReWire for design, formal verification, and implementation

Performance
Extensive performance evaluation TBD
. . .although individual designs (e.g., BLAKE2b) are sufficiently performant [Moore23] to be
included with ASICs currently in fabrication

Future Work
At Two Six, other crypto algorithms (e.g., AES256) have been implemented & formally
verified using Temporal Staging in ReWire

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 15

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

THANKS!

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 16

	Overview
	Background on ReWire
	Temporal Staging Methodology
	Correct-by-Construction BLAKE2
	Conclusions & Future Work

