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Constructing high assurance, secure hardware remains a challenge, because to do so relies on both a verifiable

means of hardware description and implementation. However, production hardware description languages

(HDL) lack the formal underpinnings required by formal methods in security. Still, there is no such thing as

high assurance systems without high assurance hardware. We present a core calculus of secure hardware

description with its formal semantics, security type system and mechanization in Coq. This calculus is the

core of the functional HDL, ReWire, shown in previous work to have useful applications in reconfigurable

computing. This work supports a full-fledged, formal methodology for producing high assurance hardware.
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1 INTRODUCTION
It is generally recognized that reconfigurable technology has a “programmability” problem [1, 5]

and high-level synthesis (HLS) from functional languages is a commonly proposed remedy for

this problem [3, 4, 8, 19, 20, 33, 66, 82]. Pure functional languages—i.e., those without side effects—

support equational reasoning as a basis for program verification. Combining the two—i.e., HLS from

a pure functional language—provides a methodology for high assurance hardware as demonstrated

in previous work by the authors [27, 28, 32, 58]. The current article addresses the formalization of

this methodology by mechanizing the semantics for a pure HLS language—namely, ReWire—in the

Coq theorem proving system [14], with the goal of combining the programmability advantages of
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functional hardware description with formalized reasoning. All of the definitions and theorems in

this paper have been checkedwith the Coq proof checker; the Coq v8.5 scripts are downloadable [59].

ReWire is a functional hardware description language (HDL): it is a functional language—a

subset of Haskell—from which circuits are synthesized automatically. Previous work has introduced

ReWire’s language design and implementation as well as its application to the construction of high

assurance hardware [27, 28, 32, 58]. This article describes the Coq formalization of ReWire intended

to support the verification of hardware designs and, in particular, the information flow properties

described in our previous work [27, 30, 58].

The ReWire development flow is intended to approach that of functional programming to the

greatest extent possible. First, device specifications are “roughed out” in Haskell, allowing testing

and debugging in a familiar mode (e.g., using QuickCheck [12] as we did in Graves et al. [27]).

Formal specification and verification typically starts at this point in the process. Refactoring into

ReWire generally involves choosing base types (i.e., replacing Haskell’s Data.Word with ReWire’s

built-in types). The ReWire compiler produces VHDL and vendor tools are used to synthesize, etc.,

to an FPGA. Making a formal methodology out of this requires a mechanized semantics for ReWire

as a foundation for verification of designs and of the ReWire compiler. This article provides that

foundation.

The aforementioned previous work, in panoramic view, used “by-construction” properties of

layered monads to verify properties by hand. For the moment, we rely on the reader’s intuition to

explain the contributions of the present work at a high level (Section 2 presents an overview of these

concepts inmore detail). Assume, for example, that ReWire devicesh and l are written respectively in
terms of state monad layers, StT Hi and StT Lo. Then, deviceh (resp., l ) only accesses internal storage
of type Hi (resp., Lo). In a composite device written in terms of monad M = StT Hi (StT Lo Id), it

is guaranteed by semantic properties of the layers StT Hi and StT Lo to disallow covert channels

between the Hi and Lo storage.

The challenge is, then, the formalization of ReWire and, in particular, ReWire’s underlying layered

monad language and its semantic properties within an automated proof system. The contributions

of this work are as follows. (1) A static effect-type system (extending and mechanizing Wadler’s

“marriage” of effects and monads [80]) that disallows covert storage channels in ReWire. This type

system extends state layers with effect labels, so that, continuing the example above, h (resp., l ) is
written in monad StT RW Hi (StT ⟨⟩ Lo Id) (resp., StT ⟨⟩ Hi (StT RW Lo Id)). The effect label “RW” means

h can both read and write on the Hi layer and while “⟨⟩” means it can do neither on the Lo layer (and,

vice versa, for l ). The soundness of our type system (Theorems 4.13 and 4.15) guarantees freedom

from covert storage channels. (2) A small-step semantics for ReWire formalized in Coq that justifies

(3) a typed equational logic (Figure 14) capturing the semantic properties of monads and state

layers used in by-hand proofs in our previous work. Finally, (4) a number of related metatheorems

(e.g., progress, preservation, strong normalization, etc.) have been proved in Coq.

The direct approach to formalizing ReWire in Coq would be the transliteration of monad trans-

former declarations from Haskell into Coq, but this quickly runs afoul of Coq’s strict positivity

requirement. ReWire relies on reactive resumption monad transformers (see Section 2) for synchro-

nous parallelism and this transformer is a coinductive construction, which can be tricky to formalize,

even with Coq’s coinduction library. Another approach considers formalizing ReWire’s denotational

semantics [56], building on existing work by Huffman [34] or Schröder and Mossakowski [65] in

Isabelle/HOLCF. Instead, we chose to formalize a small-step, operational semantics for ReWire

in Coq, in part, because the authors have more experience with Coq than with HOLCF, but also

because developing and formalizing a small-step operational semantics seemed more straightfor-

ward than mechanizing denotational semantics. The semantic properties of ReWire’s underlying
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monads on which the by-hand verifications of our previous work rely are then captured as an

typed equational logic whose rules are derived from the formalized operational semantics.

The remainder of this section discusses related work. Section 2 presents an overview of ReWire to

motivate the formal calculus, RWC. Section 3 defines the syntax and small-step operational seman-

tics of RWC. Section 4 describes RWC’s metatheory and a number of related metatheorems (e.g.,

progress, preservation, strong normalization, etc.) are demonstrated. A type-directed equational

logic for RWC is defined in Section 5. Section 6 discusses conclusions and future work.

Related Work
Andrews [1] argues that a paradigm shift for reconfigurable computing is a necessary precondition

for wider adoption of reconfigurable technology. Rather than focusing exclusively on performance

metrics, the new paradigm must focus as well on what, for lack of a better term, might be called

software engineering virtues—abstraction, modularity, program comprehensibility, productivity,

rapid modifiability, reuse, and scalability, etc. What is required are programming models/languages

for reconfigurable computing that embrace the software engineering virtues.

One proposed remedy to the programmability issue is high-level synthesis from functional

languages [19], because, as originally observed by Sheeran [66], combinational logic has a func-

tional flavor. More to the point, functional languages support the software engineering virtues

through higher-order abstractions and type systems. ReWire provides the usual functional pro-

gramming model of combinational logic—i.e., pure functions—but it also provides a formal model

of synchronous logic in the form of the reactive resumption monad discussed in Section 2.

There are a number of efforts to apply ideas and techniques from functional programming to

hardware design and synthesis. Chisel [4] is a Scala-embedded domain-specific language developed

as an implementation language for the RISC-V open source instruction set architecture
1
. Within the

Haskell community, perhaps the most well known system for hardware synthesis is Lava [8]. Lava

is a domain-specific language for hardware specification embedded in Haskell. Primitives in Lava

are essentially structural and specify circuits at the level of signals. ReWire, by contrast, compiles a

subset of Haskell itself to hardware circuits, and relies on an abstract set of behavioral primitives.

The primary motivation for developing ReWire is as a vehicle for the design, implementation, and

formal verification of high assurance hardware. There are some constructs of VHDL that have not

been implemented in ReWire (e.g., tri-state buffers, multiple clock domains, etc.). We believe such

constructs can be readily modeled in ReWire, but they have not been necessary for previous case

studies [27, 28, 31, 32, 57, 58].

ForSyDe (Formal System Design)
2
is a formal design methodology that targets heterogeneous

embedded systems [62, 63]. The ForSyDe toolset includes a system modeling language implemented

as an embedded domain-specific language in Haskell that contains elements similar to those in

ReWire, albeit not in resumption-monadic form. The ForSyDe methodology is based on refinement:

high-level models are transformed semi-automatically into heterogeneous (i.e., mixed hardware and

software) embedded systems. The ReWire methodology differs from that of ForSyDe in a number of

respects. The ReWire language has type constructors for devices (described below in Section 2) that

are compiled automatically into VHDL by the ReWire compiler, so hardware is generated directly

from ReWire source code rather than produced by semi-automatic refinement. ForSyde targets

heterogeneous hardware and software systems whereas ReWire focuses on hardware exclusively.

Finally, the formal methodology supported by ReWire, illustrated in previous publications [27, 31,

57, 58], is precisely that of pure functional languages; this is sometimes referred to as “Bird-Wadler”

1
https://riscv.org.

2
https://forsyde.ict.kth.se/trac.
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style program derivation (so-named after an influential textbook [7]). A Bird-Wadler derivation

starts from a reference specification for an algorithm in a functional language and, through a

series of semantics-preserving program transformations, produces a more efficient implementation.

Desired properties of the implementation (e.g., correctness, security, etc.) are specified equationally

and verified in terms of the reference semantics. The current work represents the formalization of

the ReWire methodology in Coq.

Zhai et al. [82] consider high-level synthesis from recursive functional languages. Similarly,

Cλash [3], is a compiler for a subset of Haskell to VHDL. Like ReWire, Cλash uses Haskell itself as a

source language. Cλash requires some limits be placed on the kinds of algebraic data types used as

well as the basic operating types. Both differ fundamentally from ReWire in that they require that a

stack be constructed in hardware as part of the circuits they produce. It was an early design decision

in the ReWire project to limit recursive functions to co-recursion (tail recursion) so as to obviate

the need for a run-time stack or other unbounded data structures. Given hardware’s fixed memory

footprint, it seemed more natural to us to not require support for potentially unbounded data. Great

care was taken in the design of ReWire so that it possesses a rigorous denotational semantics to

support formal verification while maintaining synthesizability for all of its programs [56].

