Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
e0 [e]e]e} oo 000000 [e]e]e}

Temporal Staging for Correct-by-Construction Cryptographic
Hardware*

Yakir Forman ! Bill Harrison 2

ITwo Six Technologies, Inc.

2Idaho National Laboratories

* This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA)
program Data Protection in Virtual Environments (DPRIVE). The views, opinions and/or findings expressed are
those of the author(s) and should not be interpreted as representing the official views or policies of the Department
of Defense or the U.S. Government.

¢ twosix INL

TECHNOLOGIES

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oce [e]e]e} oo 000000 [e]e]e}

Temporal Staging for Correct-by-Construction Cryptographic Hardware

o Software program transformation approach [sursii, Dijkstra, sehertis.. . 1 applied to deriving
correct, performant hardware
o Semantics-preserving transformations : Reference ~ ... ~» Implementation
o Here, all transformations take place in a functional HLS language
o Resulting formally verified hardware designs included in FHE accelerators currently
being fabricated

¢ twosix NL

TECHNOLOGIES

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oce [e]e]e} oo 000000 [e]e]e}

Temporal Staging for Correct-by-Construction Cryptographic Hardware

o Software program transformation approach [sursii, Dijkstra, sehertis.. . 1 applied to deriving
correct, performant hardware

o Semantics-preserving transformations : Reference ~ ... ~» Implementation
o Here, all transformations take place in a functional HLS language

o Resulting formally verified hardware designs included in FHE accelerators currently

being fabricated
o Meet my coauthor, Yakir Forman (who did 90% of the work):
Spring 2022

Localization and Cantor Spectrum for Quasiperiodic Discrete

Schrédinger Operators with Asymmetric, Smooth, Cosine-Like
Sampling Functions

Yakir Moshe Forman
Yale University Graduate School of Arts and Sciences, yakir.forman@yale.edu

¢ twosix INL

NOLOGIES |

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oo ®00 oo 000000 ooo

ReWire Functional High Level Synthesis Language

ReWire
compiler

Synthesizable

HDL

©

Inherits Haskell’s good qualities
o Pure functions, strong types, monads, equational reasoning, etc.

o ReWire compiler produces Verilog, VHDL, or FIRRTL
o Freely Available: https://github.com/twosixlabs/rewire
o ReWire Formalization in ITP Systems (Isabelle, Coq, Agda)

¢ twosix NL

NOLOGIES |

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

https://github.com/twosixlabs/rewire

Correct-by-Construction BLAKE2 Conclusions & Future Work

Overview Background on ReWire Temporal Staging Methodology
[e]e) oeo [e]e] 000000 [e]e]e)
Carry-Save Adders in ReWire
Carry-Save Addition (CSA) as Pure Function
f :: W8 — W8 — W8 — (W8, W8)
f abc = ((a&b) |l (a&c) |l (b&c))<<’0 , a®dbeé&c)

Running in GHCi

ghci> £ 40 25 20
(48,37)

ghci> £ 41 25 20
(50, 36)

—~
¢ twosix NL
) Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

TECHNOLOGIES i

[e]e] 000000 [e]e]e}

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function
f :: W8 — W8 — W8 — (W8, W8)

f abec = (((a&b) || (a&c) |] (b&c))<<'0 , a®b®&c)
CSA Device in ReWire
csa :: (W8, W8, W8) — Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do
i < signal (f a b c)
csa 1 -— N.b., tail-recursive

Q) twosix JNL

TEcHNoLoGIEs Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oceo oo

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oo oceo oo 000000 000

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function
f :: W8 — W8 — W8 — (W8, W8)

f abec = (((a&b) || (a&c) |] (b&c))<<'0 , a®b®&c)
CSA Device in ReWire
csa :: (W8, W8, W8) — Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do
i < signal (f a b c)
csa 1 -— N.b., tail-recursive

Stream Semantics [NEM23]
((40,25,20),(),(0,0)), ((41,25,20),(),(48,37)), ((40,25,20),(),(50,36)), ...

tick0 tickl tick2

¢ twosix INL

CHNOLOGIES | ooy

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2
oo oceo oo

Conclusions & Future Work
000000 [e]e]e)
Carry-Save Adders in ReWire
Carry-Save Addition (CSA) as Pure Function
f :: W8 — W8 — W8 — (W8, W8)
f abec = (((a&b) || (a&c) |] (b&c))<<'0 , a®b®&c)
CSA Device in ReWire
csa :: (W8, W8, W8) — Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do
i < signal (f a b c)
csa 1 -— N.b., tail-recursive

Stream Semantics [NEM23]

(48,37)

£ 40 25 20

((40,25,20),(),(0,0)), ((41,25,20),(),(48,37)), ((40,25,20),(),(50,36)),

(50,36) = £ 41 25 20

twosix JNL

TECHNOLOGIES i

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
[o]e] oeo oo 000000 [e]e]e}

