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There is no such thing as high assurance without high assurance hardware. High assurance hardware
is essential, because any and all high assurance systems ultimately depend on hardware that conforms
to, and does not undermine, critical system properties and invariants. And yet, high assurance hardware
development is stymied by the conceptual gap between formal methods and hardware description languages
used by engineers. This paper advocates a semantics-directed approach to bridge this conceptual gap. We
present a case study in the design of secure processors, which are formally derived via principled techniques
grounded in functional programming and equational reasoning. The case study comprises the development
of secure single- and dual-core variants of a single processor, both based on a common semantic specification
of the ISA. We demonstrate via formal equational reasoning that the dual-core processor respects a “no-
write-down” information flow policy. The semantics-directed approach enables a modular and extensible
style of system design and verification. The secure processors require only a very small amount of additional
code to specify and implement, and their security verification arguments are concise and readable. Our
approach rests critically on ReWire, a functional programming language providing a suitable foundation
for formal verification of hardware designs. This case study demonstrates both ReWire’s expressiveness as
a programming language and its power as a framework for formal, high-level reasoning about hardware
systems.
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1. INTRODUCTION
Semantic archaeology is the bane of high assurance computing. By “semantic archae-
ology”, we mean the process of developing a formal specification for an existing com-
puting artifact. Semantic archaeology is time-consuming and expensive, because such
artifacts are rarely built with formal semantics in mind, and, consequently, the formal
methods scientist must attempt a painstaking reconstruction of the system semantics
from informal and often incomplete natural language documents (if, indeed, such a re-
construction is even possible). The ReWire functional language [Procter et al. 2015b]
eliminates the need for semantic archaeology by enabling a “semantics-first” design
style, providing a source language with clear semantic foundations, a formal frame-
work for reasoning about security, and a compiler that produces efficient implementa-
tions.

In this work, we demonstrate the ReWire methodology, which is based on modular
monadic semantics [Liang et al. 1995; Harrison et al. 2009], via an in-depth case study
in the implementation and verification of secure processors. First, we develop a seman-
tic specification of an instruction set, which is synthesizable directly to a single-core
implementation of that ISA. Second, we use the same specification to derive a secure
single-core variant of this processor, with a shared execution unit that does not intro-
duce information flow between security domains. Third and finally, we develop from
the same specification a secure dual-core version of the processor, which implements
an internal storage channel for inter-core communication, and verify via equational
reasoning that the dual-core processor respects a “no-write-down” security policy.

The benefits of implementing separation in hardware are substantial [Popek and
Goldberg 1974; Wilding et al. 2010], because hardware-based security mechanisms
provide greater efficiency and increased confidence in system properties. The technical
burden of constructing and verifying a separating processor is, however, quite sub-
stantial. The case study in the present work demonstrates that ReWire substantially
lightens that burden by avoiding many of the pitfalls of traditional formal methods
practice. In particular, ReWire eliminates the need for a separate formal model of the
system that is independent of its implementation and, therefore, the possibility that
the formal system model does not actually reflect the behavior of the implementation.

The key contributions of this article are as follows. (1) A novel, semantics-driven,
modular style of hardware specification. We show that, in contrast with traditional
design techniques typified by mainstream hardware design languages like VHDL,
semantics-driven designs may easily be extended with new semantic features without
the need to rearchitect large portions of the design. (2) A semantics-guided approach to
hardware verification wherein separate semantic features may be reasoned about in-
dependently, thus reducing the complexity of formal verification both for new designs
and for existing designs extended with new features. This work extends a previous con-
ference paper by the authors [Procter et al. 2015b] with a more in-depth treatment of
the case study, including a formal security proof not previously published. More details
on the implementation of the ReWire compiler may be found in that paper.

The remainder of the article proceeds as follows. Section 2 discusses related work.
An overview of the design of the ReWire language is given in Section 3. Section 4 out-
lines a case study in the design of secure processors in ReWire. Section 5 details the
verification of these processors, and Section 6 discusses the performance characteris-
tics of circuits generated by the ReWire compiler. We conclude with a discussion of
future work in Section 7.
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2. RELATED WORK
The point of departure for this work is the application of ideas from monadic semantics
(esp., monads of resumptions and state and effect types) to the modeling and verifica-
tion of concurrent systems [Harrison and Hook 2009; Harrison et al. 2012; Harrison
and Procter 2015]. As design tools, these ideas have many virtues. They are flexi-
ble and expressive, support formal analysis, and can be readily evaluated with any
Haskell implementation. In this article we demonstrate that modular monadic seman-
tics, previously applied to software artifacts such as interpreters and compilers [Liang
1998] and operating system kernels [Cock et al. 2008; Harrison and Hook 2009], is also
useful in the realm of hardware design.

ReWire is a formally defined programming language for expressing reactive, concur-
rent, and parallel computations. ReWire is a computational λ-calculus [Moggi 1991]
and, as such, is conducive to formal verification [Goncharov and Schröder 2011] of,
in particular, security and safety properties [Harrison and Hook 2009; Harrison et al.
2012]. ReWire is a subset of Haskell, where the subset has been carefully chosen so
that every ReWire program may be compiled to working hardware implementations.
In this work, we present a substantial case study demonstrating that ReWire supports
the rapid development and implementation of provably secure hardware.

Delite is a compiler framework and runtime for parallel embedded domain-specific
languages (EDSLs) that has been retargeted to produce hardware [George et al. 2014].
Like Delite, ReWire is a DSL embedded in a functional language—in our case, Haskell;
in theirs, Scala. Both ReWire and Delite are virtualized DSLs, meaning that they
reuse substantial portions of their respective host language’s front ends. As virtualized
DSLs, both Delite and ReWire exhibit what Delite’s creators call “the three P’s” [Lee
et al. 2011]: productivity, performance and portability. But ReWire is based in mod-
ular monadic semantics [Liang 1998] applied to concurrency [Harrison and Procter
2015], and so it exhibits a fourth “P”: provability. Previous work [Harrison and Hook
2009; Harrison et al. 2012] demonstrates the utility of monadic types and structures
to verifying security and safety properties.

Edwards has commented on the difficulty of compiling from a C like language to
hardware [Edwards 2006]. This has led him and other collaborators to pursue Haskell
as a source [Zhai et al. 2015]. The use of functional abstractions, such as monads,
greatly speeds the construction of complex circuits, and makes their specifications
more extensible. Lazy pure functional languages readily accommodate parallelism;
e.g., in (e1, e2), the subexpressions e1 and e2 may be safely evaluated in parallel due
to the absence of side effects. Reactive resumption monads as used in ReWire refine
this inherent parallelism with a notion of interactivity and a notion of lock-step or
clocked sequentiality. C, possessing no inherent notion of timing granularity, does not
lend itself to the notions of computation found in hardware.

Other projects have explored the use of Haskell as a source language for hardware
synthesis. CλaSH [Baaij and Kuper 2014] is a compiler for a subset of Haskell to
VHDL. Like ReWire, CλaSH uses Haskell itself as a source language and requires
some limits be placed on the kinds of algebraic data types used as well as the basic
operating types. Chisel [Bachrach et al. 2012] takes a similar approach, but is embed-
ded in Scala rather than Haskell. ForSyDe is a platform to compile models of hard-
ware written in Haskell to circuitry [Sander and Jantsch 2004]. Neither CλaSH nor
ForSyDe, however, enables use of the modular monadic abstractions that are essential
to ReWire’s verification approach.

Hardware description languages (HDL) have been, and continue to be, an area of ac-
tive research. Lava is a family of domain-specific languages for hardware specification
embedded in Haskell [Bjesse et al. 1998; Gill 2011]. Primitives in Lava specify circuits
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at the level of signals, with Haskell essentially playing the role of a metaprogram-
ming language. ReWire, by contrast, compiles a subset of Haskell itself to hardware
circuits, including control flow constructs that are difficult to capture in deeply embed-
ded DSLs [Gill 2014], and relies on an abstract set of behavioral primitives.

