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Temporal Staging for Correct-by-Construction Cryptographic Hardware

o Software program transformation approach [sursii, Dijkstra, sehertis.. . 1 applied to deriving
correct, performant hardware
o Semantics-preserving transformations : Reference ~ ... ~» Implementation
o Here, all transformations take place in a functional HLS language
o Resulting formally verified hardware designs included in FHE accelerators currently
being fabricated
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Temporal Staging for Correct-by-Construction Cryptographic Hardware

o Software program transformation approach [sursii, Dijkstra, sehertis.. . 1 applied to deriving
correct, performant hardware

o Semantics-preserving transformations : Reference ~ ... ~» Implementation
o Here, all transformations take place in a functional HLS language

o Resulting formally verified hardware designs included in FHE accelerators currently

being fabricated
o Meet my coauthor, Yakir Forman (who did 90% of the work):
Spring 2022
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Schrédinger Operators with Asymmetric, Smooth, Cosine-Like
Sampling Functions
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ReWire Functional High Level Synthesis Language

ReWire
compiler

Synthesizable

HDL

©

Inherits Haskell’s good qualities
o Pure functions, strong types, monads, equational reasoning, etc.

o ReWire compiler produces Verilog, VHDL, or FIRRTL
o Freely Available: https://github.com/twosixlabs/rewire
o ReWire Formalization in ITP Systems (Isabelle, Coq, Agda)
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Carry-Save Adders in ReWire
Carry-Save Addition (CSA) as Pure Function
f :: W8 — W8 — W8 — (W8, W8)
f abc = ((a&b) |l (a&c) |l (b&c))<<’0 , a®dbeé&c)

Running in GHCi

ghci> £ 40 25 20
(48,37)

ghci> £ 41 25 20
(50, 36)

—~
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Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function
f :: W8 — W8 — W8 — (W8, W8)

f abec = (((a&b) || (a&c) |] (b&c))<<'0 , a®b®&c)
CSA Device in ReWire
csa :: (W8, W8, W8) — Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do
i < signal (f a b c)
csa 1 -— N.b., tail-recursive

Q) twosix JNL

TEcHNoLoGIEs Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oceo oo



Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oo oceo oo 000000 000

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function
f :: W8 — W8 — W8 — (W8, W8)

f abec = (((a&b) || (a&c) |] (b&c))<<'0 , a®b®&c)
CSA Device in ReWire
csa :: (W8, W8, W8) — Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do
i < signal (f a b c)
csa 1 -— N.b., tail-recursive

Stream Semantics [NEM23]
((40,25,20),(),(0,0)), ((41,25,20),(),(48,37)), ((40,25,20),(),(50,36)), ...

tick0 tickl tick2
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Carry-Save Adders in ReWire
Carry-Save Addition (CSA) as Pure Function
f :: W8 — W8 — W8 — (W8, W8)
f abec = (((a&b) || (a&c) |] (b&c))<<'0 , a®b®&c)
CSA Device in ReWire
csa :: (W8, W8, W8) — Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do
i < signal (f a b c)
csa 1 -— N.b., tail-recursive

Stream Semantics [NEM23]

(48,37)

£ 40 25 20

((40,25,20),(),(0,0)), ((41,25,20),(),(48,37)), ((40,25,20),(),(50,36)),

(50,36) = £ 41 25 20
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Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function
f :: W8 — W8 — W8 — (W8, W8)

f abec = (((a&b) || (a&c) |] (b&c))<<'0 , a®b®&c)
CSA Device in ReWire
csa :: (W8, W8, W8) — Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do
i < signal (f a b c)
csa 1 -— N.b., tail-recursive
ReWire Compiler

$ rwe CSA.hs —--verilog
$ 1s -1 CSA.v
—rw-r——r—— 1 william.harrison staff 2159 Nov 14 08:33 CSA.v
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Carry-Save Adders in ReWire

“Curried” CSA takes inputs one per cycle

data Ans a = DC | Val a -- "don’t care" and "valid"
pcsa :: W8 — Re W8 () (Ans (W8, W8)) ()
pcsa a = do

b < signal DC

c <4 signal DC

a’ + signal (Val (f a b c))
pcsa a’

Stream Semantics

(40, (),DC), (25, (),DC), (20, (),DC), (41,(),Vval (48,37)), ..
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Semantics & Staging Functions
Mealy Machine Corresponding ReWire monad
inputs i - outputs o type M s = StateT s Identity
internal > —— ReWire monad
output & next state logic . .
type Re i s o = ReacT i o (M s)
storage S
\—A >or produce inputs & outputs syncl
storage feedback signal :: o - Re i s o i

o Formal Semantics w23 is stream of “snapshots” : Stream (i, s, o)
o Staging Functions
stage :: M s a - Re i s (Maybe o) i
stage x = do
1ift x
i’ 4 signal Nothing
return i’