Carry-Save Adders in ReWire

Carry-Save Addition (CSA) as Pure Function
f :: W8 — W8 — W8 — (W8, W8)

f abec = (((a&b) || (a&c) |] (b&c))<<'0 , a®b®&c)
CSA Device in ReWire
csa :: (W8, W8, W8) — Re (W8, W8, W8) () (W8, W8) ()
csa (a, b, c) = do
i < signal (f a b c)
csa 1 -— N.b., tail-recursive
ReWire Compiler

$ rwe CSA.hs —--verilog
$ 1s -1 CSA.v
—rw-r——r—— 1 william.harrison staff 2159 Nov 14 08:33 CSA.v

6 two

CHNOLOGIES

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oo oceo oo 000000 000

Carry-Save Adders in ReWire

“Curried” CSA takes inputs one per cycle

data Ans a = DC | Val a -- "don’t care" and "valid"
pcsa :: W8 — Re W8 () (Ans (W8, W8)) ()
pcsa a = do

b < signal DC

c <4 signal DC

a’ + signal (Val (f a b c))
pcsa a’

Stream Semantics

(40, (),DC), (25, (),DC), (20, (),DC), (41,(),Vval (48,37)), ..

Q) twosix JNL

TEcHNoLoGIEs Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire al Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
[e]e] ooe 000000 [e]e]e}
Semantics & Staging Functions
Mealy Machine Corresponding ReWire monad
inputs i - outputs o type M s = StateT s Identity
internal > —— ReWire monad
output & next state logic . .
type Re i s o = ReacT i o (M s)
storage S
\—A >or produce inputs & outputs syncl
storage feedback signal :: o - Re i s o i

o Formal Semantics w23 is stream of “snapshots” : Stream (i, s, o)
o Staging Functions
stage :: M s a - Re i s (Maybe o) i
stage x = do
1ift x
i’ 4 signal Nothing
return i’

¢ twosix “INL

TECHNOLOGIES |

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire al Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oo ooe 000000 000
Semantics & Staging Functions
Mealy Machine Corresponding ReWire monad
inputs i ‘ outputs o type M s = StateT s Identity
internal > —— ReWire monad
output & next state logic . .
type Re i s o = ReacT i o (M s)
storage S
\—A >or broduce inputs & outputs synct
storage feedback signal 0O 3 Re is oi

o Formal Semantics w23 is stream of “snapshots” : Stream (i, s, o)
o Staging Functions

o (stage x) turns computation x into single cycle of hardware device

¢ twosix “INL

TECHNOLOGIES |

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview
[o]e]

Background on ReWire

Temporal Staging Methodology
LJe)

Correct-by-Construction BLAKE2

Conclusions & Future Work

- ~

Temporal Staging Methodology
Reference Staged i Staging |
FEEVCERERG Algorithm Algorithm Theorems
4 N\
Coq
1EIEIE . Verification)

¢ two

NOLOGIES |y

Staging transformation: applying stage functions to parts of reference algorithm

stage functions are akin to lift functions of monad transformers

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire

[e]e] [e]e]e}

Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oe 000000 [e]e]e}

Temporal Staging Methodology

Imperative Algorithm

Staged Algorithm in ReWire

\ a, a,a; — \a -
do do
X; a; a, « stage (x, a,)
X, a, a, « stage (x, a,)
X; a, stage (x; a;)
o Pseudocode Transliterated to Haskell o Performant HW via ReWire compiler
o “Imperative” = use State Monad o Coq Theorems relate stage(x;) to x;

¢ twosix NL

TECHNOLOGIES

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work

BLAKE?2 Case Study
Background

o Cryptographic hash function
o Input: message blocks of 16 64-bit words
o Output: 8 64-bit words
o Can be used for pseudorandom number generation, e.g., in openFHE library
o Defined as imperative pseudocode in
o RFC 7693: BLAKE? Cryptographic Hash and Message Authentication Function

¢ twosix INL

TECHNOLOGIES

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
[e]e] [e]e]e} [e]e] O@e0000 [e]e]e}

Cryptographic Functions in ReWire

Functions are just Functions

Blake2 Mixing Function Pseudocode *

FUNCTION G(v[0..15], a, b, ¢, d, %X, v)

v[a] := (v[a] + v[b] + x) mod 2**w
v[d] := (v[d] " v[a]) >>> R1

v[c] := (v[c] + v[d]) mod 2**w
v[b] := (v[b] " v[c]) >>> R2

v[a] := (v[a] + v[b] + y) mod 2**w
v[d] := (v[d] " v[a]) >>> R3

v[c] := (v[c] + v[d]) mod 2**w
v[b] := (v[b] ~ v[c]) >>> R4
RETURN v[0..15]

END FUNCTION.

*RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

() twosix CEHL

TECHNOLOGIES oy

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
oo 000 oo 0@0000 000

Cryptographic Functions in ReWire

Functions are just Functions

Blake2 Mixing Function Pseudocode * Reference in ReWire (pretty printed by hand)
FUNCTION G(v[0..15], a, b, ¢, d, X, ¥) _G :: Reg - Reg — Reg — Reg — Reg — Reg — M ()
_Gabcdxy=do
v[ia] := (v[a] + v[b] + x) mod 2**w __
v[d] := (v[d] ~ v[a]) >>> Rl a < a +Ab + x
vlc] := (v[c] + v[d]) mod 2**w d <== (d a) >>> _R1
v[b] := (v[b] ~ v[c]) >>> R2 c<== c + d
via] := (v[a] + v[b] + y) mod 2**w __ .
v[d] := (v[d] " v[a]) >>> R3 b < (b ~ c) >>> _R2
vlc] := (v[c] + v[d]) mod 2**w a<==a+b+y
v[b] := (v[b] "~ v[c]) >>> R4 d <== (d ~ a) >>> _R3
RETURN v[0..15] c <==c +d
b <== (b *~ c) >>> _R4

END FUNCTION.

*RFC 7693: BLAKE2 Cryptographic Hash and Message Authentication Function

é) twosix JNL

TECHNOLOGIES i Nojongl oot Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire
[o]e] [e]e]e}

Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
[e]e] [e]e] lelele] [e]e]e}

Checking against RFC7369

Screenshot from RFC7693, Appendix A

¢

BLAKE2b-512("abc") = BA 8@ A5 3F 98 1C 4D @D 6A 27 97 B6 9F 12 F6 E9

4C 21 2F 14 68 5A C4 B7 4B 12 BB 6F DB FF A2 D1
7D 87 C5 39 2A AB 79 2D (C2 52 D5 DE 45 33 CC 95
18 D3 8A A8 DB F1 92 5A B9 23 86 ED D4 00 99 23

twosix ML

CHNOLOGIES |

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire

Temporal Staging Methodology
[o]e] [e]e]e} oo

Checking against RFC7369

Screenshot from RFC7693, Appendix A

Correct-by-Construction BLAKE2
008000

Conclusions & Future Work
[e]e]e}

BLAKE2b-512("abc") = BA 8@ A5 3F 98
4C 21 2F 14 68
7D 87 C5 39 2A
18 D3 8A A8 DB

1C
5A
AB
F1

4D
C4
79
92

@D
B7
2D
5A

6A
4B
Cc2
B9

27
12
52
23

97
BB
D5
86

B6
6F
DE
ED

9F
DB
45

12
FF
33
00

F6
A2
cc
99

E9
D1
95
23

Run Tests in Haskell
$ ghci Blake2b-reference.hs

ghci> _BLAKE2b_512 "abc"

BA 80 A5 3F
4C 21 2F 14
7D 87 C5 39
18 D3 8A A8

é) twosix SGNL

CHNOLOGIES |

98
68
2A
DB

1C
5A
AB
Fl

4D
Cc4
79
92

0D
B7
2D
5A

6A
4B
Cc2
B9

27
12
52
23

97
BB
D5
86

B6
6F
DE
ED

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

9F
DB
45
D4

12
FFE
33
00

F6
A2
cc
99

E9
D1
95
23

Overview Background on ReWire
[o]e] [e]e]e}

Temporal Staging Methodology
[e]e]

Correct-by-Construction BLAKE2

Conclusions & Future Work
[e]e]e}

Pseudocode ~~ Reference Algorithm ~~ Staged Algorithm

Blake2 Function Pseudocode*

FUNCTION F(h([0..7], m[0..15], t,
// Initialize local work vector v[O0..

v[12] := v[12] ~ (t mod 2xxw)

v[13] := v[13] *~ (t >> w)

IF f = TRUE THEN

| v[14] := v[14] ~ OxFF..FF
END IF.

// Cryptographic mixing

I

[

I

I

I

I

I

I

I

I

|

|

I FOR i = 0 TO 7 DO
| I hili]
I

I

I

I

E

END FOR.
RETURN h[0..7]
ND FUNCTION.