Caisson [Li et al. 2011] is a variant of Verilog that implements on a classic security
type system [Volpano et al. 1996]. Therefore, security in Caisson inherits the strengths
and weaknesses of the purely type-based approach; i.e., security is statically check-
able, but some secure programs are excluded. Caisson programs can be transliterated
into Verilog and thereby synthesized to hardware. ReWire, by contrast, is a functional
monadic language and inherits the advantages of that style from Haskell: modularity
and extensibility of the language itself. ReWire’s design adheres to the DSL philoso-
phy: its design is flexible and agile. While ReWire also embraces strong static typing,
specifications structured with monads also come with “by-construction” properties use-
ful for formal verification [Harrison and Hook 2009].

Recent research has demonstrated the value of monadic semantics to the formal
specification and verification of x86- and ARM-based systems [Sarkar et al. 2009; Fox
and Myreen 2010]. In contrast to the present work, however, these efforts are not
focused on producing synthesizable artifacts; monads are used purely as a vehicle for
reasoning.

3. OVERVIEW OF REWIRE
The approach to semantics-driven hardware design advocated here centers on a com-
putational λ-calculus and programming language called ReWire, as well as the ReWire
compiler which implements this calculus. (We often refer to both the language and the
compiler as “ReWire” for short.) As a programming language, ReWire forms a subset
of Haskell, including support for a certain class of monads called reactive resumption
monads which embody the semantic essence of clocked, sequential, reactive computa-
tion. Subsetting Haskell has two major advantages: first, existing Haskell program-
ming environments and tools may be used for simulating and testing ReWire designs
in software, as ReWire designs are simply computations in a particular monad. Second,
during the initial stages of design one may utilize the full range of Haskell features—
higher order functions, recursive algebraic data types, and so on—to produce a high-
level specification, then use semantics-preserving source-to-source program transfor-
mations (either by hand or automatically) to produce an implementable circuit speci-
fication in the ReWire subset. Due to space constraints, the remainder of this section
summarizes ReWire’s design only at a high level. Further details may be found in
previous publications [Procter 2014; Procter et al. 2015b].

The subset of Haskell embodied by ReWire has been carefully selected to ensure syn-
thesizability in hardware, especially on FPGAs. While a higher order functional lan-
guage like Haskell has a number of features that are appealing where hardware design
is concerned, many other of its features are at best difficult to implement in hardware,
and at worst antithetical to efficient hardware design. We identify four main prob-
lems (Figure 1) where compiling Haskell to hardware is concerned: (1) heap allocation
and garbage collection; (2) stack allocation; (3) the existence of undefined (diverging
or “crashing”) computations; and (4) unpredictable timing behavior. The challenge in
designing ReWire is to eliminate these runtime properties by placing suitable restric-
tions on the semantic features of the language that cause them, while maintaining as
much of the expressiveness of Haskell as possible.

3.1. Hardware with Pure Functions and Monads
In this section we explore how to represent hardware circuits in a functional/monadic
style. Of necessity arising from space constraints, we assume that the reader has famil-
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Runtime Property Culprit(s)
Heap allocation/GC HOF, RDS
Stack allocation NTR
Divergence/undefinedness GR, PMF
Unpredictable timing GR, HOF, RDS

Fig. 1. Undesirable runtime properties of Haskell, and their semantic antecedents. Key: HOF = higher-
order functions; RDS = recursive data structures; NTR = non-tail recursion; GR = general (non-total) recur-
sion; PMF = pattern match failures.

iarity with Haskell, monads, and monad transformers. Readers requiring more back-
ground on this topic may wish to refer to the references [Liang 1998].

Digital circuit design may be divided into two broad domains: combinational circuit
design and sequential circuit design. Combinational circuits consist only of unclocked
logic gates that map one or more binary input signals to one or more binary output
signals. Sequential circuits, by contrast, exhibit memory (i.e., the mapping of inputs to
outputs changes over time), and are usually tied to a shared clock signal. At a low level,
combinational circuits may be implemented purely in terms of logic gates, and sequen-
tial circuits may be implemented with a combination of gates and flip flops. In a purely
functional language like ReWire, however, we will need higher level abstractions.

Combinational logic represented by pure functions. For combinational logic, the
choice of representation is straightforward: pure, non-recursive, first-order functions
operating on non-recursive first-order data types. Pure functions, i.e., functions which
do not have any kind of side effect, are a natural model of combinational circuitry.
A binary AND gate, for example, may be expressed as the function and in Haskell
according to the defining equations:

and :: Bit -> Bit -> Bit
and 0 _ = 0
and 1 b = b

Sequential logic represented by monadic functions. The picture for sequential logic
is considerably trickier. Assuming a single clock domain, a sequential logic circuit can
be viewed as sampling a stream of input values i0, i1, · · · of some type I at each rising
(or falling) edge of a clock signal, and producing a stream of output values o0, o1, · · · of
some type O in response. The situation is illustrated by the following timing diagram.

Clock

Input i0 i1 i2 i3 i4

Output o0 o1 o2 o3 o4

For our first attempt at modeling this situation in a functional language, we might
consider using a simple function f : I → O, but this construction is clearly insufficient
to represent sequential circuits with memory, as the response of the circuit to a given
input value cannot change over time. As a second attempt, we might consider modeling
sequential circuits as functions mapping lists of I (i.e., input histories) to O, i.e. f :
[I] → O. As an abstract mathematical model this does indeed suffice, but it is hard to
implement directly (will we need to store the entire input stream history in a RAM?)
and does not seem like a very nice structure to program with.

A more realistic possibility is to use something like the recursive type:

data Seql i o = Seql (o,i -> Seql i o)
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In other words, a sequential computation with inputs of type i and outputs of type
o consists of a current output value, and a function that maps an input to a “new”
sequential computation; think of this function as a continuation.

This exact structure is, in fact, a monad, but (to make a long story short) it is not
a very useful monad for our particular needs. For ReWire, we will select a slightly
different structure, called a reactive resumption monad. Reactive resumption monads
may be defined in Haskell as follows.

newtype Re i o a = Re (Either a (o,i -> Re i o a))
Re (Left x) >>= f = f x
Re (Right (o,k)) >>= f = Re (Right (o,\ i -> k i >>= f))
return x = Re (Left x)

The Re monad may be generalized as a monad transformer:

newtype ReT i o m a = ReT (m (Either a (o,i -> ReT i o m a)))

return x = ReT (return (Left x))
ReT m >>= f = ReT (m >>= \ r -> case r of

Left x -> deReT (f x)
Right (o,k) -> return (Right ((o, \ i -> k i >>= f)))

deReT (ReT m) = m
lift m = ReT (m >>= return . Left)

That is, given a base monad m, a computation of type ReT i o m a will compute in m either
a result value of type a, or an intermediate output of type o paired with a continuation
that is waiting for an input of type i.

One useful convenience function, which we will actually take as a primitive in
ReWire, is called signal.

signal :: Monad m => o -> ReT i o m i
signal o = ReT (return (Right (o,return)))

This function produces a computation that signals its argument value (type o) on the
output, waits until the next input (type i) is available, and returns that value to the
caller.

As with the pure functions we use for combinational circuits, a number of restrictions
must be imposed here to ensure compilability. These restrictions will be discussed in
more detail in Sec. 3.2. ReWire further contains support for the identity monad (which
we will refer to as I), as well as a state monad transformer (StT); these are equivalent
to Identity and StateT in the standard Haskell monad transformer libraries. The
specific combination of reactive resumption monads and state monads is provided to
enable equational reasoning about information flow, building on previous work that
applies these techniques to verifying information flow security [Harrison and Hook
2009].