The Delite DSL compiler framework [39] seeks to address the “three P’s” with respect to imple-

menting software on parallel, heterogeneous systems. Delite addresses portability (i.e., retargetabil-

ity of DSL compilers to a broad range of parallel hardware) through language virtualization. ReWire

is also a virtualized DSL in that it has a separate compiler backend for producing FPGA-based

implementations while reusing large parts of its host language’s infrastructure—including Haskell’s

type system, front end, etc. In George, et al., [20], the Delite framework is adapted to the generation

of hardware from DSLs, specifically the hardware acceleration of kernels in a heterogeneous setting.

There is a vast literature on hardware security from an architectural or physical perspective,

considering issues ranging from side channel attacks, hardware trojan detection, and the like. For an

overview of this literature, please consult the references [35, 71, 76]. The architectural perspective

of hardware security considers hardware structures or designs supporting security policies. To take

one example from among many, GLIFT [74] is a gate-level information flow tracking method that

inserts special “shadow circuits” to dynamically monitor all information flows within a circuit. The

references include other examples of this architectural perspective [6, 36, 37, 67, 72, 73, 75, 81]. There

is an orthogonal line of research in hardware security that considers the design, implementation

and formal verification of hardware from a languages-based approach which we overview below;

ReWire fits squarely within this research thrust.

Formal methods for secure hardware are generally spread across two categories: (1) type-based

approaches [41, 42, 83]; and (2) logic-based approaches (including theorem-proving [45], and BDDs

and model-checking [10]), in which a hardware design and desired properties are formulated in

a logic and scrutinized in a (semi-)automatic manner. Types-based approaches have support for

security concerns integrated into a domain-specific language for hardware description. With any

security type system, the question of its expressiveness arises—i.e., does it reject secure designs?

The types-based approach offers no recourse to the rejection of a secure design—you simply cannot

argue with a type checker. A logic-based approach avoids this pitfall, but comes with overhead—e.g.,

your own theory of security—and neither is it connected directly to any implementation path.

Bluespec [33, 52] refers to a language and associated tools for hardware system design, spec-

ification, synthesis, modeling, and verification. There have been a number of incarnations of

the Bluespec language since its inception in 2000, the first of which was as a Haskell subset ex-

tended with domain-specific operations for hardware design. The Bluespec language seems to

have evolved into its current form which is BSV (Bluespec SystemVerilog), which is no longer a

functional language. There have been some formal methods tools developed for BSV [53, 60].
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Braibant and Chlipala [9] apply ideas from CompCert [40] to hardware synthesis and is the

most closely related to our own. Their work presents a certified compiler translating a monadic-

functional HDL (called “Fe-Si”) into RTL. Fe-Si is a small, idealized core of the BSV hardware

description language [33]. Fe-Si’s syntax is based on state monads, albeit not structured with monad

transformers like ReWire’s. Timing in Fe-Si is explicit, rather in the manner of VHDL, using an

explicit clock tick parameter, whereas ReWire makes use of reactive resumptions as a basis for

timing (see Section 2.2.2 below). One of the primary motivations behind the current work is to

build a foundation for a verified compilation process for ReWire. Choi et al. [11] follow Braibant

and Chlipala’s work, starting from an idealized, BlueSpec-like language.

One language-based approach to hardware security is to extend an existing HDL with security

types. Caisson [42], Sapper [41], and SecVerilog [83] each extend a subset of Verilog with security

types and annotations. The type systems of Caisson and SecVerilog reject programs that violate

information flow policies, while Sapper uses static analysis to automatically insert dynamic checks

to enforce information flow policies at runtime. SecVerilog has an operational semantics, albeit

not one formalized in a theorem prover with a proof system [49]. ReWire (or, RWC, rather) differs

fundamentally from these language- and type-based approaches in three respects: (1) it is a pure

functional language; (2) it possesses a formal semantics mechanized in Coq; and (3) its type system

is based on effect types. We discuss the significance of item (3) in Section 6.

The SAFE project focuses on the clean slate design of a provably secure computer system

stack (e.g., hardware, operating system, etc.). In a recent publication [2], the SAFE team describes

an operational semantics of the SAFE hardware’s instruction set and its role in the end-to-end

verification in Coq of a non-interference security property. The ReWire project has complimentary,

but orthogonal, goals to SAFE: developing a verifiable toolchain for producing high assurance,

secure hardware. Interesting follow-on research would explore implementations of the SAFE

hardware in the ReWire language.

One traditional approach to hardware verification starts from a design expressed in a production

HDL, creates an abstract specification “by hand” as it were, encodes this specification in the logic

of an automated theorem prover, and proceeds towards formal verification [45]. This approach

relies heavily on the faithfulness of the abstraction step. One reason that this approach must be

accomplished “by hand” is that production HDLs do not possess rigorous semantics. Although

attempts have been made in the past to define them semantically, none of these projects were

evidently completed [26, 38]. By contrast with production HDLs like Verilog or VHDL, ReWire

possesses a rigorous semantics for which the present work provides a Coq mechanization. ReWire

becomes a vehicle for expressing and implementing hardware designs and for verifying them as

well. In previous work [27, 58], we presented several case studies in hardware verification based in

ReWire, but there the verifications were not machine-checked.

Goncharov and Schröder [25] extend Moggi’s computational λ-calculus with constructs for

concurrency and shared state; RWC’s design is inspired, in part, by their treatment of corecursion.

Crary et al. [16] consider a logical characterization of information flow security that incorporates

Moggi’s computational λ-calculus at its core. With their approach, monads are, in effect, logical

modalities signifying the potential presence of effects at a security level. In contrast, Harrison and

Hook’s treatment of information flow security [30] is more semantic and model-theoretic than

Crary’s logical and type-theoretic approach, relying on structural properties of monads and monad

transformers to construct secure systems. Security verifications of ReWire designs [58] are based

on Harrison and Hook’s approach, and the present work formally supports that approach in Coq.

Ghica and Jung [21] provide a categorical semantics for a class of digital circuits in terms of

monoidal categories and are motivated by the need for supporting syntactic, equational reasoning.

ReWire specifications may be reasoned about equationally in the usual manner of functional
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languages; this was the approach taken in our previous ReWire verification work [27, 58]. By

contrast with Ghica and Jung’s work, ReWire specifications are, more or less, ordinary functional

programs that are compiled into circuits. Another categorical presentation of digital circuits is

found in Megacz [44], who uses generalized arrows as a basis for hardware description.

Effect systems are a static semantics of effects while monads [48] are a dynamic semantics

of effects. Effect systems [51] were initially associated with impure, strongly-typed functional

languages in which the effect annotations make explicit the side effects already present implicitly

in the language itself. Monads are used to mimic side-effecting computations within pure, strongly-

typed functional languages (e.g., Haskell) in which there are no implicit side effects.

Layered monads—i.e., monads constructed by monad transformers [43]—provide modularity

to the semantics of computational effects and functional programs alike by integrating multiple

effects within a single monad. This modularity-via-integration, however, has consequences for

formal verification: because its effects are all encapsulated within the single monad, they are not

distinguished syntactically within the type system of a specification language itself. Wadler [80]

“married” effect types tomonads, and previouswork by the authors [79] seems to be the firstmarriage

of effect types to layered monads. This latter marriage seems to be important for exploiting monadic

semantics in formal methods: layered monads provide a modular semantics of effects including

by-construction properties and effect types allow the expression of these properties in a formal

proof system like Coq (e.g., Figure 14).

As a concept for formal (i.e., machine-checked) verification, monads are less common, although

not unheard of [13, 50, 65, 68] and the use of both effect types and layered monads distinguishes the

current work from these. Furthermore, ReWire’s monad language includes the reactive resumption

monad transformer, which does not appear to have been formalized previously.

2 BACKGROUND: REWIRE’S PROGRAMMING MODEL
The purpose of this section is twofold: (1) to make this article as self-contained as possible by

providing sufficient background on ReWire and (2) to motivate RWC’s type system and operational

semantics. Throughout this section, we explicitly link this background material to subsequent

sections on RWC. ReWire is a subset of Haskell and uses ideas from monadic semantics as an

organizing principle of the language. It is, therefore, assumed of necessity that the reader is, at

least, somewhat familiar with functional programming and monads.

ReWire is a subset of the Haskell functional programming language [54]—i.e., ReWire programs

are Haskell programs, but not necessarily vice versa. All ReWire programs can be compiled to

synthesizable VHDL with the ReWire compiler. The principal difference between Haskell and

ReWire is that recursion in ReWire is restricted to tail recursion so that every ReWire program

requires only a finite, bounded memory footprint. Unbounded recursion requires a stack or heap

for compilation and such unbounded structures are anathema to hardware’s fixed storage.

ReWire has type constructors for devices where a device represents a clocked computation that,

o 

i 

clk s 

Fig. 1. Device d

for each clock cycle, takes an input of type i, produces an output of type o, and
may possess internal storage of type s (see Fig. 1). The type of d as shownwould
be d :: ReT i o (StT s Id) (), where ReT and StT are the reactive resumption and

state monad transformers and Id is the identity monad (about all of which we

say more below in the next sections). Device d is clocked, as illustrated in the

inset figure, although the clock is represented by the underlying structure of

reactive resumptions rather than as an explicit parameter. A device is created

in ReWire by either iterating a function or through composition of existing

devices. Previous work [32] introduced operators for constructing devices and
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composing them into larger, interconnected devices; Section 2.3 presents a

simple device specification template in ReWire.

2.1 Background: Monads
A monad is a triple ⟨M, return,>>=⟩ consisting of a type constructor M and two operations:

return : a→ M a — “unit”

(>>=) : M a→ (a→ M b)→ M b — “bind”

These operations must obey the well-known monad laws [43, 48] (these are (Left-Unit), (Right-Unit),

and (associativity) in Figure 14). The return operator is themonadic analogue of the identity function,

injecting a value into the monad. The >>= operator is a form of sequential application. The “null

bind” operator, >> : M a→ M b→ M b, is defined as: x >> k = x >>= λ_.k. The binding (i.e., “λ_”) acts
as a dummy variable, ignoring the value produced by x.