¢ twosix “INL

TECHNOLOGIES |

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)




Overview Background on ReWire al Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oo ooe 000000 000
Semantics & Staging Functions
Mealy Machine Corresponding ReWire monad
inputs i ‘ outputs o type M s = StateT s Identity
internal > —— ReWire monad
output & next state logic . .
type Re i s o = ReacT i o (M s)
storage S
\—A >or broduce inputs & outputs synct
storage feedback signal 0O 3 Re is oi

o Formal Semantics w23 is stream of “snapshots” : Stream (i, s, o)
o Staging Functions

o (stage x) turns computation x into single cycle of hardware device
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Temporal Staging Methodology
Reference Staged i Staging |
FEEVCERERG Algorithm Algorithm Theorems
4 N\
Coq
1EIEIE . Verification )
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Staging transformation: applying stage functions to parts of reference algorithm

stage functions are akin to lift functions of monad transformers
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Temporal Staging Methodology

Imperative Algorithm

Staged Algorithm in ReWire

\ a, a,a; — \a -
do do
X; a; a, « stage (x, a,)
X, a, a, « stage (x, a,)
X; a, stage (x; a;)
o Pseudocode Transliterated to Haskell o Performant HW via ReWire compiler
o “Imperative” = use State Monad o Coq Theorems relate stage(x;) to x;
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BLAKE?2 Case Study
Background

o Cryptographic hash function
o Input: message blocks of 16 64-bit words
o Output: 8 64-bit words
o Can be used for pseudorandom number generation, e.g., in openFHE library
o Defined as imperative pseudocode in
o RFC 7693: BLAKE? Cryptographic Hash and Message Authentication Function
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Cryptographic Functions in ReWire

Functions are just Functions

Blake2 Mixing Function Pseudocode *

FUNCTION G( v[0..15], a, b, ¢, d, %X, v )

v[a] := (v[a] + v[b] + x) mod 2**w
v[d] := (v[d] " v[a]) >>> R1

v[c] := (v[c] + v[d]) mod 2**w
v[b] := (v[b] " v[c]) >>> R2

v[a] := (v[a] + v[b] + y) mod 2**w
v[d] := (v[d] " v[a]) >>> R3

v[c] := (v[c] + v[d]) mod 2**w
v[b] := (v[b] ~ v[c]) >>> R4
RETURN v[0..15]

END FUNCTION.

*RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

() twosix CEHL

TECHNOLOGIES oy

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)



Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oo 000 oo 0@0000 000

Cryptographic Functions in ReWire

Functions are just Functions

Blake2 Mixing Function Pseudocode * Reference in ReWire (pretty printed by hand)
FUNCTION G( v[0..15], a, b, ¢, d, X, ¥ ) _G :: Reg - Reg — Reg — Reg — Reg — Reg — M ()
_Gabcdxy=do
v[ia] := (v[a] + v[b] + x) mod 2**w __
v[d] := (v[d] ~ v[a]) >>> Rl a < a +Ab + x
vlc] := (v[c] + v[d]) mod 2**w d <== (d a) >>> _R1
v[b] := (v[b] ~ v[c]) >>> R2 c<== c + d
via] := (v[a] + v[b] + y) mod 2**w __ .
v[d] := (v[d] " v[a]) >>> R3 b < (b ~ c) >>> _R2
vlc] := (v[c] + v[d]) mod 2**w a<==a+b+y
v[b] := (v[b] "~ v[c]) >>> R4 d <== (d ~ a) >>> _R3
RETURN v[0..15] c <==c +d
b <== (b *~ c) >>> _R4

END FUNCTION.

*RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function
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Checking against RFC7369

Screenshot from RFC7693, Appendix A

¢

BLAKE2b-512("abc") = BA 8@ A5 3F 98 1C 4D @D 6A 27 97 B6 9F 12 F6 E9

4C 21 2F 14 68 5A C4 B7 4B 12 BB 6F DB FF A2 D1
7D 87 C5 39 2A AB 79 2D (C2 52 D5 DE 45 33 CC 95
18 D3 8A A8 DB F1 92 5A B9 23 86 ED D4 00 99 23
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Checking against RFC7369

Screenshot from RFC7693, Appendix A
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BLAKE2b-512("abc") = BA 8@ A5 3F 98
4C 21 2F 14 68
7D 87 C5 39 2A
18 D3 8A A8 DB

1C
5A
AB
F1

4D
C4
79
92

@D
B7
2D
5A

6A
4B
Cc2
B9

27
12
52
23

97
BB
D5
86

B6
6F
DE
ED

9F
DB
45

12
FF
33
00

F6
A2
cc
99

E9
D1
95
23

Run Tests in Haskell
$ ghci Blake2b-reference.hs

ghci> _BLAKE2b_512 "abc"

BA 80 A5 3F
4C 21 2F 14
7D 87 C5 39
18 D3 8A A8
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Pseudocode ~~ Reference Algorithm ~~ Staged Algorithm

Blake2 Function Pseudocode*

FUNCTION F( h([0..7], m[0..15], t,
// Initialize local work vector v[O0..

v[12] := v[12] ~ (t mod 2xxw)

v[13] := v[13] *~ (t >> w)

IF f = TRUE THEN

| v[14] := v[14] ~ OxFF..FF
END IF.