As an aside, we should compare our choice of abstractions to those made by Lava,
which is almost certainly the most well-known approach to generating hardware with
Haskell. In (at least some versions of) Lava, clock-driven sequential logic is handled as
a collection of lazy streams, i.e., infinite demand-driven lists, whose definitions are in
effect mutually recursive. If one wishes to program at the level of interacting streams—
i.e., to think in terms of interacting signals—this will do the trick. Insofar as the goal
of ReWire is to enable monadic equational reasoning, however, the stream-based ap-
proach does not suffice. It is not clear, for example, how to leverage the reasoning power
offered by layered state monads in the setting of lazy streams. This style of reasoning
is essential to our approach to security, as demonstrated in Sec. 5.
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3.2. Summary of Language Design
Space limitations preclude a complete, formal description of ReWire’s syntax, type
system, and semantics here; a full and formal treatment is available in the first au-
thor’s Ph.D. dissertation [Procter 2014]. Informally, however, we can define ReWire
programs as follows: a ReWire program is a single Haskell module containing (1) zero
or more data type declarations, where the data types are first order (i.e., they do not
have any fields of function type) and non-recursive; (2) zero or more type synonym
declarations; (3) zero or more “pure” function definitions whose types are of the form
T1 → T2 · · · → Tn → T where T1, · · · , Tn, T do not contain function arrows, StT, or ReT;
(4) one or more reactive function definitions whose types are of the form

T1 → T2 · · · → Tn →
ReT Tin Tout (StT TS

1 (StT TS
2 (· · · (StT TS

m I ) · · ·))) Tres

where T1, · · · , Tn, TS
1 , · · ·TS

m, Tin , Tout , Tres do not contain function arrows, StT, or ReT.
For a program entry point, a ReWire program must have a reactive function definition
named start of type ReT Tin Tout I Tres for some types Tin , Tout , and Tres .

Recursion is also restricted. “Pure” function definitions are not allowed to be recur-
sive at all. Reactive function definitions are allowed to be recursive, but they must be
tail recursive (i.e., any recursive calls must occur at the very end of a do-block), and
all recursive calls must be guarded [Giménez 1996], which in ReWire means that they
must be syntactically preceded by a call to signal.

A ReWire program is not allowed to import outside packages (including the stan-
dard Haskell prelude), but it is always assumed that the abstract monad operations
of Fig. 2 (bottom) are present. The get and put operations are standard state monad
operations. Function signal has Haskell semantics as defined above. As for extrude,
this function essentially allows us to supply an initial value to a resumption-and-state-
monadic computation; it is akin to Haskell’s runStateT, but lifts the state monad trans-
former through ReT in the process. Finally, ReWire programs are allowed to utilize
foreign functions written in an external VHDL file via an extended declaration form
(somewhat akin to Haskell’s foreign function interface). The types of these functions
are subject to the same restrictions as “pure” function definitions.

The example program of Figure 2 (top) is a complete ReWire program (a simpli-
fied two-function calculator) that demonstrates usage of all of the above features. The
program lives in a state-and-resumption monad called Calc, which stores the current
value on the calculator’s “display” in a state variable, takes an input of type Oper at
each clock tick, and produces an output of type W8 (8-bit word) at each cycle. An Oper
is either an addition or subtraction operation (Add or Sub, both of which carry W8-typed
operands), or a clear operation (Clr). The addition and subtraction functions plusW8
and minusW8 are presumed to be defined externally in VHDL. The basic structure of
the program is a tail recursive loop which repeatedly: retrieves the current stored
value from the state monad via a call to getVal; signals the current stored value on
the output with a call to signal and retrieves a new input at the next clock tick; mu-
tates the state based on the “opcode” of the new input; and returns to the top of the
loop.

4. DERIVING SECURE PROCESSOR DESIGNS
This section describes the design of two secure processors in ReWire. The case study
illustrates several advantages of the ReWire design paradigm. First, the processor de-
signs are abstract, concise, and extensible. The monadic design style frees us from the
complexity of working with structural hardware primitives, and the secure processor
specifications can be derived from a single-core reference design in a modular fash-
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module Calc where

data Oper = Add W8 | Sub W8 | Clr
type Calc = ReT Oper W8 (StT W8 I)

vhdl plusW8 :: W8 -> W8 -> W8
vhdl minusW8 :: W8 -> W8 -> W8

getVal :: Calc W8
getVal = lift get

putVal :: W8 -> Calc ()
putVal x = lift (put x)

loop :: Calc ()
loop = do x <- getVal

oper <- signal x
case oper of
Add y -> putVal (plusW8 x y)
Sub y -> putVal (minusW8 x y)
Clr -> putVal 0

loop

start :: Calc ((),W8)
start = extrude loop 0

get :: Monad m ⇒ StT s m s
put :: Monad m ⇒ s → StT s m ()
signal :: Monad m ⇒ o → ReT i o m i
extrude :: Monad m ⇒ ReT i o (StT s m) a → s → ReT i o m (a, s)

Fig. 2. (top) Example ReWire program: a simple two-function calculator. (bottom): Type signatures of
monadic primitives built-in to ReWire.

ion, without any modification or instrumentation of the original design. Second, as we
will see in Sec. 5, the dual-core design is formally verified: the power of equational
reasoning allows us to furnish a concise and readable proof of separation. Finally, the
ReWire compiler produces an implementation directly from a high-level specification:
modulo the application of some well-understood semantics-preserving program trans-
formations, the input to the compiler is exactly the artifact we verify in our separation
proof; thus there is no semantic gap between the domains of specification, verifica-
tion, and implementation. Sec. 6 demonstrates that this high-level approach comes at
a reasonable cost with respect to speed and circuit size.

At the design stage, we begin with a high-level semantic specification of the instruc-
tion set architecture written in ReWire. This specification serves a dual role as an
executable instruction set interpreter (via Haskell), as well as a synthesizable circuit
design (via ReWire). Our ISA specification is outlined in Sec. 4.1. Leveraging the agility
of ReWire’s semantics-directed approach, we then derive two variants of the proces-
sor. The first variant, described in Sec. 4.2, implements a single-core processor with
hardware-level support for separation. This processor supports interleaved computa-
tion in two security domains running on a shared execution unit. The second variant,
described in Sec. 4.3, implements a dual-core processor with hardware-level separa-
tion. Our dual-core processor also features hardware-level support for separation, with
each core dedicated to computation in a particular security domain.

4.1. ISA Specification
The instruction set architecture of the processor is borrowed from the PicoBlaze 8-bit
soft microcontroller from Xilinx [Xilinx 2011], specifically its kcpsm3 iteration that
was designed for implementation on Spartan-3 series FPGAs. We selected PicoBlaze
primarily to set an ambitious baseline for speed and area comparison: the original
PicoBlaze design is constructed in terms of low-level structural primitives that are na-
tive to the Spartan-3 architecture (e.g., 2- and 4-input LUTs, and distributed and block
RAMs), and its logic was intensively hand-optimized by a highly experienced Xilinx
engineer. While it is to be expected that a design implemented in a still-experimental
high-level language will fall short of the highly optimized original, we believe that
the speed and area tradeoff (discussed in more detail in Sec. 6) is often acceptable in
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data Inputs = Inputs { instruction_in :: W18,
in_port_in :: W8, interrupt_in :: Bit,
reset_in :: Bit, reg_data_in :: W8,
reg_data2_in :: W8, stk_data_in :: W10,
sp_data_in :: W8 }

data Outputs = Outputs { address_out :: W10,
port_id_out :: W8, write_strobe_out :: Bit,
out_port_out :: W8, read_strobe_out :: Bit,
interrupt_ack_out :: Bit, reg_data_out :: W8,
reg_addr_out :: W4, reg_addr2_out :: W4,
reg_write_out :: Bit, stk_data_out :: W10,
stk_addr_out :: W5, stk_write_out :: Bit,
sp_data_out :: W8, sp_addr_out :: W6,
sp_write_out :: Bit }

Fig. 3. (left) Block diagram of the single core version of the ReWire-based processor. The inner box is the
portion implemented in ReWire. Block and distributed RAMs for the register file, stack buffer, and scratch-
pad RAM are instantiated in VHDL and connected via port mapping. (right) The types Inputs and Outputs
for the ReWire version of PicoBlaze. Here, types of the form Wn refer to n-bit words.

exchange for the expressive power, extensibility, and ease of formal verification that
ReWire provides.