2.2 Background: Monad Transformers
The organizing principle underlying ReWire are reactive resumption monads with state [29] (RRMS),

which encapsulate a notion of computation appropriate to hardware—namely, synchronous paral-

lelism. RRMS support the expression of structural hardware designs in a functional style [32]. RWC

is a computational λ-calculus whose syntax and semantics formalizes RRMS in Coq. In particular,

RWC’s type system includes constructors that correspond to the state and reactive resumption

monad transformers. For the sake of being self-contained, we provide the reader with Haskell

definitions of the StT and ReT monad transformers. This code is meant only to aid the reader in

comprehending the intended semantics of RWC. If more background is required on RRMS, please

consult the references [29, 58].

2.2.1 State Monad Transformer. The state monad transformer is a well-documented structure in

functional programming and semantics [43]. The Haskell code for the state monad transformer,

StT, along with its lifting functions is below:

data StT s m a = StT (s -> m (a,s))

liftStT :: m a -> StT s m a

liftStT m = StT (\ s -> m >>=m \ v -> returnm (v,s))

get :: StT s m s

get = StT (\ s -> returnm (s,s))

put :: s -> StT s m ()

put s = StT (\ _ -> returnm ((),s))

The lift converts an m a computation into an StT s m a computation. The get operation returns

the current value of the s-store while the put s operation replaces the current store with store

s. In the definitions above, the binds and returns for the m monad are affixed with a subscript to

disambiguate them from the operations being defined.

2.2.2 Reactive Resumption Monad Transformer. Computations in ReT i o m a may be viewed

intuitively as (potentially infinite) sequences of m computations. If that sequence terminates, it

produces an a-value, otherwise it produces an o-output value and a continuation. Both lift
operations convert an m computation into respective enriched computations. Computations in ReT
over layered state monads correspond closely to synchronous hardware as discussed in previous

work [58]. The Haskell code for the reactive resumption monad transformer, ReT, along with its

associated functions is below:
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data ReT i o m a = Pause (m (Either a (o,i -> ReT i o m a)))

liftReT :: m a -> ReT i o m a

liftReT m = Pause (m >>=m returnm . Left)

signal :: o -> ReT i o m i

signal o = Pause (returnm (Right (o,returnm . returnReT)))

data Either a b = Left a | Right b

Recall that function composition (i.e., “.”) and sum types (i.e., Either) are built-in to Haskell. In

terms of the device d example above, the operation signal o represents the end of a clock cycle

and sets the output signal of d to o. RWC includes a pause primitive in the term syntax (Fig. 3) as a

means of representing signal.

2.2.3 By-construction Properties of Layered Monads. Layered state monads have multiple StT
applications—e.g., M = StT s1 (StT s2 Id) is a two-layer state monad. They have a number of useful

properties by construction [30], including:

put s′ >> put s = put s
put s >> liftStT φ = liftStT φ >> put s

The first rule is an intra-layer property (a.k.a., “clobber”) while the second is an inter-layer property

(a.k.a., “atomic non-interference”). Clobber states that the put s cancels earlier effects on the same

layer. By convention for a fixed state s0, we define mask = put s0; the mask included in the term

syntax of RWC generalizes this idea. Atomic non-interference states that effects from different

state layers commute. The equational logic derived in Coq for RWC presented in Section 5 gives

generalizations of both properties.

2.3 Defining Devices in ReWire
Simple ReWire devices are generally defined as tail recursive functions whose codomain is written in

terms of the ReT layer. Assume functions, internal :: i → StT s Id v and external :: i → v → o,

are defined which specify the internal and external behaviors of device d. Function internal takes

the input i, performs some computation with the current internal storage s, and produces an

intermediate result v. Function external takes the input i and the result v and produces the next

output signal for d.
Given an initial input i0, d = dev i0 where corecursive function dev is defined as:

dev :: i -> ReT i o (StT s Id) ()

dev i = liftReT (internal i) >>= \ v ->

signal (external i v) >>= \ i' ->

dev i'

At the beginning of a clock cycle, dev first consumes input, i, performs internal i computation

on the internal storage s, and then outputs the external i v signal at the end of the cycle.

Device definitions are expressed with an explicit corecursion operator, unfold; for example, the

device dev above would be written:

unfold i0 (\ i -> internal i >>= \ v -> return (Right (external i v, id)))

For this reason, Figure 3 includes syntax for an unfold primitive and its semantics are defined in

subsequent sections.

2.4 Background: Goguen-Meseguer Non-interference
The essence of the Goguen-Meseguer noninterference information flow model [24] and its many

descendants is that systems, broadly construed, are state machines whose inputs and outputs are
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partitioned by security level. The definition of information flow is formulated in terms of sequences

of stateful operations of mixed security levels and stipulates that high-level operations must not

affect low-level outputs.More concretely, for anymixed-level sequence, s = (l1 ; h1 ; . . . ; ln ; hn),
the low-level outputs of s must be identical to those produced by (l1 ; . . . ; ln), which is the result

of filtering out from s all high-level operations.

2.5 Marrying Effects & Layered State Monads
“By construction” properties of layered state monads [30] tell us that high- and low-security op-

erations commute (a.k.a., atomic non-interference) and that maskH cancels high-level operations

(i.e., φH >>maskH = maskH ). This cancelling property is known as the “clobber rule” [30]. The

atomic non-interference and clobber rules are helpful in demonstrating that monadic noninter-

ference equations (like that of the previous section) hold for particular software and hardware

applications [30, 58].

The Goguen-Meseguer model was recast in monadic terms previously [30], so that high-level

effects must be cancellable without affecting the low-level effects. Here, the utility of the RWC

effect type system becomes evident, because it can statically distinguish computations occurring

on distinct layers. For the sake of concreteness, consider the case of a monad, M, with a high- and

low-security stores types, H and L. High and low operations may be distinguished by the RWC

effect type system by annotating the layers with effect labels:

φH : StT RWH (StT ⟨⟩L Id) () φL : StT ⟨⟩H (StT RWL Id) ()

Note that φH (resp., φL) only has read-write effects (RW) on the outer (resp., inner) state layer ofM.

Furthermore, we assume the existence of an operation, maskH which initializes the H state layer.

The maskH operation can be assumed to be put s0 on the H -layer, where s0 is an arbitrary, fixed

value in H . Then, the monadic formulation of non-interference boils down to demonstrating that

equations like the following hold: φH >>φL >>maskH = φL >>maskH . This means that reinitializing

the H layer cancels the effects of high-security operations like φH . This is the monadic analogy of

Goguen and Meseguer’s filtering out of high-security operations.

3 RWC: THE REWIRE CORE CALCULUS
This section introduces the syntax (Section 3.1), type system (Section 3.2) and operational semantics

(Section 3.3) of the ReWire Calculus (RWC). RWC is a computational λ-calculus that extends
the functional features of a typed lambda calculus with support for stateful effects and reactive

parallelism. These effects are encapsulated through the use of monads [48], enabling us to provide

a useful equational theory in the presence of effects. The addition of effects to a computational

λ-calculus was examined in [80].

3.1 Syntax
This section introduces the syntax of RWC, which is a variety of computational λ-calculus extended
with operations for synchronous, stateful parallelism. Here, the stateful component is organized as

layered state monads—i.e., monads created by multiple applications of the state monad transformer.

Layered state monads have by-construction properties that support information flow security

verification [30, 58]; we defer presenting the general formalization of these by-construction proper-

ties until Section 5. Section 2 provides the reader with some background on monad transformers,

although readers requiring more should consult the references.

3.1.1 Types. Figure 2 shows the syntax of types. As a computational λ-calculus, RWC extends

the simply-typed λ-calculus with unit, sum, and product types along with a notion of computational
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ℓ ∈ EffectLabel ::= ⟨⟩ | R | W | RW

S ∈ StateMonad ::= Id | StT ℓ τ S

M ∈ Monad ::= S | ReT τ τ ′ S

τ ,τ ′ ∈ Type ::= τ → τ ′ | τ × τ ′ | τ + τ ′ | () | M τ

Fig. 2. Syntax of RWC types

Identifier ::= x | y | z | w | etc.

t ∈ Term ::= x | t t ′ | λx : τ .t | () | ⟨t ,t ′⟩ | proj t t ′ |

| inlτ t | inrτ t | case t t ′ t ′′ | return
M
t | t >>= t ′

| lift
M
t | elevateS t | getS | put t | pauseM,τ t

| runSt t t ′ | runId t | unfold
M,τ ,τ ′ t t

′ | runReτ t

v,v ′ ∈ Value ::= λx : τ .t | () | ⟨v,v ′⟩ | inlτ v | inrτ v | return
M
v

| v >>= v ′ | lift
M
v | elevate

M
v | get

S
| put v

| pause
M,τ v | runSt v v ′ | runReτ v

| unfold
M,τ ,τ ′ v v ′

Σ ∈ Store ::= nil | s :: Σ

c ∈ Config ::= ⟨t ,Σ⟩

D ∈ DoneConfig ::= ⟨ return
M
v,Σ⟩ | ⟨ pause

M,τ v,Σ⟩

Fig. 3. Syntax of terms, stores, and configurations

types: if M is a monad and τ is a type, then M τ is the type of computations in the monad M
with a result value of type τ . Exactly which monad stands in for M will determine what sort of

computational effects are possible. RWC permits the use of monads built in terms of the Id (identity)

monad and the ReT (reactive resumption), and StT (state) monad transformers, where ReT must

be the outermost monad transformer application (if it is present). RWC’s monads encompass the

combination of resumption and layered state monads found in [29] with the addition of effect labels
attached to each StT. The presence of an effect label ℓ at a given layer certifies that the computation

has at most the effects ℓ at that layer. For example, the effect labelW reflects the possibility that a

computation will write, not the necessity, and certifies that the computation will not read.
We note in passing that the denotational semantics of these monads corresponds exactly to

the semantics of their Haskell equivalents, up to the erasure of the effect labels and with the

considerable simplification that lifted domains are not necessary due to the absence of general

recursion; see [56] for further details.

