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Abstract
Termination checking is a classic static analysis, and, within

this focus, there are type-based approaches that formalize

termination analysis as type systems (i.e., so that all well-

typed programs terminate). But there are situations where

a stronger termination property (which we call strongly-

bounded termination) must be determined and, accordingly,

we explore this property via a variant of the simply-typed

λ-calculus called the bounded-time λ-calculus (BTC). This
paper presents the BTC and its semantics and metatheory

through a Coq formalization. Important examples (e.g., hard-

ware synthesis from functional languages and detection of

covert timing channels) motivating strongly-bounded termi-

nation and BTC are described as well.

CCS Concepts • Computer systems organization →

Embedded and cyber-physical systems; • Security and
privacy→ Logic and verification.

Keywords Language semantics, Termination analysis,

Mechanized reasoning, Security foundations, High level syn-

thesis
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1 Introduction
In the classic example of a covert timing channel, the value

of b in if b then c1 else c2 leaks when ci have different ter-
mination behavior. Determining that the program is timing-

channel free, however, requires knowing more than whether

both ci terminate, but also that, when they both terminate,

they do so in precisely the same number of steps. This is

the basic insight underlying compiler strategies for elimi-

nating timing channels [3]. The latter timing-aware notion

of termination—which we call strongly-bounded termination
(SBT)—is stronger than the one generally considered in the

literature (e.g., Dershowitz and Manna [11] and their descen-

dants).

We introduce the bounded-time λ-calculus (BTC), a vari-
ety of the simply-typed λ-calculus, in which the type system

enforces SBT: all BTC terms of type t are guaranteed to ter-

minate within a fixed number of steps encoded within the

type t itself. This restricted expressiveness facilitates the Coq
verification of interesting metatheoretic properties of our

system—e.g., type safety and strong normalization [31]. In de-

veloping BTC, we are motivated primarily by two examples

that require precise bounds on termination. The first exam-

ple is the covert timing channel analysis [3] illustrated above.

The second example concerns the high-level synthesis (HLS)

of hardware circuits from functional languages that takes

functions (e.g., in host languages like Haskell [4, 13, 17, 29]

or Scala [5]) and attempts to compile them to hardware cir-

cuitry. The remainder of this section comments on related

work. Section 2 presents an overview of BTC and its syn-

tax and semantics. Section 3 presents its metatheory, all of

which is formalized in Coq (source available upon request).

Section 4 discusses our two motivating examples in light of

the formal development of BTC and Section 5 outlines future

work and conclusions.

Related Work. The ReWire functional hardware descrip-

tion language is a tool for producing high assurance hard-

ware [29]. ReWire is a subset of the Haskell functional pro-

gramming language: every ReWire program is a Haskell

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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program, but not necessarily vice versa. A recent publica-

tion presents a type-effect system for ReWire and a related

operational semantics mechanized in Coq [32] and it is this

formal ReWire semantics that is the original point of de-

parture for BTC. The ReWire type-effect system accounts

for space usage in a manner reminiscent of effect systems

for region-based analysis [27], albeit in a restricted form. In

ReWire, “regions” are of fixed size and number, and access

to a “region” is controlled via the state monad transformer.

Space usage in ReWire is also strictly bounded via restric-

tions on data and control recursion. BTC was developed as a

means of exploring both the easing of recursion restrictions

and the formalization of synthesizability for ReWire and the

authors expect that BTC, in some form, will be integrated

with the ReWire effect system soon.

Ghica and Jung [15] provide a categorical semantics for a

class of digital circuits in terms of monoidal categories and

are motivated by the need for supporting syntactic, equa-

tional reasoning. Another categorical presentation of digital

circuits is found in Megacz [25], who uses generalized ar-

rows as a basis for hardware description. Linear Types are

used to measure and control resource usage in Brunel, et

al. [8] and Ghica, et al. [16]. By contrast with this categorical

approach, ReWire specifications are, more or less, ordinary

functional programs that are compiled into circuits. ReWire

specifications may be reasoned about equationally in the

usual manner of functional languages; this was the approach

taken in our previous ReWire verification work [20, 29].

Whereas other type-based termination analyses examine

more expressive languages [9, 30], we focus on a limited

extension of the simply-typed λ-calculus because of its rele-
vance to HLS generally and ReWire in particular. The trade-

off in expressiveness facilitates the use of standardmachinery

to prove interesting metatheoretic properties of our system.

To the best knowledge of the authors, the BTC formaliza-

tion presented here is the first such type-based termination

analysis to have been fully mechanized and verified in Coq.

Functional language HLS must determine if a function

may be represented as circuitry. This question is non-trivial

because compiling functional languages to hardware is not

possible for arbitrary programs because hardware’s finite

storage capacity can accommodate neither unbounded data

nor control. Functions that are to be represented as combina-

tional circuitry must exhibit SBT (as we discuss in Section 4),

which neither Haskell nor Scala’s type systems can discern.