The PicoBlaze ISA is a load/store architecture featuring sixteen 8-bit general pur-
pose registers, a 64-byte scratchpad RAM, and a built-in 32-address control flow stack
suitable for procedure calls and interrupt handling [Xilinx 2011]. Programs are gener-
ally stored in a ROM with a 10-bit address space, and somewhat unusually, instruction
words in PicoBlaze are 18 bits wide. I/O is handled via separate 8-bit input and output
buses, which are paired with an 8-bit port selection output signal; the actual details of
port selection must be handled by a separate circuit outside the PicoBlaze itself.

Figure 3 (left) illustrates the general structure of the ReWire-based PicoBlaze clone.
Our design assumes that the register file, the scratchpad RAM, and the control flow
stack are implemented as distributed or block RAMs (dual-port in the case of the regis-
ter file, otherwise single-port) elsewhere on the FPGA. These memories are connected
to the ReWire-based module via VHDL port mapping. Input and output signals that
cross the outer, dashed block are equivalent to the external interface of the original
PicoBlaze. The other signals are connected to the VHDL-instantiated RAMs, which
(while not pictured) lie inside the dashed outer block but outside the solid inner block.
These RAMs are the only design elements that are implemented outside of ReWire; all
instruction processing logic is handled by ReWire. The ReWire-based design presented
here diverges somewhat from the original PicoBlaze in terms of instruction cycle tim-
ing. In the original implementation, all instructions take precisely two instructions to
execute; in the ReWire based design, execution time varies from one to three cycles,
with the most commonly used instructions (e.g., arithmetic instructions) taking two
cycles.

The remainder of this subsection outlines the design for the single-core processor as
written in Haskell. Most of the language features we will be using are also present
in ReWire, but the instruction decoder will make light use of higher-order functions.
For synthesis, this will require a straightforward program transformation called de-
functionalization [Reynolds 1972], which allows us to convert this program into an
equivalent first-order program.
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4.1.1. The Monad. The ReWire source code for the processor design, which is available
online [Procter et al. 2015a], begins with preliminary type definitions. First, we define
a reactive monad for the instruction set semantics called ISAM (for ISA monad).

type ISAM = ReT Inputs Outputs (StT ISAState I)

In other words, the PicoBlaze instruction set semantics lives in a reactive monad
with inputs/outputs of type Inputs and Outputs, and a mutable internal state of type
ISAState. The Input and Output types are defined in Fig. 3 (right) as record types,
corresponding exactly to the block diagram of Fig. 3 (left) except for the clock signal
(which is always implicitly present in ReWire). It will sometimes be convenient to have
an output record of all zeros, which we will refer to as out0.

out0 = Outputs { address_out = 0, port_id_out = 0, ... }

Finally, the internal state of the processor is a record containing the program counter,
the stack pointer, the zero/carry/interrupt-enable flags, and “save” slots for the zero
and carry flags (used to temporarily save the flag values when an interrupt occurs).

data ISAState = ISAState {
pc :: W10, sp :: W5,
zFlag :: Bit, cFlag :: Bit, ieFlag :: Bit,
zSave :: Bit, cSave :: Bit }

We omit the definition of various “getter and setter” methods for the individual state
fields, as well as convenience functions incrPC and incrSP to increment the program
counter and stack pointer.

4.1.2. Instruction Decoding. The instruction decoder takes the form of a pure function
decode from instruction words of type W18 to an algebraic data type Instr, which pro-
vides a semantically structured representation of each instruction’s action:

data Instr =
Binop Binop Reg Rand | Branch Bit Cond W10

| Return Cond | Returni Bit
| IEnable Bit | Fetch Reg Rand
| Store Reg Rand | Input Reg Rand
| Output Reg Rand | Invalid

type Binop = W8 -> W8 -> Bit -> Bit -> (W8,Bit,Bit)
data Rand = ConstRand W8 | RegRand Reg
data Cond = NoCond | CCond | NCCond | ZCond | NZCond
type Reg = W4

The constructors respectively represent arithmetic/logical instructions such as ADD;
branch instructions (possibly conditional); return instructions (again, possibly condi-
tional); the return-from-interrupt instruction; the interrupt-enable instruction; fetch
and store instructions; input/output instructions; and a catch-all case for any invalid
instruction words. Note that the type Binop, which represents the particular operation
being requested, is a function type; specifically, an arithmetic/logical operation is rep-
resented by a function taking two W8-typed operands and the initial value of the Z and
C flags as arguments, and returning the W8-typed result along with the new value for
Z and C. Since the definition of decode consists entirely of routine pattern matching on
bit vectors and construction of Instrs, we shall omit it here; full code is available in
the online supplement [Procter et al. 2015a].

4.1.3. Main Loop and Startup. The processor’s execution is structured as a loop whose
basic form is as follows:
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loop :: Inputs -> ISAM ()
loop i = case reset_in i of
1 -> 〈handle reset〉
0 -> do
ie <- getIEFlag
case (ie,interrupt_in i) of
(1,1) -> 〈handle interrupt〉
_ -> case decode (instruction_in i) of
Binop . . . -> 〈handle binop instruction〉 (†)
Branch . . . -> 〈handle branch instruction〉

. . .
Output . . . -> 〈handle output instruction〉
Invalid . . . -> 〈handle invalid instruction〉

where each of the elided codepaths ultimately results in a guarded tail call back to
loop, with the incoming input signal passed as a parameter to the next loop iteration.

For space reasons, we shall examine only the case of arithmetic/logical instructions
(i.e., the line marked (†) in the above code listing). In the first clock cycle, we increment
the value of the program counter, and signal the needed register indices on the register
file address lines. Note that we use a dual-port block RAM for the register file; we may
therefore fetch both the registers rx and ry in one clock cycle.

Binop o rx rand -> do
incrPC
i <- signal (out0 { reg_addr_out = rx,

reg_addr2_out = case rand of
ConstRand _ -> 0
RegRand ry -> ry })

In the second cycle, we must first compute the result values from the operation. After
fetching the current value of the zero and carry flags (zf and cf) and the operand
values (vx and vy) from the input lines (or from the instruction word if the vy is a
constant), we feed these values to the function o, producing a result value r and new
values zf’ and cf’ for the zero and carry flags.

zf <- getZFlag
cf <- getCFlag
let vx = reg_data_in i

vy = case rand of
ConstRand k -> k
_ -> reg_data2_in i

(r,zf’,cf’) = o vx vy zf cf

We then write back the new values of the Z and C flags.
putZFlag zf’
putCFlag cf’

Finally, we signal for the next instruction, simultaneously writing the new value for
register rx back to the register file, and tail-recursively return to the top of the loop.

pc <- getPC
i <- signal (out0 { address_out = pc,

reg_addr_out = rx,
reg_write_out = 1,
reg_data_out = r })

loop i

Now with the loop defined, the top-level entry point is start, which signals an initial
output of all zeros, and enters the loop.
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start :: ReT Inputs Outputs I ((),ISAState)
start = do i <- signal out0

extrude (loop i)

4.2. Separating Single-Core Processor
We now demonstrate how the ISA specification of Sec. 4.1 may be reused to imple-
ment a single-core processor with a shared execution unit that supports interleaved
computation on two separate input streams. In particular, we will extend the design of
Sec. 4.1 by wrapping the instantiated processor core with a security harness whose de-
sign is akin to a software-based monadic separation kernel [Harrison and Hook 2009].
The construction of the harness ensures non-interference, i.e. that low-security outputs
will never be influenced by high-security inputs.