// Cryptographic mixing

I

[

I

I

I

I

I

I

I

I

|

|

I FOR i = 0 TO 7 DO
| I hili]
I

I

I

I

E

END FOR.
RETURN h[0..7]
ND FUNCTION.

TECHNOLOGIES i \iow oo

é) twosix JNL

h{i] ~ v[i] ~ v[i + 8]

Reference Algorithm

_F
F

W 128 — Bit = M ()

init_work_vector
V12 <== V12 ~ lowword t
V13 <== V13 ~ highword t
if f then

V14 <== V13 ~ OxF...F

else
return ()
cryptomixing

xor_two_halves

oy Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)
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Pseudocode ~~ Reference Algorithm ~~ Staged Algorithm

Blake2 Function Pseudocode*

FUNCTION F(

v[1l2] :=

|

|

|

|

|

|

|

|

|

|

|

|

| FOR i =
| | h[i] := h[i]
| END FOR.

|

|

|

E

RETURN h[0..7]

ND FUNCTION.

twosix JNL
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)

h([0..7], m[O..

// Initialize local work vector v[O0..

v[1l2]
v[13] := v[13] *
IF f = TRUE THEN
| v[1l4] v[1l4]
END IF.

// Cryptographic mixing

0 TO 7 DO

~

Staged Algorithm

15], ¢, £) Foo:

Ftf

do

15]

Conclusions & Future Work
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W 128 — Bit — Re ()

stage $ init_work_vector

(t mod 2x*w)
(t >> w)

V12 <== V12
V13 <== V13
if f then
V14 <==
else
return

~ OxFF..FF

stage

v[i] ~ v[i + 8] stage

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)
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Staging Theorems

Theorem (Staging Theorem)
For all snapshots (i , s, o) and input streams (1’ < is),

[stagex >>=£f] (i,s,0) (i’ < is)=(i, s, 0) < [fa] (i, s’, Nothing) is
where

(a, s’) =runST[x]s

o Each flavor of st age has a similar theorem

o All are formalized and proved in Coq

*The symbol < is stream “cons”.
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Correctness Theorem™

o refb2b: reference version of BLAKE2b
o cycle formalizes the action of the device on a single input
o Let staged be the unrolling:

staged = cycle Start >>= cycle >>= cycle >>= cycle >>= cycle >>= cycle
Theorem (Correctness)

Staged and Reference Algorithms compute identical values on identical inputs; i.e.,
0o=a

where
(a, _) = runST (refb2b (mg, mj, mo, m3, p)) s
<4...d <(_,_,0)) =|staged| (i, s, 0)(mpg < m; <mpg <m3 < p < is
( _ (L -,0)) =[staged] ( )(mo <m <my <m3 < p < is)

wait 6 cycles
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Summary, Conclusions, & Future Work

TEEE SPECHTUM Chips to Computs With Encrypted Data Are Coming.

CHIPS TO COMPUTE WITH ; o
ENCEYPTED DATA ARE COMING Hardware Verification in the large

o DARPA DPRIVE Project with
Duality; starting Phase 3

o Verifying Aggressively Optimized
Hardware Accelerators for FHE

o See Formalized High Level
Synthesis with Applications to
Cryptographic Hardware Nasa Forma
Methods 2023] fOr semantics, etc.

IEEE Spectrum 12/22/23
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Summary, Conclusions, & Future Work

o Summary
o Functional HLS is a vector for transferring software science to hardware design
o Temporal Staging slices computations by clock cycle, whereas classic SW staging
separates static from dynamic (scherlis,Taha,. . .]
o Related Work
o Previous work nev23 used ReWire to model/verify complex, highly optimized Verilog
designs for FHE
o Here, we use ReWire for design, formal verification, and implementation
o Performance
o Extensive performance evaluation TBD
o ...although individual designs (e.g., BLAKE2b) are sufficiently performant moore23) to be
included with ASICs currently in fabrication
o Future Work
o At Two Six, other crypto algorithms (e.g., AES256) have been implemented & formally
verified using Temporal Staging in ReWire
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