3.1.2 Terms. Figure 3 shows the syntax of terms. Note the widespread use of type and monad

subscripts. These are necessary to ensure that every term has a unique type, and to handle over-

loading of monadic operations. We will sometimes omit these subscripts, as long as doing so does

not introduce ambiguity.

We will not remark on the standard λ-calculus machinery, other than to note that the constructs

used for destructing pairs and elements of sum type are slightly nonstandard. The term constructor

proj, used for destructing pairs, takes two subterms: the first corresponding to the pair being
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deconstructed—suppose it has type τ × τ ′—and the second corresponding to a function of type

τ → τ ′ → τ ′′ that produces a value from the pair’s elements. (Note that the conventional left- and

right-projection operators can be constructed in terms of the proj operator.) The term constructor

case, used for destructing elements of sum type, takes three subterms: the first is the scrutinee

of type τ + τ ′, the second to a function f1 of type τ → τ ′′, and the third to a function f2 of type
τ ′ → τ ′′. If the scrutinee evaluates to inl v (resp., inr v), then v will be passed to f1 (resp., f2).

Computations are defined in terms of certain primitives. The (overloaded) term constructors

return and >>= correspond respectively to the unit and bind operations of the monads, and lift to

the lift operation of each monad transformer. Terms typed in a state monad may read and write to

the store using the get and put operations. The term constructor elevate adds effect labels—e.g., W

or R— to the effect labels, if any, on a state monad computation; thereby, converting state monad

computations with a less permissive types to a more permissive type (where “permissiveness” is

understood as in Figure 5). For example, a term t of type StT R τ Id τ ′ can be typecast into the

more permissive type StT RW τ Id τ ′ via elevate, essentially de-certifying that t does not write.
(A cast in the “other direction”, to StT ⟨⟩ τ Id τ ′, is not permitted by the type system.) Reactive

computations are defined in terms of the primitives pause and unfold. The term pause t is essentially
a suspended computation that is waiting for an input value, and unfold can be used to produce

“looping” computations; we postpone a discussion of their exact semantics until we have discussed

the type system in greater detail. Finally, the term constructors runRe, runSt, and runIdallow the

effects of a given monad transformer to be reflected into the base monad. It may be helpful to view

runRe as executing a single step of a resumption-monadic computation, runSt as supplying the

initial state for the uppermost state layer, and runIdas moving from the effect-free Id monad into

the universe of non-monadic terms.

3.1.3 Stores and Configurations. Figure 3 (bottom) shows the syntax of stores and configurations,
which will be used to specify the semantics of computations. A store is a list of terms, each of

which corresponds semantically to a state monad transformer, and a configuration ⟨t ,Σ⟩ pairs a
term t with a state Σ. Generally, we use the metavariables s,s ′,s ′′ to refer store values.

3.2 Type System
Typing rules for terms are given in Figure 4. Typing judgments take the form Γ ⊢ t : τ , where Γ is a

set of assumptions (i.e., a mapping of variables to types). For the empty context, we write {}. Many

of the rules are standard, reflecting the rules of computational λ-calculus. The rules for get, put,
and elevate require special attention, as they directly involve effect labels. Rule T-Get restricts the

effect label on the top monad transformer to include a read label, and T-Put restricts it to include a

write label. These restrictions are expressed in terms of an ordering on effect labels (which is really

nothing more than the subset relation) given in Figure 5 at left. For T-Elevate, we require that the

target monad S ′ has (non-strictly) more effect labels than the source monad S ; its precise meaning

is expressed in Figure 5 at right. The elevate operation permits us to decertify that a computation

does not read or write at any given state layers, but not to remove existing effect labels.

Stores and configurations also have a notion of type, defined by the rules of Figure 6. A store Σ
is said to match a monadM if the types of its elements correspond, in order, to the state types of

the state monad transformers inM . For this, we simply write that Σ matchesM . A configuration

⟨t ,Σ⟩, then, has typeM τ if and only if Σ matchesM and {} ⊢ t : M τ . We write this ⟨t ,Σ⟩ ▷M τ . A
simple, yet useful property of our type system is that every term (resp. configuration) has a unique

type, as stated in Theorem 3.1.

Theorem 3.1 (Uniqeness of Types). If Γ ⊢ t : τ and Γ ⊢ t : τ ′, then τ = τ ′. Also, if ⟨t ,Σ⟩ ▷ τ and
⟨t ,Σ⟩ ▷ τ ′, then τ = τ ′.
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Γ,x :τ ⊢x :τ
(Var)

Γ,x :τ ⊢ t :τ ′

Γ ⊢ λx :τ .t :τ → τ ′
(Abs)

Γ ⊢ t ′ :τ → τ ′ Γ ⊢ t :τ
Γ ⊢ t ′ t :τ ′

(App)

Γ ⊢ t : τ
Γ ⊢ inlτ ′ t : τ+τ

′
(Inl)

Γ ⊢ t : τ
Γ ⊢ inrτ ′ t : τ

′+τ
(Inr)

Γ ⊢ t : τ Γ ⊢ t ′ : τ ′

Γ ⊢ ⟨t ,t ′⟩ : τ×τ ′
(Pair)

τ ′

Γ ⊢ () : ()
(Unit)

Γ ⊢ t :τ × τ ′ Γ ⊢ t ′ :τ → τ ′ → τ ′′

Γ ⊢ proj t t ′ :τ ′′
(Proj)

Γ ⊢ t :τ ′ + τ ′′ Γ ⊢ t ′ :τ ′ → τ Γ ⊢ t ′′ :τ ′′ → τ
Γ ⊢ case t t ′ t ′′ :τ

(Case)

Γ ⊢ t : τ
Γ ⊢ return

M
t : M τ

(Return)

Γ ⊢ t : M τ Γ ⊢ t ′ : τ → M τ ′

Γ ⊢ t >>= t ′ : M τ ′
(Bind)

Γ ⊢ t : S τ
Γ ⊢ lift(StTℓτ ′S) t : StT ℓ τ

′
S τ

(LiftSt)

Γ ⊢ t : S τ
Γ ⊢ lift(ReTτ ′τ ′′S) t : ReT τ

′ τ ′′ S τ
(LiftRe)

R ≤ ℓ

Γ ⊢ get(StTℓτ S) : StT ℓ τ S τ
(get)

Γ ⊢ t : τ W ≤ ℓ

Γ ⊢ put t : StT ℓ τ S ()
(put)

Γ ⊢ t : StT ℓ τ ′ S τ Γ ⊢ t ′ : τ ′

Γ ⊢ runSt t t ′ : S (τ×τ ′)
(RunSt)

Γ ⊢ t : Id τ
Γ ⊢ runId t : τ

(RunId)

Γ ⊢ t : S (τ ′ × (τ → ReT τ τ ′ S τ ′′))

Γ ⊢ pause(ReTτ τ ′S,τ ′′) t : ReT τ τ
′
S τ ′′

(pause)

Γ ⊢ t : τ ′′′ Γ ⊢ t ′ : τ ′′′ → S (τ ′′+(τ ′×(τ → τ ′′′)))

Γ ⊢ unfold(ReT τ τ ′ S,τ ′′,τ ′′′) t t
′
: ReT τ τ ′ S τ ′′

(unfold)

Γ ⊢ t : ReT τ τ ′ S τ ′′

Γ ⊢ runReτ t : S (τ ′′+(τ ′×(τ → ReT τ τ ′ S τ ′′)))
(RunRe)

Γ ⊢ t : S τ S ≤ S
′

Γ ⊢ elevate
S
′ t : S′ τ

(Elevate)

Fig. 4. Typing judgments for terms.

Furthermore, substitutions preserve typing judgments. To see this, we need to define substitution

and collect some facts about free variables, substitutions and types. For any term t , the set of free
variables in t , FV (t ), is defined as follows:

FV (x ) = {x }
FV (t u) = FV (t )

⋃
FV (u)

FV (λx : τ .t ) = FV (t ) \ {x }
FV (c0) = {} , for any nullary term c0

FV (cn t1, . . . ,tn ) =
⋃n

i=1 FV (ti ), for an n-ary term cn

In the last clause above, the c in ‘c t1, . . . ,tn ’ stands for term constructors such as case, returnM ,

etc. If FV (t ) = ∅, then t is said to be closed. We now define the substitution of v for free occurrences

of x in t , written ‘t[x := v]’, thusly:

x[x := v] = v
y[x := v] = y if y , x

(t u)[x := v] = (t[x := v]) (u[x := v])
(λx : τ .t )[x := v] = (λx : τ .t )
(λy : τ .t )[x := v] = λy : τ .(t[x := v]) if y , x and y < FV (v )

(c t1, . . . ,tn )[x := v] = (c (t1[x := v]), . . . , (tn[x := v]))
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RW

R W

⟨⟩

Id ≤ Id

(L-Id)
ℓ ≤ ℓ′ S ≤ S ′

StT ℓ τ S ≤ StT ℓ′ τ S ′
(L-StT)

Fig. 5. Ordering on effect labels (given by the diagram) and on state monads.

Σ matches S

Σ matches ReT τ τ ′ S
(M-ReT)

{} ⊢ s : τ Σ matches S

(s :: Σ) matches StT ℓ τ S

(M-StT)

{} ⊢ t : M τ Σ matchesM

⟨t ,Σ⟩ ▷M τ
(T-Config)

Fig. 6. Typing judgments for stores (top) and configurations (bottom).