4.2.1. The Security Harness. The security harness serves to “lift” the action of the pro-
cessor core into a layered state monad [Harrison and Hook 2009]. Use of a layered
state monad enables precise control of cross-domain information flow. For the single-
core harness we will provide two layers of state: one for the high core’s internal state,
and one for the low core’s internal state. We will modify the input and output channels
for the system to use the Either type, defined in Haskell as follows.

data Either a b = Left a | Right b

Input and output values tagged with Left correspond to the low security domain, while
values tagged with Right correspond to the high security domain. Thus we arrive at
the secure single-core monad SCM, where the harness lives:

type SCM = ReT (Either Inputs Inputs) (Either Outputs Outputs) K
type K = StT ISAState (StT ISAState I)

The harness will operate in a tail recursive fashion, taking two ISAM computations
reflecting the current execution state of the high and low domains respectively, and
producing a computation in SCM. (Note that the definition of harness utilizes a number
of helper functions that will be explained below.) When an input arrives, the harness
examines the constructor tag (Left or Right) and executes one step in either the low
or the high security domain. If either of the cores has halted execution (which never
actually happens with the cores we are considering), we halt the overall system as
well. Otherwise, the harness forwards the output signals of the individual cores to the
outside world via a signal call, tagged with Left or Right as needed. The harness then
feeds the filtered inputs to the core and returns (via tail recursion) to the top of the
loop.

harness :: Either Inputs Inputs
-> ISAM a -> ISAM b

-> SCM (Either a b)
harness (Left i) lo hi = do
r <- lift (liftKL (deReacT lo))
case r of
Left a -> return (Left a)
Right (o,k) -> do i’ <- signal (Left o)

harness i’ (k i) hi
harness (Right i) lo hi = do
r <- lift (liftKH (deReacT hi))
case r of
Left a -> return (Right a)
Right (o,k) -> do i’ <- signal (Right o)

harness i’ lo (k i)
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Helper functions liftKL and liftKH allow state actions of the individual cores to
be mapped onto their respective state domains in the layered monad SCM. They are
defined as follows.

liftKL :: StT ISAState I a -> K a
liftKL = lift

liftKH :: StT ISAState I a -> K a
liftKH m = lift (do
s <- get
let (a,s’) = runI (runStT m s)
put s’
return a)

The addition of this security harness is all that is needed to implement the secure
single-core processor. Section 6 touches on the performance characteristics of the cir-
cuit generated by ReWire.

4.3. Separating Dual-Core Processor
Producing a secure dual-core processor that implements a “no-write-down” policy is
nearly as easy as the secure single-core. This time, we extend the design of Sec. 4.1
by instantiating two processor cores, and wrapping them with a security harness very
similar to that of the preceding section. One of these cores will be designated as the
“high” core and the other as the “low” core, reflecting different levels in a security
lattice. To make things more interesting, we also insert a shared 8-bit register mapped
to I/O port 0xFF, which the low core may write to and the high core may read (but not
write). Any attempt by the individual cores to access port 0xFF will be mediated by
the harness, which will ignore write requests from the high core.

4.3.1. The Dual-Core Harness. For the dual-core harness we will provide three layers of
state: one (of type W8) for the shared register, one for the high core’s internal state, and
one for the low core’s internal state. We will also provide separate input and output
channels for the high and low cores, meaning that the input and output types of the
dual-core processor are pairs. The dual-core monad DCM, then, is as follows:

type DCM = ReT (Inputs,Inputs) (Outputs,Outputs) K
type K = StT W8 (StT ISAState (StT ISAState I))

As before, the harness will take as arguments two ISAM computations reflecting the
current execution state of the high and low cores respectively, this time producing a
computation in DCM. Unlike before, the harness loop proceeds by running both cores in
parallel for a single step against their respective state layers. (Definitions of liftKL
and liftKH are analogous to before, but must lift through one more state layer due to
the presence of the shared register.) The harness forwards the output signals of the
individual cores to the outside world via a signal call. When the next input signal is
obtained, the helper functions checkHiPort and checkLoPort serve to filter requests for
the shared register; if the low core attempts to write, the request value will be written
to the shared register, and if the high core attempts to read the shared register, the
value on its input port will be overwritten with the value of the shared register. The
harness then feeds the filtered inputs to the cores and returns (via tail recursion) to
the top of the loop.

harness :: ISAM a -> ISAM b -> DCM (Either a b)
harness lo hi = do
r_lo <- lift (liftKL (deReT lo))
r_hi <- lift (liftKH (deReT hi))
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case (r_lo,r_hi) of
(Left a,_) -> return (Left a)
(_,Left b) -> return (Right b)
(Right (o,k_lo),Right (o_hi,k_hi)) -> do

(i_lo,i_hi) <- signal (o_lo,o_hi)
i_hi’ <- checkHiPort i_hi o_hi
checkLoPort o_lo
harness (k_lo i_lo) (k_hi i_hi’)

(One might reasonably ask how we can be certain that the low and high cores are exe-
cuting in parallel rather than serially, as would seem to be suggested by the sequential
flavor of the code. The essential answer is that no data dependencies can exist between
the monadic actions for r lo and r hi, as these take place at different state monad
layers. The performance results of Sec. 6 demonstrate that the FPGA synthesis tools
are clever enough to notice this fact.)

For checkHiPort, we pattern match on the output value of the high core; if it contains
a read request for address 0xFF, we pull the value out of the shared register and
overwrite the data input for the high core with that value. Otherwise the input is left
unmodified.

checkHiPort :: Inputs -> Outputs -> DCM Inputs
checkHiPort = lift (

case (port_id_out o_hi,read_strobe_out o_hi) of
(0xFF,1) -> do
v <- get
return (i_hi { in_port_in = v })

_ -> return i_hi)

Dually, checkLoPort translates write requests from the low core into writes to the
shared register.

checkLoPort :: Outputs -> DCM ()
checkLoPort o_lo = lift (

case (port_id_out o_lo,write_strobe_out o_lo) of
(0xFF,1) -> put (out_port_out o_lo)
_ -> return ())

This completes the design of the secure dual-core processor. In Sec. 5 we shall demon-
strate the ease with which this processor’s security may be verified, and Sec. 6 dis-
cusses the performance characteristics of the circuit generated by ReWire.

5. VERIFICATION
Owing to space constraints, we will restrict our attention here to the dual-core pro-
cessor, though the security argument for the single-core processor is similar. To
specify the security of the processor harness, we apply a security model developed
for modular monadic semantics called take separation [Harrison and Hook 2009].
With this approach, the operation of (harness lo hi) is compared to the operation of
(harness lo skip), where skip is a “no-op” core. The basic standard of security requires
that both systems, when executed on the same finite input traces, should produce iden-
tical lo outputs. The following defines the “no-op” core:

skip :: Outputs -> Inputs -> ReT Inputs Outputs K a
skip o i = signal o >>= skip o

N.b., that the core (skip o i) produces a constant output and entirely ignores its input.
The pull function runs a system on a finite list of dual inputs:
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pull :: [Outputs] -> [(Inputs,Inputs)] ->
ReT (Inputs,Inputs) (Outputs,Outputs) K [Outputs] ->
K [Outputs]

pull os [] _ = return os
pull os (i:is) phi = next phi >>= \ (Right (o,k)) ->

pull (os ++ [fst o]) is (k i)
where next = deReT

The function call (pull os is (harness lo hi)) executes the two core system on input is
and accumulates each lo output in order on the first argument. N.b., that we are as-
suming, without loss of generality, that the system (i.e., pull’s third argument) never
terminates (i.e., always returns a Right). When the input list is exhausted, the accu-
mulated lo outputs are returned.