BTC types have been augmented with natural numbers as

a representation of computation time so that, for any BTC

type t, there is an n ∈ N such that, for any closed term e : t,
then e normalizes in no more than n steps. The natural n
is, then, the notion of “size” of the type t in the BTC type

system. Sized types were introduced as a means of perform-

ing type-based termination analysis [2, 6, 21, 26, 34] and this

paper explores the sized type approach to strongly-bounded

termination analysis and its formalization in Coq.

Type based approaches to termination add size parame-

ters to type system as a means to guarantee that recursive

functions terminate. The typing rule ListFix illustrates a

(simplified) type-based approach to using size variables in

recursive definitions (adapted from [6, 34]):

Γ, f : [a]n → b ⊢ e : [a]n+1 → b

Γ ⊢ fix(λ f .e) : [a]∞ → b
(ListFix)

where n is a size variable and [a]n denotes the type of lists

(with elements of type a) of a size no greater than n. This
requires each instance of f to be defined on lists smaller than

e , and hence, each recursive call reduces the size parameter.

Using types as a basis for termination analysis dates as

far back as Mendler [26]; see Abel [1] and Sacchini [33]

for full discussion of this idea. The underlying motivation

for using sized types is that it aids in termination checking,

as subsequent calls may be type checked for reduced size.

Hughes et al. [21] incorporate sized types into a functional

language. In the system introduced in [21] each name for a

datatype, i.e., List, Stream, represents a collection of nat-

indexed datatypes such as Listn where n is a size bound. In

this system, sizes are a linear function of size variables and

typing rules reinforce a requirement that each input gener-

ates an output of a smaller size. This supports a basic check

for responsiveness of programs in a reactive system because

programs that are well-typed in this system will satisfy a

liveness property–that every input eventually produces an

output.

Building on the system introduced in [21], Pareto [28]

examines an extension of Haskell with sized types. This ex-

tension utilizes linear sized types–including addition and

constants and provides a type-checking algorithm as well.

Giménez [18] considers an extension of the Calculus of Con-

structions [10] in which sizes are not explicitly represented

but are still present nonetheless. Other type systems involve

more complex size algebras. For example, a more expressive

language using linear sized types was introduced in [34]

by extending the Calculus of Inductive Constructions with

(co-)inductive types and size annotations. Other systems in-

troduce sizes as upper bounds [2, 7], or add sized types in a

dependently typed framework with polymorphism and in-

dexed types [39]. Each of these systems has more expressive

power than our own.

Functional language approaches to hardware description

and synthesis frequently take the form of domain-specific

languages embedded in a general purpose functional lan-

guage like Haskell or Scala [4, 5, 13, 17, 29]. With this ap-

proach, one must distinguish between programs that de-

scribe hardware (i.e., those in the embedded DSL) and those

that do not (i.e., host functional programs that cannot be rep-

resented in hardware), but that distinction is not made formal

in previous work. This work identifies SBT as an important

property prior to hardware realizability and formalizes its

basic type-theoretic machinery.
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Type-theoretic machinery has been used in timing chan-

nel analysis in the context of imperative programs (see, for

example, [14, 36, 37, 40]). These approaches typically com-

bine information flow analysis with timing channel analysis.

For information flow, the program variables are attached to

security levels, and the type systems ensure that information

does not flow from high-level security variables into low-

level security variables. For reasoning about timing channels

analysis, Smith and Volpano [36, 37] assume that each re-

duction of operational semantics takes a single time unit.

By assuming that time is an explicit low-level security vari-

able which is assigned to inside a program, Smith and Vol-

pano [37] can exploit the information flow analysis to show

that well-typed programs are free of timing channels. On

the other hand, Smith [36] explicitly decorates each instruc-

tion type with the number of steps it takes to execute the

instruction. Thus, the approach of Smith [36] is analogous

to ours, except that it applies to imperative programs. The

type system in Zhang et al. [40] identifies fragments of code

that may have timing channels when implemented in hard-

ware. The identification allows the programmers to mitigate

timing channels by making sure that these fragments take a

fixed amount of time in hardware. In Ferraiuolo et al. [14],

a secure hardware-description language, ChiselFlow, is de-

scribed with type annotations that inform a custom-made

processor architecture, HyperFlow, when to mitigate infor-

mation leakage (including timing leakage).

2 The Bounded Time Calculus
In this section, we introduce a variant of the simply-typed

λ-calculus—called the bounded-time λ-calculus (BTC)—with
a sized type system enforcing strongly-bounded termina-

tion. The BTC type system has been augmented with natural

numbers representing a coarse grained approximation of

computation time. This calculus extends a standard Church-

style type system of the simply-typed λ-calculus in two ways.
First, in the BTC type system, function types are the only

types themselves that have timing decorations in a manner

similar to the ListFix example above. Other types, such as

products, sums and unit remain unchanged. Second, type

judgments incorporate a timing decoration as part of the

judgment. The formalization contains proofs of many stan-

dard properties of the simply-typed λ-calculus such as type

safety and strong normalization. The Coq development is

available from the codebase [31]; every theorem, lemma, and

corollary in this paper has been verified in Coq.