This definition of substitution preserves typing judgments. This requires that if free variables

occur in well-typed terms, then there must be a typing assignment for those variables relative to

the context. As stated in Lemma 3.2.

Lemma 3.2. If x ∈ FV (t ) and Γ ⊢ t : τ , then there exists τ ′ such that x : τ ′ ∈ Γ.

From this Corollary 3.3 follows—namely, that a term is closed if it it is well-typed in the empty

context.

Corollary 3.3. If {} ⊢ t : τ , then t is closed.

Moreover, we have Lemma 3.4 as a consequence—that the context of a typing judgment does

not alter typing judgments, so long as all each context maintains assignments of types to any free

variables.

Lemma 3.4. If Γ ⊢ t : τ and, if, for all x such that x ∈ FV(t ),Γ,x = Γ′,x , then Γ′ ⊢ t : τ .

Finally, we have Theorem 3.5—that is, it follows that substitution preserves typing judgments.

Theorem 3.5. If x : τ ′,Γ ⊢ t : τ and {} ⊢ v : τ ′, then Γ ⊢ (t[x := v]) : τ .

3.3 Small-Step Operational Semantics
In this section we describe the semantics of RWC in a small-step operational style. As a computa-

tional λ-calculus, RWC contains both functional features (functional abstraction and application)

as well as effectful ones (mutable state and reactive parallelism). The operational semantics is

structured around this dichotomy, with two interdefined notions of reduction: pure and effectful
reduction. Pure reduction reflects the notion of effect-free evaluation. A pure reduction judgment

takes the form t { t ′; note that this makes no mention of any store. Effectful reduction provides

semantics to computational terms which may have effects. Thus an effectful reduction judgment

takes the form ⟨t ,Σ⟩ { ⟨t ′,Σ′⟩.
The rules for pure and effectful reduction are given in Figures 7 and 8, respectively. We adopt a

call-by-value evaluation strategy, as this is (we feel) simpler to work with metatheoretically than

call-by-name or -need. This may seem strange in light of ReWire’s antecedents in Haskell (which is

a non-strict language), but since ReWire is a strongly normalizing subset of Haskell, it does not

matter whether we choose an eager or lazy evaluation strategy from a “backwards compatibility”

point of view: since there is no “bottom” value, strictness is not a concern.As stated in Theorem 3.6,

the reduction relation defined by the rules for pure and effectful reduction is deterministic.
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(λx : τ .t )v { t [x := v]
(ST-AppAbs) t { t ′′

t t ′ { t ′′ t ′
(ST-App1)

t { t ′

v t { v t ′
(ST-App2)

t { t ′′

⟨t, t ′⟩ { ⟨t ′′, t ′⟩
(ST-Pair1)

t { t ′

⟨v, t ⟩ { ⟨v, t ′⟩
(ST-Pair2)

t { t ′

proj t t ′′ { proj t ′ t ′′
(ST-Proj1)

t { t ′

proj v t { proj v t ′
(ST-Proj2)

proj ⟨v,v ′⟩ v ′′ { (v ′′ v ) v ′
(ST-Proj) t { t ′

inlT t { inlT t ′
(ST-Inl)

t { t ′

inrT t { inrT t ′
(ST-Inr)

t { t ′′′

case t t ′ t ′′ { case t ′′′ t ′ t ′′
(ST-Case1)

t { t ′′

case v t t ′ { case v t ′′ t ′
(ST-Case2)

t { t ′

case v v ′ t { case v v ′ t ′
(ST-Case3)

case (inlT v ) v ′ v ′′ { v ′ v
(ST-CaseL)

case (inrT v ) v ′ v ′′ { v ′′ v
(ST-CaseR) ⟨v, nil⟩ { ⟨t, nil⟩

runId v { runId t
(ST-RunIdMo)

Fig. 7. Reduction Rules for Lambda Calculus Reduction. These rules specify a call-by-value evaluation strategy

on RWC.

Theorem 3.6. If t { t ′ and t { t ′′, then t ′ = t ′′. Also, if ⟨t ,Σ⟩ { ⟨t ′,Σ′⟩ and ⟨t ,Σ⟩ { ⟨t ′′,Σ′′⟩,
then ⟨t ′,Σ′⟩ = ⟨t ′′,Σ′′⟩.

A few of the rules require close inspection. To begin with, we note that pure and effectful

reduction are interdefined. Rule STM-ST of Figure 8 allows pure reduction to be “lifted” into the

universe of effectful reduction: if the term component t of a configuration ⟨t ,Σ⟩ still has not been
evaluated to a value, we will continue to evaluate it without changing the store. Dually, if less

obviously, the rule ST-RunIdMo in Figure 7 allows monadic evaluation in the identity monad (and

only in the identity monad) to be reified in a pure setting. If we wish to run a computation in a

more complex monad, we may use runRe and runSt to “peel off” one monad transformer at a time,

until we reach the Id monad at the core. In the runSt case, we must supply an initial value for

the corresponding state layer, producing a computation in the base monad which will return the

post-value for that layer. The runRe operator will produce a computation in the base monad that

either returns a final result value, or an output value paired with a continuation waiting on more

input.

Note also the interaction between the rule STM-LiftSt, STM-Get, and STM-Put. The get and

put operations always operate on the ‘head’ (leftmost) item in the store. Applying lift
StT

to these

operations allows us to access items deeper in the store, by executing the underlying computation

against the “tail” of the store and leaving the “head” item unchanged.

The rule STM-Unfold may be justified directly by the Haskell definition of unfold. Rule STM-

Pause is more subtle. The basic idea, however, is that if a pause arises to the left of a >>=, we should

“absorb” what comes to the right of the >>= into the pause’s continuation, guaranteeing that we

make progress towards a “done” configuration.

4 METATHEORY
In this section we discuss the metatheory of RWC, in particular type safety (Section 4.1), strong
normalization (Section 4.3), and soundness of effect labels (Section 4.4).

Type systems-based approaches to language-based security (which seem to have originated with

Volpano et al. [77]) usually apply type-soundness arguments to demonstrate the correctness of

the type system. This soundness argument follows along these lines: well-typed programs (i.e.,

programs judged secure by the type system) do not misbehave according to a security model

(frequently noninterference-based [24]) defined in terms of the language’s semantics. The effect

system presented in Section 3 can make fine-grained distinctions about memory accesses and,

therefore, the soundness of the effect system is highly relevant to multi-level security. For example,

“no write down” may be expressed as the type, StT RWH (StT RL Id) (), because any computation

with this typemay read or write to the highH state, but may only read from the low L state. Similarly,
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t { t ′

⟨t, Σ⟩ { ⟨t ′, Σ⟩
(STM-ST)

⟨v, Σ⟩ { ⟨t, Σ′⟩
⟨v >>= v ′, Σ⟩ { ⟨t >>= v ′, Σ′⟩

(STM-Bind)

⟨ returnM v >>= v ′, Σ⟩ { ⟨v ′ v, Σ⟩
(STM-BindRet)

⟨v, Σ⟩ { ⟨t, Σ′⟩
⟨lift(StT ℓ τ S) v, s :: Σ⟩ { ⟨lift(StT ℓ τ S) t, s :: Σ′⟩

(STM-LiftSt)

⟨v, Σ⟩ { ⟨t, Σ′⟩
⟨lift(ReT τ τ ′ S) v, Σ⟩ { ⟨lift(ReT τ τ ′ S) t, Σ

′⟩
(STM-LiftRe)

⟨liftM (return
M
′ v ), Σ⟩ { ⟨returnM v, Σ⟩

(STM-LiftRet)

⟨get
S
, s :: Σ⟩ { ⟨returnS s, s :: Σ⟩

(STM-Get)

⟨put v, s :: Σ⟩ { ⟨returnS (),v :: Σ⟩
(STM-Put)

⟨t, Σ⟩ { ⟨t ′, Σ′⟩
⟨elevateS t, Σ⟩ { ⟨elevateS t ′, Σ′⟩

(STM-Elevate)

⟨elevate
S
′ (returnS v ), Σ⟩ { ⟨returnS′ v, Σ⟩

(STM-ElevateRet)

⟨v, s :: Σ⟩ { ⟨t, s ′ :: Σ′⟩
⟨runSt v s, Σ⟩ { ⟨runSt t s ′, Σ′⟩

(STM-RunSt)

⟨runSt (return(StT ℓ τ S) v ) v ′, Σ⟩ { ⟨returnS ⟨v,v ′⟩, Σ⟩
(STM-RunStRet)

⟨v, Σ⟩ { ⟨t, Σ′⟩
⟨runReτ v, Σ⟩ { ⟨runReτ t, Σ′⟩

(STM-RunRe)

⟨runReτ ′′ (pause(ReT τ τ ′ S) v ), Σ⟩ { ⟨v >>= λx.return (inrτ ′′ x), Σ⟩
(STM-RunRePause)

⟨runReτ ′′ (return(ReT τ τ ′ S) v ), Σ⟩ { ⟨returnS (inl(τ→(τ ′×(ReT τ τ ′ S τ ′′))) v ), Σ⟩
(STM-RunReRet)

⟨unfold v v ′, Σ⟩ {
〈
lift (v ′v ) >>= λu .

(
caseu (λw . returnw )

(λw .projw (λx .λy . pause (return⟨x, λz . unfold (y z )v ′⟩))

)
, Σ

〉 (STM-Unfold)

⟨(pause v ) >>= v ′, Σ⟩ {
〈
pause (v >>= λw . (proj w (λx .λy . return⟨x, λz .(y z ) >>= v ′)⟩)) , Σ

〉 (STM-PauseBind)

Fig. 8. Evaluation rules for monadic reduction. For the sake of readability, type annotations in STM-Unfold

and STM-PauseBind are elided.