Theorem 5.1 states the security specification of the harness system. In it, the op-
eration of (harness lo hi) is compared to that of (harness lo (skip o0 i0)) within the
context of “ . . . >>= κ0”. The purpose of the initial continuation κ0 is to screen out any
of hi’s effects on both sides of the equation while still returning lo’s outputs. This is
analogous to the role of projecting out high level operations in a conventional, event
based security model [Goguen and Meseguer 1990].

THEOREM 5.1 (HARNESS SECURITY). For any appropriately typed i0, o0, os, finite
is, lo and hi,

pull os is (harness lo hi) >>= κ0
= pull os is (harness lo (skip o0 i0)) >>= κ0

where
κ0 = λos.maskH >> return os

PROOF. See appendix.

Note that our security property is strong enough that it precludes not only storage
channels, but also timing channels (assuming time is observable at clock-cycle granu-
larity) and control flow channels.

6. SYNTHESIS
We now turn our attention briefly to the performance characteristics of the circuits
synthesized from the specifications of Sec. 4. For benchmarking purposes, we will con-
sider four separate artifacts: (1) “original” PicoBlaze (PBO) as implemented by Xilinx
in VHDL; (2) “plain” PicoBlaze (PB ) as implemented in ReWire (Sec. 4.1); (3) “secure
single-core” PicoBlaze (SPBS) as implemented in ReWire (Sec. 4.2); and (4) “secure
dual-core” PicoBlaze (SPBD) as implemented in ReWire (Sec. 4.3). In Sec. 6.1, we com-
pare PBO with PB to obtain a sense of how much overhead is imposed by the use
of ReWire as a source language. In Sec. 6.2, we compare SPBS and SPBD to PB to
demonstrate that performance scales as expected in this example.

Defunctionalization. As mentioned above, the Haskell version of the processor spec-
ification contains a handful of higher-order functional constructs. This is not allowed
in ReWire, so we must transform the program into a first-order form before we can
synthesize a circuit. As it happens, there exists a program transformation called de-
functionalization [Reynolds 1972] that allows us to do just this in a straightforward,
mechanical way. In this example, the outcome of defunctionalization is that all func-
tions of type Binop will be replaced with values in a data type that represents all Binop
functions used in the program, and any calls to such functions will be replaced with
calls to an interpretation function. This suffices to produce a program that is compil-
able by ReWire.
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6.1. Comparison with Original Implementation
To evaluate performance, both our PB and Xilinx’s PBO were synthesized using the
XST synthesis tool for a Xilinx Spartan-3E XC3S500E, speed grade -4. XST was con-
figured to optimize for speed (as opposed to area), with normal optimization effort.
Synthesis estimates for device utilization and Fmax follow.

Slices Flip Flops 4-LUTs Fmax (MHz)
PBO 99 76 181 139.919
PB 398 110 763 64.956

Put another way, the ReWire-based processor is approximately 4.0 times as large
as the original (as measured in slices), and is capable of operating at about 46.4% the
maximum clock speed. We believe these performance results, being within an order of
magnitude of the original, are quite promising for two reasons. First, PicoBlaze is a
very low-level design that was heavily optimized by an experienced engineer employed
by Xilinx. Thus it is to be expected that any design of a high-level behavioral flavor
will fall short of the original on performance. Second, the ReWire compiler is still in
a very early development stage and does virtually no optimization of the resulting
VHDL before handing it off to XST. As work proceeds on more aggressive optimization,
we expect that the complexity of the combinational logic emitted by ReWire will be
reduced substantially. This should bring the size and performance overhead into a
range that will be quite acceptable for many users in exchange for the high assurance
capabilities of ReWire.

6.2. Performance of the Secure Processors
The secure processors make much more extensive use of higher-order language fea-
tures than the basic single-core processor. In particular, the harness loops take two
monadic computations as arguments. Nevertheless, defunctionalization still suffices
to transform the harness-based specifications into a first-order, compilable form. The
fully defunctionalized version of the processors and harnesses are available in the code
repository [Procter et al. 2015a].

Synthesis results. Synthesis estimates for device utilization and maximum clock
speed of the secure single- and dual-core processors were obtained by synthesizing
the ReWire-implemented portions of the three devices (the non-separating processor,
the separating single-core processor, and the separating dual-core processor) with the
same XST settings as in Sec. 6.1, then taking the ratio of occupied logic slices, flip flops,
LUTs, and Fmax for the synthesized secure processors to the corresponding results for
the non-separating processor. The following table illustrates the results.

Slices Flip Flops 4-LUTs Fmax

Ratio of SPBD to PB 2.026 2.283 2.033 0.950
Ratio of SPBS to PB 1.264 2.228 1.259 0.893

While the experiment here is somewhat modest in scope, considering only single- a
dual-core processors rather than larger multi-core processors (say, quad- or octa-core),
the result does suggest reasonable scaling with respect to area and performance. For
the dual-core processor, slice and LUT utilization are almost exactly twice as much as
the basic single core processor (as would be expected in the presence of two processor
cores), while flip flop utilization suffers a slight extra penalty attributable to the extra
state registers required for the harness to track its own internal state. The timing bur-
den imposed by dual core support is also minimal: maximum frequency of the dual-core
processor is within 5% of the basic single-core processor. For the single-core processor,
we pay a slightly higher penalty with respect to logic utilization, likely attributable
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to the more complex routing logic for I/O signals. This contributes to an Fmax value
that is slightly lower, around 10% slower than the original ReWire-based single-core
processor.

7. CONCLUSIONS AND FUTURE WORK
This article has presented ReWire, a functional programming language and com-
piler for synthesizing efficient hardware circuits from modular, high-level, semantics-
directed designs. ReWire is both a computational λ-calculus suitable for writing formal
specifications and an expressive functional language and compiler for generating effi-
cient hardware artifacts. The hypothesis of this work is that this duality will position
ReWire to avoid the pitfalls of semantic archaeology without sacrificing performance.
With ReWire, the text of a design is verified (rather than a reconstructed model of the
design) and the compiler transforms that same design into hardware, thereby unify-
ing the languages of specification, design and implementation. As the case study of
this article demonstrates, this design paradigm brings great benefits with respect to
the modular construction and formal verification of hardware.

Future Work. One benefit of the functional-language approach to hardware is that
functional languages are generally amenable to formal specification. However, a draw-
back of the approach is that hardware engineers are not typically well-versed in func-
tional languages (there are exceptions, of course). While this drawback is social in
nature, it is still significant. Hardware engineers frequently view designs in graphi-
cal terms. A graphical front-end for ReWire is currently in development [Graves 2015]
that will aid hardware engineers and encourage adoption of the ReWire tools.

It would be illuminating to extend the case study of Sections 4–6 in two respects:
first, with respect to circuit scale (i.e., number of cores), and second, with respect to
the class of attacks addressed (considering, for example, timing channels introduced
by a shared cache). With respect to the latter, we believe that ReWire would be an ex-
cellent framework for verifying security particularly with respect to timing channels
induced by cache misses. At a high level, we envision constructing a cache module that
tags each cache line with an additional “knowledge bit” that indicates whether the
low-security core(s) should know that that particular location is in the cache. If this
bit is not set, the cache would return a “false miss” to any low security core requesting
that location. Once the resulting memory request from the low core is serviced, the
knowledge bit in the corresponding cache line can then be set, permitting subsequent
requests by low cores for that location to be serviced from the cache. The resulting sys-
tem would allow the sharing of cache lines between high and low cores, and yet, from
the low cores’ perspective, exhibit the same timing properties regardless of any action
taken by the high-security core(s). Verifying security of this system would amount to
proving a trace property that is conceptually very similar to, if somewhat more com-
plex than, the property verified in Section 5. We intend to explore this exact example in
future work. By contrast, we note in passing that ReWire is not well suited to working
with physical side-channel attacks induced by, for example, monitoring of power con-
sumption; ReWire is intended only to model circuit behavior at the clock-cycle level.
On the other hand, security properties relating to integrity (as opposed to confidential-
ity) should be straightforward to verify, as these are essentially dual to the kinds of
information flow property we have examined in the present work.