TECHNOLOGIES i \iow oo

é) twosix JNL

h{i] ~ v[i] ~ v[i + 8]

Reference Algorithm

_F
F

W 128 — Bit = M ()

init_work_vector
V12 <== V12 ~ lowword t
V13 <== V13 ~ highword t
if f then

V14 <== V13 ~ OxF...F

else
return ()
cryptomixing

xor_two_halves

oy Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire
[o]e] [e]e]e}

Temporal Staging Methodology Correct-by-Construction BLAKE2
oo

[e]ele] Jele]

Pseudocode ~~ Reference Algorithm ~~ Staged Algorithm

Blake2 Function Pseudocode*

FUNCTION F(

v[1l2] :=

|

|

|

|

|

|

|

|

|

|

|

|

| FOR i =
| | h[i] := h[i]
| END FOR.

|

|

|

E

RETURN h[0..7]

ND FUNCTION.

twosix JNL

TECHNOLOGIES i \iow oo

)

h([0..7], m[O..

// Initialize local work vector v[O0..

v[1l2]
v[13] := v[13] *
IF f = TRUE THEN
| v[1l4] v[1l4]
END IF.

// Cryptographic mixing

0 TO 7 DO

~

Staged Algorithm

15], ¢, £) Foo:

Ftf

do

15]

Conclusions & Future Work
[e]e]e}

W 128 — Bit — Re ()

stage $ init_work_vector

(t mod 2x*w)
(t >> w)

V12 <== V12
V13 <== V13
if f then
V14 <==
else
return

~ OxFF..FF

stage

v[i] ~ v[i + 8] stage

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

A

lowword t
~ highword t

V13 ~ OxF...F

()
cryptomixing
xor_two_halves

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
[o]e] [e]e]e} oo [e]e]ele] Te} [e]e]e}

Staging Theorems

Theorem (Staging Theorem)
For all snapshots (i , s, o) and input streams (1’ < is),

[stagex >>=£f] (i,s,0) (i’ < is)=(i, s, 0) < [fa] (i, s’, Nothing) is
where

(a, s’) =runST[x]s

o Each flavor of st age has a similar theorem

o All are formalized and proved in Coq

*The symbol < is stream “cons”.

¢ twosix L

TECHNOLOGIES

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
[o]e] [e]e]e} oo [e]e]elele] J [e]e]e}

Correctness Theorem™

o refb2b: reference version of BLAKE2b
o cycle formalizes the action of the device on a single input
o Let staged be the unrolling:

staged = cycle Start >>= cycle >>= cycle >>= cycle >>= cycle >>= cycle
Theorem (Correctness)

Staged and Reference Algorithms compute identical values on identical inputs; i.e.,
0o=a

where
(a, _) = runST (refb2b (mg, mj, mo, m3, p)) s
<4...d <(_,_,0)) =|staged| (i, s, 0)(mpg < m; <mpg <m3 < p < is
(_ (L -,0)) =[staged] ()(mo <m <my <m3 < p < is)

wait 6 cycles

¢ twosix NL

TECHNOLOGIES

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
[o]e] [e]e]e} oo

000000 @00

Summary, Conclusions, & Future Work

TEEE SPECHTUM Chips to Computs With Encrypted Data Are Coming.

CHIPS TO COMPUTE WITH ; o
ENCEYPTED DATA ARE COMING Hardware Verification in the large

o DARPA DPRIVE Project with
Duality; starting Phase 3

o Verifying Aggressively Optimized
Hardware Accelerators for FHE

o See Formalized High Level
Synthesis with Applications to
Cryptographic Hardware Nasa Forma
Methods 2023] fOr semantics, etc.

IEEE Spectrum 12/22/23

() twosix JNL

CHNOLOGIES |

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited) 14

Overview Background on ReWire Temporal Staging Methodology Correct-by-Construction BLAKE2 Conclusions & Future Work
[o]e] [e]e]e} oo 000000 oeo

Summary, Conclusions, & Future Work

o Summary
o Functional HLS is a vector for transferring software science to hardware design
o Temporal Staging slices computations by clock cycle, whereas classic SW staging
separates static from dynamic (scherlis,Taha,. . .]
o Related Work
o Previous work nev23 used ReWire to model/verify complex, highly optimized Verilog
designs for FHE
o Here, we use ReWire for design, formal verification, and implementation
o Performance
o Extensive performance evaluation TBD
o ...although individual designs (e.g., BLAKE2b) are sufficiently performant moore23) to be
included with ASICs currently in fabrication
o Future Work
o At Two Six, other crypto algorithms (e.g., AES256) have been implemented & formally
verified using Temporal Staging in ReWire

¢ twosix “INL.

NOLOGIES |y

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Overview
[e]e]

¢ two

TECHNOLOGIES

—
g

i Nofon 2

Background on ReWire
[e]e]e}

Correct-by-Construction BLAKE2

Temporal Staging Methodology
[e]e] 000000

THANKS!

Distribution Statement ‘A’ (Approved for Public Release, Distribution Unlimited)

Conclusions & Future Work
ocoe

	Overview
	Background on ReWire
	Temporal Staging Methodology
	Correct-by-Construction BLAKE2
	Conclusions & Future Work