“no read up” is expressed by φH : StT RWH (StT RL Id) (). The type soundness demonstrated in

Section 4.4 demonstrates the fidelity of RWC types to its operational semantics.

We shall use{∗ to denote the reflexive, transitive closure of{ . Thus, we have the following

properties of{∗:

Lemma 4.1. For all terms t ,u,v, and stores Σ,Σ
′

,Σ
′′

,

(1) if u { v , then u {∗ v . Also, if ⟨u,Σ⟩ { ⟨v,Σ
′

⟩, then ⟨u,Σ⟩ {∗ ⟨v,Σ
′

⟩.
(2) u {∗ u. Also, ⟨u,Σ⟩ {∗ ⟨u,Σ⟩.
(3) if t {∗ u and u {∗ v , then t {∗ v . Also, if ⟨t ,Σ⟩ {∗ ⟨u,Σ

′

⟩ and ⟨u,Σ
′

⟩ {∗ ⟨v,Σ
′′

⟩, then
⟨t ,Σ⟩ {∗ ⟨v,Σ

′′

⟩.

Moreover, for each single-step reduction rule defined in Figures 7 and 8 from Section 3.3, there

exists a corresponding version with{∗ in place of{.

4.1 Type Safety
As is standard in operational semantics, we take type safety to be the conjunction of progress,
meaning that any well-typed term (resp. configuration) that is not a value (resp. is not “done”)

always reduces to something (Theorem 4.2), and preservation, meaning that reduction preserves

the types of terms (and configurations) (Theorem 4.3).

Theorem 4.2 (Progress). If {} ⊢ t : τ , then either t is a value or there exists t ′ such that t { t ′.
Also, if ⟨t ,Σ⟩ ▷M τ , then either ⟨t ,Σ⟩ is done, or there exist t ′ and Σ′ such that ⟨t ,Σ⟩ { ⟨t ′,Σ′⟩.

Theorem 4.3 (Preservation). If {} ⊢ t : τ and t { t ′, then {} ⊢ t ′ : τ . Also, if ⟨t ,Σ⟩ ▷M τ and
⟨t ,Σ⟩ { ⟨t ′,Σ′⟩, then ⟨t ′,Σ′⟩ ▷M τ .

Together, then, these properties imply that well-typed programs cannot go wrong—i.e., evaluation

of well-typed programs never “gets stuck”— as specified in Definition 4.4.

Definition 4.4 (Stuck). A term (resp. configuration) is stuck if it is neither a value (resp. done

configuration) nor reducible to some other term (resp. configuration).
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That is, reduction of well-typed terms (and configurations) will not generate something that is

neither a value (resp. done configuration), nor reducible (Corollary 4.5).
3

Corollary 4.5 (Soundness). If {} ⊢ t : τ and t {∗ t ′, then it is not the case that t ′ is stuck. Also,
if ⟨t ,Σ⟩ ▷M τ and ⟨t ,Σ⟩ {∗ ⟨t ′,Σ′⟩, then it is not the case that ⟨t ′,Σ′⟩ is stuck.

Perhaps surprisingly, the addition of computational features does not substantially complicate the

proof of type safety when compared to similar proofs for pure λ-calculi.

4.2 Canonical Forms
Proofs of metatheoretic theorems about operational semantics (e.g., the proofs of Theorems 4.2, 4.3

and 4.5) are frequently organized in terms of canonical forms—that is, closed, well-typed values.

The reason for doing so is simply that it drastically reduces the number of cases to be considered in

the proof thereby reducing the verification effort. Our canonical forms come in two varieties—the

canonical forms of lambda values and canonical forms for monadic expressions stated in Lemmas 4.6

and 4.7, respectively.

Lemma 4.6. If {} ⊢ v : τ and v is a value, then
(1) if τ is τ1 → τ2, there exists x u, such that v = λx : τ1.u,
(2) if τ is τ1 × τ2, there exists t1t2,v = ⟨t1,t2⟩,
(3) if τ is τ1 + τ2, there exists t ′,v = inlτ

2
t ′ or v = inrτ

1
t ′,

(4) if τ is (), v = (),

Lemma 4.7. If ⟨v,Σ⟩ ▷M τ and ⟨v,Σ⟩ is a done configuration, then
(1) ifM is S , there exists t ′, v = return

S
t ′,

(2) ifM is ReT τ ′ τ ′′ S, there exists t ′, v = return(ReTτ ′τ ′′S τ ) t
′ or v = pause(ReTτ ′τ ′′S τ ) t

′.

The canonical forms for done configurations—and canonical forms in general—greatly reduce the

range of potential cases to consider in proofs. In the case of reactive resumptions, the canonical forms

for done configurations reflect a fundamental feature of resumptions—namely, that resumptions

consume inputs, producing outputs paired with another resumption.

4.3 Strong Normalization
Normalization, generally speaking, is a claim about the set of possible reduction sequences of terms.

A reduction relation⇝ for a language is weakly normalizing if, and only if, for each term t in the

language, there is at least one reduction sequence of terms, t0 ⇝ t1 ⇝ · · ·⇝ tn−1 ⇝ tn , such that

t = t0 and tn is irreducible. A reduction relation⇝ is strongly normalizing if, and only if, every

reduction sequence from term t is a prefix of a reduction sequence ending in an irreducible term.

Note that strong normalization implies weak normalization, but not vice versa. Note further that

these notions of normalization extend in an obvious way from terms to configurations. The Haskell

functional language—or, rather, its notion of reduction—is weakly normalizing, but not strongly

normalizing, due to Haskell’s default lazy evaluation.

Unlike Haskell, RWC enjoys the property of strong normalization. This property is especially

important in hardware applications for the reason that hardware cannot be allowed to “loop forever”

between clock ticks. The computation time between clock ticks must have a static, finite upper

bound—this issue is discussed in detail in the references [56, 58]. Strong normalization also makes

defined equality easier to work with, as it eliminates the need to account for equality of diverging

computations.

3
Soundness follows by induction over the reduction steps taken. Then, apply Theorem 4.3 to show that reduced term is

well-typed, followed by an application of Theorem 4.2 to show that the term is either a value or further reducible.
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The proof of strong normalization (Theorem 4.11) uses an adaptation of the standard logical
relations technique [46]. A standard proof using logical relations has two steps. First, define a type-

indexed collection of relations over terms. The construction of each relation proceeds inductively

by utilizing definitions at “smaller types”. The construction of these relations use either one of

two approaches—saturated sets [69, 70], or reducibility candidates [23]4. Second, establishing that
relative to their respective type, every well-typed term respects the relation. In short, given a

property P, a logical relation, R {T∈T } (with respect to P), is a collection of type-indexed relations

such that for every RT ∈ R {T∈T } , every element t ∈ RT, either has, or preserves P.
We say that a term t halts if and only if there exists a value v (not necessarily distinct from

t ), such that t {∗ v. In a similar fashion, a configuration ⟨t ,Σ⟩ halts if, and only if, there exists

a done configuration D such that ⟨t ,Σ⟩ {∗ D. The interaction between halting and reduction is

characterized by the properties collected in Lemma 4.8, while Lemma 4.9 summarizes properties

pertaining to reducibility candidates that were used in the course of proving Theorem 4.11. In the

case of strong normalization, halting is the property of interest.

Lemma 4.8. For all terms u,v and stores Σ,Σ
′

,
(1) If u { v , then u halts if and only if v halts.
(2) If u {∗ v , then u halts if and only if v halts.
(3) If ⟨u,Σ⟩ { ⟨v,Σ

′

⟩, then ⟨u,Σ⟩ halts if and only if ⟨v,Σ
′

⟩ halts.
(4) If ⟨u,Σ⟩ {∗ ⟨v,Σ

′

⟩, then ⟨u,Σ⟩ halts if and only if ⟨v,Σ
′

⟩ halts.

Lemma 4.9. For all terms u,v and types τ ,
(1) If u { v and Rτ (u), then Rτ (v )
(2) If u {∗ v and Rτ (u), then Rτ (v )
(3) If {} ⊢ u : τ , u { v and Rτ (v ), then Rτ (u)
(4) If {} ⊢ u : τ , u {∗ v and Rτ (v ), then Rτ (u),
(5) If Rτ (u), then u halts.

We discuss the details of defining reducibility candidates below.

Lemma 4.10. Let v1, . . . ,vn be values of type τ1, . . . ,τn , such that Rτi (vi ) for each i = {1, . . . ,n}.
Then, if x1 :τ1, . . . ,xn :τn ⊢ t : τ , then Rτ (t[x1 := v1] . . . [xn := vn]).

Theorem 4.11 follows from Lemma 4.10 using the empty context—keeping in mind that Rτ (t ),
implies that t halts:

Theorem 4.11 (Strong Normalization). If {} ⊢ t : τ , then t halts. Also, if ⟨t ,Σ⟩ ▷M τ , then ⟨t ,Σ⟩
halts.

4.3.1 Mechanization. Because resumptions are coinductive, and as such, proving that strong

normalization holds for configurations requires the use of coinductive proof principles. This is

captured by the definition in Figure 10. This allows the R property to be appropriately applied over

reactive resumption computations in a manner that ensures productivity. The use of coinduction

and coinductive proof principles has been attributed to David Park [64]. Coquand [15] provided a

formalization of coinductive types in type theory using a syntactic guardedness condition. This was

implemented in Coq by Giménez [22]. To our knowledge, no other mechanized proofs of strong

normalization for computational λ-calculi exist in Coq. There is a proof of strong normalization for

Moggi’s computational metalanguage in Isabelle/HOL using the nominal package [17].