When translating from verified high-level specifications to hardware-level imple-
mentations, the correctness of the toolchain is clearly critical to the overall verification
argument. In a sense, this is the entire point of language-based formal methods: proof
of the adequacy of our high level models may be reduced to a proof of compiler correct-
ness! In that spirit, work is ongoing to verify the correctness of the ReWire toolset. Pre-
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liminary results include an encoding of ReWire’s formal semantics in the Coq theorem
prover, to be discussed in a forthcoming publication. Mechanizing ReWire’s metathe-
ory will come with an additional benefit where verification is concerned: the formal
development of its semantics also includes a formalization of the equational logic used
in this paper. While we believe that the equational logic provided by ReWire is already
easy to work with on paper, a mechanized proof framework will greatly increase the
productivity of formal methods practitioners.

Other future research directions we are pursuing have to do with increasing the ex-
pressiveness of the type system to support metaprogramming, as well as type-based
enforcement of information flow policies. There are type systems for staged program-
ming (e.g., MetaML [Taha and Sheard 2000]) that we believe will improve program-
mer productivity further while maintaining type safety. Staging annotations enable
programmers to safely encode source-level transformations and optimizations. Previ-
ous work has focused on type systems for enforcing fault isolation in calculi based on
reactive resumptions [Harrison et al. 2012]; we believe that a similar strategy may be
employed to enforce information flow security.

Another avenue of future work is to adapt the ReWire compiler to enable pro-
grams that mix CPU and FPGA-based computation. A sizable portion of the Haskell
language—basically anything involving non-tail recursion at runtime—is not synthe-
sizable by ReWire. A mixed-mode compiler could take the non-synthesizable portions
of the program and compile them for use on a CPU-based system containing an FPGA,
with the two parts of the program communicating over the system bus. We anticipate
that reactive resumptions will provide a powerful tool for tackling the coordination
challenges inherent to such heterogeneous systems.
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A. SECURITY VERIFICATION
The proof of Theorem 5.1 is by induction on the length of is, which is assumed to be
finite, and uses the techniques established in previous work [Harrison 2006; Harri-
son and Hook 2009] in which by-contruction properties of operations on layered state
monads (e.g., K) are used to prove the equality. The three principal properties used are
atomic noninterference, computational innocence, and the clobber rule. We describe
these properties informally as the technical details may be found in the aforemen-
tioned articles.

A layered state monad is a monad constructed from multiple applications of the
state monad transformer. The monad K, for example, is the result of three applications
of state monad transformer to the identity monad:

type K = (StT SharedReg
(StT ISAState
(StT ISAState I)))

Atomic noninterference formalizes the notion that operations (i.e., atoms) lifted from
distinct layers in a layered commute (i.e., do not interfere) with the monadic bind oper-
ator. Computational innocence shows how computations that are side-effect free (i.e.,
“innocent” computations) may be added to other computations preserving equality. For
example, for the get operation defined by StT, get >> ϕ = ϕ for any computation ϕ.
Finally, the “clobber rule” shows that operations within the same state layer may be
cancelled out—i.e., clobbered. For example in K, we defined maskH as:

maskH :: K ()
maskH = liftKH (update (const s0))

where s0 = undefined

By the clobber rule, liftKH ϕ >> maskH = maskH = liftKH γ >> maskH for any appropri-
ately typed ϕ and γ.

Additionally, the “monad laws” [Liang 1998] are also applied extensively throughout
the verification. These are:

return v >>= f = f v — left unit
x >>= return = x — right unit
(x >>= λv. y) >>= λw. z = x >>= λv. (y >>= λw. z) — associativity

The proof of Theorem 5.1 follows the pattern, illustrated below. In the informal
sketch below, we do some violence to the syntax in order to provide the reader
with a roadmap to the proof of Theorem 5.1. The first step unrolls the operation of
(harness lo hi) into a sequence of operations, lhi, which combine actions from both lo
and hi and their operations on the shared register layer. The idempotence of maskH is
used to clone it and associativity is used to move maskH to the right of lhn. The clob-
ber rule is used to cancel hi’s actions, producing ln whose actions consist only of lo’s
and lo’s writes to the shared register. maskH commutes with ln and this clobber-then-
commute pattern is repeated until all of hi’s effects have been cancelled. Then, the
cloned maskH may be “backed out” and removed by its idempotence. The result is equal
to the r.h.s. of Theorem 5.1.

pull os [i1, . . . , in] (harness lo hi) >>= λos. maskH >> return os
= (lh1 ; . . . ; lhn) >>= λos. maskH >> return os — maskH idempotent
= (lh1 ; . . . ; lhn ; maskH) >>= λos. maskH >> return os — assoc.
= (lh1 ; . . . ; ln ; maskH) >>= λos. maskH >> return os — clobber
= (lh1 ; . . . ; maskH ; ln) >>= λos. maskH >> return os — atomic nonint.
= (lh1 ; maskH ; . . . ; ln) >>= λos. maskH >> return os — atomic nonint.
= (l1 ; maskH ; . . . ; ln) >>= λos. maskH >> return os — clobber
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= (l1 ; . . . ; ln) >>= λos. maskH >> return os — “reversing previous steps”
= pull os [i1, . . . , in] (harness lo (skip o0 i0)) >>= λos. maskH >> return os

The remainder of this appendix consists of the following. Section A.1 discusses lem-
mas which simplify the proof of Theorem 5.1. These lemmas follow by routine, if some-
what laborious, application and simplification of the definitions of the harness. We
include the proof of Lemma A.4 which is the most complex of the lemmas. Section A.2
contains the proof of Theorem 5.1. Section B presents the proof of Lemma A.4.

A.1. Lemmas
This section presents four lemmas used to prove Theorem 5.1. Each of them involves
unfolding definitions from the harness and simplifying using the monad laws, β-
reduction, etc. The proof of Lemma A.4 is presented in Section B.

Lemma A.1 unwinds the definition of pull on an n length input list into n calls to
next.

LEMMA A.1 (PULL). Given ϕ and os of appropriate type. For every n ∈ N,

pull os [i1, . . . , in] ϕ = next ϕ >>= λRight (o1, κ1).
next (κ1 i1) >>= λRight (o2, κ2).

...
next (κn−1 in−1) >>= λRight (on, κn).
return (os++ [fst o1, . . . , fst on])

Lemma A.2 formulates the interaction of next with harness.

LEMMA A.2 (next ◦ harness). For any appropriately typed hi and lo

next (harness lo hi)

= (lift . lift lK) (next lo) >>= λRight (ol, κl).

(lift . lifthK) (next hi) >>= λRight (oh, κh)
let
f = λ(il, ih). checkHiPort ih oh >>= λîh.

checkLoPort ol >>

harness (κl il) (κh îh)
in
return (Right ((ol, oh), f))

Lemma A.3 formulates the interaction between next and the lift for the ReT monad
transformer. N.b., next behaves as a kind of inverse or project for that lift.

LEMMA A.3 (NEXT ◦ LIFT). The following holds.

next (lift x >>= f) = x >>= next . f

Lemma A.4 captures the interaction of pull with harness in which a call to pull on
harness is reduced to a (co)recursive call.

LEMMA A.4 (PULL ◦ HARNESS). For appropriately typed os, hi and lo, and assum-
ing WLOG that i1 = (il1, i

h
1 ),
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pull os [i1, . . . , in] (harness lo hi)

= lift lK (next lo) >>= λRight (ol1, κ
l).

lifthK (next hi) >>= λRight (oh1 , κ
h).

chkHPrt ih1 oh1 >>= λîh.
chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il1) (κ
h îh)

A.2. Theorem 5.1
PROOF. Proof of Theorem 5.1.

pull os ((il1, i
h
1 ) : is) (harness lo hi) >>= λv. maskH >> return v

{Lemma A.4.}
= lift lK (next lo) >>= λRight (ol1, κ

l).

lifthK (next hi) >>= λRight (oh1 , κ
h).

chkHPrt ih oh1 >>= λîh.
chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (κh îh) >>= λv.maskH >> return v
{Induction hypothesis.}

= lift lK (next lo) >>= λRight (ol1, κ
l).

lifthK (next hi) >>= λRight (oh1 , κ
h).

chkHPrt ih oh1 >>= λîh.
chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 î
h) >>= λv.maskH >> return v

{Defn. skip.}
= lift lK (next lo) >>= λRight (ol1, κ

l).

lifthK (next hi) >>= λRight (oh1 , κ
h).

chkHPrt ih oh1 >>= λîh.
chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 i0) >>= λv.maskH >> return v
{Defn. chkHPrt , innocence.}

= lift lK (next lo) >>= λRight (ol1, κ
l).

lifthK (next hi) >>= λRight (oh1 , κ
h).

chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 i0) >>= λv.maskH >> return v

{Defn. >>; oh
1 , κ

h free.}
= lift lK (next lo) >>= λRight (ol1, κ

l).

lifthK (next hi) >>

chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 i0) >>= λv.maskH >> return v
{maskH idempotent .}

= lift lK (next lo) >>= λRight (ol1, κ
l).

lifthK (next hi) >>

chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 i0) >>= λv.maskH >> maskH >> return v
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{Consequence of atomic noninterference.}
= lift lK (next lo) >>= λRight (ol1, κ

l).

lifthK (next hi) >>

chkLPrt ol1 >>

maskH >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 i0) >>= λv.maskH >> return v
{Consequence of atomic noninterference.}

= lift lK (next lo) >>= λRight (ol1, κ
l).

lifthK (next hi) >>

maskH >>

chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 i0) >>= λv.maskH >> return v
{Consequence of clobber .}

= lift lK (next lo) >>= λRight (ol1, κ
l).

lifthK (next (skip o0 i0)) >>

maskH >>

chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 i0) >>= λv.maskH >> return v
{Reversing previous steps.}

= lift lK (next lo) >>= λRight (ol1, κ
l).

lifthK (next (skip o0 i0)) >>

chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 i0) >>= λv.maskH >> return v

{Defn. >>; oh
1 , κ

h free.}
= lift lK (next lo) >>= λRight (ol1, κ

l).

lifthK (next (skip o0 i0)) >>= λRight (oh1 , κ
h).

chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 i0) >>= λv.maskH >> return v
{Consequence of innocence.}

= lift lK (next lo) >>= λRight (ol1, κ
l).

lifthK (next (skip o0 i0)) >>= λRight (oh1 , κ
h).

chkHPrt ih oh1 >>= λîh.
chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 i0) >>= λv.maskH >> return v
{Defn. of skip.}

= lift lK (next lo) >>= λRight (ol1, κ
l).

lifthK (next (skip o0 i0)) >>= λRight (oh1 , κ
h).

chkHPrt ih oh1 >>= λîh.
chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (skip o0 î
h) >>= λv.maskH >> return v

{Defn. skip,next ; return v >>= λx .e = return v >>= λx .e[x/v ].}
= lift lK (next lo) >>= λRight (ol1, κ

l).

lifthK (next (skip o0 i0)) >>= λRight (oh1 , κ
h).

chkHPrt ih oh1 >>= λîh.
chkLPrt ol1 >>

pull (os ++ [ol1]) [i2, . . . , in] (κl il) (κh îh) >>= λv.maskH >> return v
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{Lemma A.4.}
= pull os ((il1, i

h
1) : is) (harness lo (skip o0 i0)) >>= λv. maskH >> return v

B. LEMMA A.4 PROOF
PROOF. Lemma A.4.

pull os [i1, . . . , ln] (harness lo hi)

{Lemma A.1 .}

= next (harness lo hi) >>= λRight(o1, κ1).
next (κ1 i1) >>= λRight(o2, κ2).

...
next (κn−1 in−1) >>= λRight(on, κn).
return(os ++ [o1, . . . , on])

{Lemma A.2 .}

= next



(lift . lift lK) (next lo) >>= λRight (ol, κl).

(lift . lifthK) (next hi) >>= λRight (oh, κh)
let
f = λ(il, ih). checkHiPort ih oh >>= λîh.

checkLoPort ol >>

harness (κl il) (κh îh)
in
return (Right ((ol, oh), f))


>>= λRight(o1, κ1).

next (κ1 i1) >>= λRight(o2, κ2).
...

next (κn−1 in−1) >>= λRight(on, κn).
return(os ++ [o1, . . . , on])

{Associativity of >>=, Lemma A.3 , Simplification.}

= lift lK (next lo) >>= λRight (ol, κl).

lifthK (next hi) >>= λRight (oh, κh)
let
f = λ(il, ih). checkHiPort ih oh >>= λîh.

checkLoPort ol >>

harness (κl il) (κh îh)
in
next (return (Right ((ol, oh), f))) >>= λRight(o1, κ1).
next (κ1 i1) >>= λRight(o2, κ2).

...
next (κn−1 in−1) >>= λRight(on, κn).
return(os ++ [o1, . . . , on])
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{Lemma A.3 , return = lift ◦ returnK.}

= lift lK (next lo) >>= λRight (ol, κl).

lifthK (next hi) >>= λRight (oh, κh)
let
f = λ(il, ih). checkHiPort ih oh >>= λîh.

checkLoPort ol >>

harness (κl il) (κh îh)
in
returnK (Right ((o

l, oh), f)) >>= λRight(o1, κ1).
next (κ1 i1) >>= λRight(o2, κ2).

...
next (κn−1 in−1) >>= λRight(on, κn).
return(os ++ [o1, . . . , on])

{Left unit .}

= lift lK (next lo) >>= λRight (ol, κl).

lifthK (next hi) >>= λRight (oh, κh).
let
f = λ(il, ih). checkHiPort ih oh >>= λîh.

checkLoPort ol >>

harness (κl il) (κh îh)
in
next (f i1) >>= λRight(o2, κ2).

...
next (κn−1 in−1) >>= λRight(on, κn).
return(os ++ [(ol, oh)1, . . . , on])

{Consequence of Lemma A.3 .}

= lift lK (next lo) >>= λRight (ol, κl).

lifthK (next hi) >>= λRight (oh, κh).

chkHPrt ih oh >>= λîh.
chkLPrt ol >>

let
f = λ(il, ih). harness (κl il) (κh îh)

in
next (f i1) >>= λRight(o2, κ2).

...
next (κn−1 in−1) >>= λRight(on, κn).
return(os ++ [(ol, oh)1, . . . , on])

{Substitution of let binding ,Lemma A.1 .}

= lift lK (next lo) >>= λRight (ol, κl).

lifthK (next hi) >>= λRight (oh, κh).

chkHPrt ih oh >>= λîh.
chkLPrt ol >>

pull (os ++ [(ol, oh)1, . . . , on]) [i2, . . . , in] (κl il) (κh îh))
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