We formalize R in Coq using a Fixpoint definition in Figure 9. The straightforward Inductive

definition violates Coq’s strict positivity requirement—that Inductive definitions cannot have

4
Though similar, saturated sets and reducibility candidates are not the same. See [18] for a detailed comparison.
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Fixpoint R (τ :Ty) (t:tm) {struct τ } : Prop := ∅ ⊢ t ∈ τ ∧ halts t ∧

match τ with

| τ1 → τ2 => ∀t', R τ1 t' → R τ2 (t,t')
| τ1 × τ2 => ∃ t1 t2, t {∗ ⟨t1, t2⟩ ∧ value t1 ∧ value t2 ∧ R τ1 t1 ∧ R τ2 t2
| τ1 + τ2 => ∃ t', value t' ∧ ((t {∗ inlτ

2
t' ∧ R τ1 t') ∨ (t {∗ inrτ

1
t' ∧ R τ2 t'))

| () => True

| SM τ ′ => ∀ Σ, Rsto SM Σ → ∃ t' Σ′, (t,Σ) {∗ (returnSM t',Σ′) ∧ value t' ∧ R τ ′ t' ∧ Rsto SM Σ′

| ReT τi τo SM τ ′ => ∀ Σ, Rsto SM Σ → ∃ t' Σ′, (t,Σ) {∗ (t',Σ′) ∧ value t' ∧ Rsto SM Σ′ ∧
along_react (Rsto SM) (R τi ) (R τo) (R τ ′) (t',Σ′)

end

with Rsto SM (Σ:store) {struct SM} : Prop := store_all_values Σ ∧ store_matches_mo Σ SM ∧

match SM with

| Id => True

| StT ℓ τ SM' => ∃ t Σ′, R τ t ∧ Rsto SM' Σ′ ∧ Σ = t::Σ′

end.

Inductive store_all_values : store → Prop :=

| sav_empty : store_all_values ()

| sav_cons : ∀ s Σ, value s → store_all_values Σ → store_all_values (s::Σ).

Inductive store_matches_mo : store → Mo → Prop :=

| matches_mo_id : store_matches_mo () Id

| matches_mo_stt : ∀ SM E τ t Σ, ∅ ⊢ t ∈ τ → store_matches_mo Σ SM → store_matches_mo (t::Σ) (StT E τ SM)

| matches_mo_ret : ∀ SM τi τo Σ, store_matches_mo Σ SM → store_matches_mo Σ (ReT τi τo SM).

Fig. 9. The fixpoint definition of logical relation R. The store_matches_mo formalizes the matches relation
from Fig. 6 in Coq.

constructors occurring to the left of an arrow [55]. The core of the definition for ordinary lambda

terms is standard. However, the monadic components require explanation.

Note that state-layer monadic configurations must reduce to a returnM in their respective layers.

This amounts to requiring that monadic terms have normal forms. That is to say, this reflects a

natural requirement of termination—namely, that monadic-reduction performed with regards to a

stateful computation results in a value.

Stores feature prominently in the monadic part of our development. It is only natural, then, that

we require that stores satisfy two reducibility conditions relative to their corresponding monadic

types. We require that terms contained in stores must be values, and that those terms must be in the

reducibility sets of their underlying types. These requirements correspond to store_all_values
and the fixpoint definition Rsto in Figure 9. As the name suggests, Rsto is simply a reducibility

requirement for stores.

We embed the coinductive predicate along_react inside the fixpoint definition of R as a

condition on terms typed in the reactive layer. An added difficulty is that along_react needs to

be defined lexically prior to the definition of R. As such, along_react mentions neither R, nor
Rsto. Instead, we must use partial application—i.e., (R τ ). These technicalities notwithstanding,
the structure of the constructors for along_react is fairly straightforward – involving routine

reasoning for coinduction.

4.4 Soundness of Effect Labels
Since effect labels are meant to track effects and their potential propagation, soundness of effect

labels (roughly) corresponds to preservation of security levels indicated by the label, and that stores

track such features accordingly. Thus, given well-typed configurations, establishing soundness of

effect labels amounts to verifying that monadic-reduction does not alter stores where no writes

are allowed (Theorem 4.13); and moreover, that monadic-reduction does not reveal any changes to

stores relative to monads with effect labels where only reads are allowed (Theorem 4.15). To that end,
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CoInductive along_react : (store → Prop) → (tm → Prop) → (tm → Prop) → (tm → Prop) → configuration → Prop :=

| along_return : ∀ (PS:store → Prop) (PI PO PR:tm → Prop) τi τo SM t Σ t' Σ′,
(t,Σ) {∗ (return(ReT τi τo SM) t',Σ′) → value t' → PR t' → PS Σ′ → along_react PS PI PO PR (t,Σ)

| along_pause : ∀ (PS : store → Prop) (PI PO PR : tm → Prop) τi τo SM τ t Σ t1 Σ′ vl vr Σ′′,
(t,Σ) {∗ (pause(ReT τi τo SM τ ) t1,Σ

′) →

(t1,Σ
′) {∗ (returnSM ⟨vl,vr⟩,Σ

′′) →

value t1 ∧ value vl ∧ value vr →

PS Σ′ ∧ PS Σ′′ ∧ PO vl →

(∀ t1, PI t2 → halts (vr t2)) →

(∀ t2 Σ′′, PI t2 → PS Σ′′ → along_react PS PI PO PR ((vr t2),Σ
′′)) →

along_react PS PI PO PR (t,Σ).

Fig. 10. The Coinductive Predicate along_react

nil
Id(W)
= nil

(swnw-id)

Σ
S (W)
= Σ′

Σ
ReT τ τ ′ S (W)

= Σ′
(swmw-re)

Σ
S (W)
= Σ′

(s : : Σ) StT τ ⟨⟩S (W)
= (s : : Σ′)

(swnw-n)

Σ
S (W)
= Σ′

(s : : Σ) StT τ ⟨R⟩S (W)
= (s : : Σ′)

(swnw-r)

Σ
S (W)
= Σ′

(s : : Σ) StT τ ⟨W ⟩S (W)
= (s ′ : : Σ′)

(swnw-w)

Σ
S (W)
= Σ′

(s : : Σ) StT τ ⟨RW ⟩S (W)
= (s ′ : : Σ′)

(swnw-rw)

Fig. 11. The ‘same where no write’ relation.

nil
Id(R)
= nil

(swr-id)

Σ
S (R)
= Σ′

Σ
ReT τ τ ′ S (R)

= Σ′
(swr-re)

Σ
S (R)
= Σ′

(s : : Σ) StT τ ⟨⟩S (R)
= (s ′ : : Σ′)

(swr-n)

Σ
S (R)
= Σ′

(s : : Σ) StT τ ⟨R⟩S (R)
= (s : : Σ′)

(swr-r)

Σ
S (R)
= Σ′

(s : : Σ) StT τ ⟨W ⟩S (R)
= (s ′ : : Σ′)

(swr-w)

Σ
S (R)
= Σ′

(s : : Σ) StT τ ⟨RW ⟩S (R)
= (s : : Σ′)

(swr-rw)

Fig. 12. The ‘same where read’ relation.

⟨nil, nil⟩ wc ⟨nil, nil⟩
(wc-id)

⟨Σ1, Σ2⟩ wc ⟨Σ′
1
, Σ′

2
⟩

⟨s1 :: Σ1, s2 :: Σ2⟩wc ⟨s1 :: Σ′
1
, s2 :: Σ′

2
⟩

(wc-unchanged)

⟨Σ1, Σ2⟩ wc ⟨Σ′
1
, Σ′

2
⟩

⟨s1 :: Σ1, s2 :: Σ2⟩wc ⟨s :: Σ′
1
, s :: Σ′

2
⟩

(wc-changed)

Fig. 13. The write consistency relation.

we make use of three relations: “same where no writes”, “same where read”, and “write consistency”,

written
M (W)
= ,

M (R)
= , and wc—and defined in Figure 11, Figure 12, and Figure 13—respectively.

Stores (semantically) correspond to state monad transformers. Given a well-typed configuration,

the associated store will contain appropriate elements relative to each layer in the state monad
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transformer stack. In order to update a store, its state monad must contain a write label. Lemma 4.12

contains properties used to prove Theorem 4.13.

Lemma 4.12. For all stores Σ,Σ
′

,Σ
′′

, and monads M,M
′

(1) If Σ matches M, then Σ
M(W)
= Σ.

(2) if Σ M(W)
= Σ

′

and Σ
′ M(W)
= Σ

′′

, then Σ
M(W)
= Σ

′′

.

(3) IfM is less permissive thanM

′

and Σ
M(W)
= Σ

′

, then Σ
M

′
(W)
= Σ

′

.

Theorem 4.13 (No Forbidden Updates). If ⟨t ,Σ⟩ ▷M τ , then ⟨t ,Σ⟩ { ⟨t ′,Σ′⟩ implies Σ M (W)
= Σ′.

Similarly, reading from a store takes place only relative to state monads that have a read label. This

is reflected in the type judgments for put (resp., get) that require a write (resp., read) label in order

to be well-typed. Lemma 4.14 contains properties used to prove Theorem 4.15.

Lemma 4.14. For all stores Σ,Σ
′

,Σ
′′

, and monads M,M
′

(1) If Σ is the same length as Σ
′

, then ⟨Σ,Σ
′

⟩ wc ⟨Σ,Σ
′

⟩.
(2) If Σ M(R)

= Σ
′

, then Σ is the same length as Σ
′

.
(3) If ⟨s : : Σ⟩ StT τ ℓ S (R)

= ⟨s ′ : : Σ′⟩, then ⟨s : : Σ⟩ S(R)
= ⟨s ′ : : Σ′⟩.

(4) If ℓ ≤ R and ⟨s : : Σ⟩ StT τ ℓ S (R)
= ⟨s ′ : : Σ′⟩, then s = s ′.

(5) IfM is less permissive thanM

′

and Σ
M

′
(R)
= Σ

′

, then Σ
M(R)
= Σ

′

.

Theorem 4.15 (No Forbidden Reads). Suppose Σ1

M (R)
= Σ2 and that ⟨t ,Σ1⟩ ▷ M τ and ⟨t ,Σ2⟩ ▷ M τ .

Then if ⟨t ,Σ1⟩ { ⟨t
′
1
,Σ′

1
⟩ and ⟨t ,Σ2⟩ { ⟨t

′
2
,Σ′

2
⟩, it follows that t ′

1
= t ′

2
and ⟨Σ1,Σ2⟩ is write consistent

with ⟨Σ′
1
,Σ′

2
⟩.

The intuition underlying write consistency is that when considering a pair of stores Σ1 and Σ2, prior

to a reduction and a pair of matching stores Σ′
1
and Σ′

2
, after a reduction it is either the case that

the pre-reduction stores do not differ from their corresponding post-reduction stores (i.e. because

no write takes place) or are equal to each other (i.e., because the same value was written to both Σ1

and Σ2).

The pre-stores, as stated in Theorem 4.15, must satisfy the ‘same where read’ relation. The type

system, because of its effect labels and their ordering, restricts admissible alterations to terms and

when such changes can be read from stores. This is particularly useful for equational reasoning

involving security properties such as noninterference as shown in Figure 14. Theorem 4.15 “says”:

if Σ1 and Σ2 are in the ‘same where read’ relation, then executing term t in Σ1 and Σ2 produces

both equal resulting terms, t1 and t2, resp., as well as write-consistent pre- and post-stores.

5 TYPE-DIRECTED EQUATIONAL LOGIC FOR REWIRE CALCULUS
The rules provided in Figure 14 represent the properties of monads present in RWC. Rules (Left-Unit),

(Right-Unit), and (associativity) are the well-known “monad laws” and Rules (Lift-Return) and (Lift->>=)

are the “lifting laws” of Liang [43]. Rules (Put-Put), (Put-Get), and (Get-Get), specify the interaction

of stateful operations and are drawn from previous work [30]. The ≤ relation on state monads is

defined in Figure 5.

The equational logic of RWC has both atomic noninterference and clobber formalized as conse-

quences of the RWC semantics in Coq; here, we refer to the last three rules of Figure 14. These are

particular instances for a two layer state monad of the more general rules found in the Coq script

repository. Note that, in its Coq formalization, mask computes the appropriate definition from a

monad type term taken as an argument. The exact details of this definition need not concern us

here, and the interested reader may consult the repository.
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t = t ′ : τ ∈ Γ
Γ ⊢ t = t ′ : τ

(Axiom)

Γ ⊢ t = t ′ : τ
γ ,Γ ⊢ t = t ′ : τ

(Weakening)

Γ ⊢ M : τ
Γ ⊢ t = t : τ

(Refl)

Γ ⊢ t ′ = t : τ
Γ ⊢ t = t ′ : τ

(Sym)

Γ ⊢ t = t ′ : τ Γ ⊢ t ′ = t ′′ : τ
Γ ⊢ t = t ′′ : τ

(Trans)

y < fv(t)
Γ ⊢ λx :τ .t = λy :τ .t[x B y] : τ → τ ′

(α )
Γ ⊢ λx :τ .t : τ → τ ′ Γ ⊢ t ′ : τ
Γ ⊢ (λx :τ .t)t ′ = t[t ′ B x] : τ ′

(β )

Γ ⊢ t ′ : τ Γ ⊢ t : τ → M τ ′

Γ ⊢ (return
M
t ′) >>= t = t t ′ : M τ ′

(Left-Unit) Γ ⊢ t : M τ
Γ ⊢ t >>= λx :τ .(return

M
x) = t : M τ

(Right-Unit)

Γ ⊢ t : M τ Γ ⊢ t ′ : τ → M τ ′ Γ ⊢ t ′′ : τ ′ → M τ ′′ x < FV (t ′)

Γ ⊢ (t >>= t ′) >>= t ′′ = t >>= (λx :τ .t ′x >>= t ′′) : M τ ′′
(associativity->>=)

Γ ⊢ return
M
t : M τ

Γ ⊢ lift
M
′ (return

M
t) = return

M
′ t : M′ τ

(Lift-Return)

Γ ⊢ t : Mτ Γ ⊢ t ′ : τ → Mτ ′ x < FV (t ′)

Γ ⊢ liftM′(t >>= t ′) = (liftM′ t) >>= (λ(x : τ ). liftM′ (t ′ x ))
(Lift->>=)

Γ ⊢ put t : StT ℓ τ S () Γ ⊢ put t ′ : StT ℓ τ S ()
Γ ⊢ (put t >> put t ′) = put t ′ : StT ℓ τ S ()

(Put-Put)

Γ ⊢ t : τ
Γ ⊢ (put t >> get(StT RW τ S) ) = put t >> return(StT RW τ S) t : StT RWτ Sτ

(Put-Get)

⟨R⟩ ≤ ℓ, such thatM = StT ℓ τ S

Γ ⊢ get
M

>>= λx :τ . get
M

>>= λy :τ . return
M
⟨x ,y⟩ = get

M
>>= λz :τ . return

M
⟨z,z⟩ : M (τ×τ )

(Get-Get)

Γ ⊢ t : Sτ S is StT RWτ (StT⟨⟩τ ′ Id)

Γ ⊢ t >> (mask S) = mask S : S ()
(Clobber-Lo)

Γ ⊢ liftS t : S ( ) S is StT ⟨⟩τ (StT RWτ ′ Id)

Γ ⊢ liftS t >> (mask S) = (mask S) >> liftS t : S ( )
(Atomic Noninterference)

Fig. 14. Type-directed Equational Logic for RWC

6 CONCLUSIONS AND FUTUREWORK
This article has presented a mechanized formal semantics for the functional hardware description

language ReWire and, as such, provides a foundation for high assurance hardware design and

implementation. The semantics presented here is of the small-step operational variety, which is, at

first blush, somewhat surprising. ReWire is a computational λ-calculus in the sense of Moggi [48],

and, therefore, possesses a “built-in” denotational semantics based in categorical language seman-

tics [47] which has been discussed elsewhere [56]. But, generally speaking, small-step operational

semantics are more readily mechanized in a theorem prover like Coq and this was a primary

motivation for pursuing an operational approach. All of the definitions and theorems in this paper

have been checked with the Coq proof checker (v8.5) and are downloadable [59].

Synchronous hardware is generally assumed to be non-terminating and that motivates the use

of ReWire’s core abstraction—potentially infinite resumption-monadic computations—for modeling

hardware [58]. Formalizing resumptions in Coq involved technical challenges that required some

ingenuity to overcome; these challenges and our approach to overcoming them were discussed

in detail in Section 4. To the authors’ best knowledge, the coinductive style of defining logical

relations in Coq is apparently an innovation that may be of use to other researchers in formal

methods and interactive theorem proving.
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ReWire inherits its purity (i.e., freedom from side effects) from Haskell, and purity, in turn, made

the task of formally specifying ReWire relatively straightforward. Were ReWire embedded in an

impure functional language (e.g., OCaml or Scala
5
), its resulting semantic specification would

have necessarily been more complicated in order to account for the host language’s side effects.

Any model of synchronous hardware will be complex—but, that being said, the purity of ReWire

contributed to simplifying its formalized semantics.

The ReWire methodology differs fundamentally from the type-based approach to secure hardware

(e.g., that of Caisson [42], Sapper [41], and SecVerilog [83]) in three important respects. Firstly,

ReWire is a functional language (a subset of Haskell) and has the benefit, we would argue, of

the expressiveness of functional languages. Secondly, ReWire possesses a formal semantics and

equational theory mechanized in the Coq theorem proving system, allowing security verification

to be automatically checked with the attendant increased assurance. Thirdly, and most importantly,

ReWire’s type system is not a security type system in the usual sense [61]. Security verification

in ReWire is not fully automatic via a security type system, but, rather, the equational style of

security verification of our previous work [30, 58] is supported by an effects type system based on

the marriage of effects and monads [80]. However, we believe that ReWire’s being a pure functional

language will support the adaptation of ideas from language-based security to the construction of

high assurance, secure hardware via extensions to the ReWire type system.

The ReWire methodology, therefore, occupies a middle ground between the security via type-

checking approach of Caisson and SecVerilog and traditional hardware verification with theorem

provers [45]. It combines the advantages of both—static checking on the one hand and deductive

reasoning on the other—with the expressive power of functional languages. Delite—a compiler

framework for parallel embedded domain-specific languages (EDSLs) targeted to produce hardware—

exhibits what its creators call “the three P’s” [39]: productivity, performance and portability. Our

previous work [27, 28, 58] demonstrates that ReWire possesses what “the three P’s” [39] and the

current work shows ReWire also possesses a fourth “P”: provability. Follow-on articles will present

the formalizations of previously published verifications of ReWire devices [27, 58].

The CompCert [40] project mechanizes both a source language’s semantics and compiler in

Coq, thereby providing the foundation for (1) verifying properties of C source programs and (2)

compiling those programs to efficient implementations in a verifiably property-preserving manner.

One particular strength of the CompCert approach is that other tools may be mechanized in Coq as

well (e.g., static analysis tools, etc., from the Verified Software Toolchain [78]) to provide increased

automation and trust to the whole workflow. The current work is motivated by the goal of producing

trusted hardware in the same manner as CompCert supports trusted C implementations. This is,

admittedly, a very ambitious goal, but the current work is an early, yet important, step in this

program. The current work also provides an important first step towards the formal verification of

the ReWire compiler.
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