Syntax. The BTC type, term, and value syntax is just that of

the simply-typed λ-calculus with one exception. The func-

tion type is decorated with a natural number; e.g., (T
n
→ U ).

The decoration on the function type represents a restriction

on the time it takes to convert an argument to its correspond-

ing output and we will return to its significance below. The

type syntax is stated below in Definition 2.1. We adopt the

following conventions. We use s, t,u to denote terms,v,w to

denote values, x,y, z to denote arbitrary variables, and T ,U
for types.

Definition 2.1 (Types). The set Ty of BTC types is defined

thusly:

T ,U ∈ Ty ::= T
n
→ U | T ×U | T +U | ()

where n denotes an arbitrary natural number.

Terms and values are given standard definitions (Defini-

tion 2.2).

Definition 2.2 (Terms). The set term of BTC terms is de-

fined thusly:

s, t,u ∈ term ::= x | app t u | λ x T t | nil | pair t u

| π1 t | π2 t | inl t T | inr t T | case s t u

Definition 2.3 (Values). The set value of BTC values is

given by the following:

v,w ∈ value ::= λ x T t | nil | pair v w | inl v T | inr v T

The definitions of free variable and substitution (Defini-

tions 2.4 and 2.5) are standard and given below. Term t is
closed when FV (t) = ∅.

Definition 2.4 (Free Variables). For any term t , the set of
free variables in t , FV (t) is defined as:

FV (x) = {x}
FV (app t u) = FV (t) ∪ FV (u)
FV (λ x T t) = FV (t) \ {x}
FV (pair t u) = FV (t) ∪ FV (u)
FV (case s t u) = FV (s) ∪ FV (t) ∪ FV (u)
FV (nil) = {}

FV (π1 t) = FV (t)
FV (π2 t) = FV (t)
FV (inr t U ) = FV (t)
FV (inl u T ) = FV (u)

Definition 2.5 (Substitution). Substitution of value v for

free occurrences of x in t is defined by:

y[x := v] =

{
y y , x
v otherwise

(app t u)[x := v] = app (t[x := v]) (u[x := v])

nil[x := v] = nil

(λ x T t)[x := v] =

{
λyT (t[x := v]) y , x , y < F V (v)
λ x T t otherwise

(pair t u)[x := v] = pair (t[x := v]) (u[x := v])

(π1 t)[x := v] = π1 (t[x := v])

(π2 t)[x := v] = π2 (t[x := v])

(inr t U )[x := v] = inr (t[x := v])U

(inl uT )[x := v] = inl (u[x := v])T

(case s t u)[x := v] =
case (s[x := v]) (t[x := v]) (u[x := v])
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Type System. Typing rules for terms are given in Defini-

tion 2.6. Typing judgments take the form Γ ⊢ t :T n
where

Γ = {x1 :T1, . . . ,xm :Tm} such that for each assumption

x i :Ti , x i denotes a term variable unique to Γ and Ti is a
type (as defined in Definition 2.1). The set Γ is commonly

referred to as a context or environment. In cases where Γ is

empty, we write {}. Additionally, we write Γ,x :T as short-

hand for Γ ∪ {x :T }. The syntax of decorators is given by the

following grammar:

n,m ∈ N ::= n | n +m | max(n,m)

We say that n decorates the type T in T n
. Though restric-

tive, this linear structure suffices for our needs here. The

expression that decorates function types is more restrictive—

only allowing natural numbers as decorators.

Definition 2.6 (Type Inference System).

Γ,x :T ⊢x :T 0

(Var)

Γ,x :T ⊢ t :U n

Γ ⊢ λ x T t : (T
n
→ U )0

(Abs)

Γ ⊢ f : (T
n
→ U )m Γ ⊢ t :T p

Γ ⊢ app f t :U (n+m+p+1)
(App)

Γ ⊢ nil : ()0
(Nil)

Γ ⊢ t :T n Γ ⊢ u :Um

Γ ⊢ pair t u : (T ×U )n+m
(Pair)

Γ ⊢ t : (T ×U )n

Γ ⊢ π1 t :T
(n+1)

(Pi1)

Γ ⊢ t : (T ×U )n

Γ ⊢ π2 t :U
(n+1)

(Pi2)

Γ ⊢ t :T n

Γ ⊢ inl t U : (T +U )n
(Inl)

Γ ⊢ u :U n

Γ ⊢ inr u T : (T +U )n
(Inr)

Γ ⊢ s : (T +U )n Γ ⊢ t : (T
l
→ S)m Γ ⊢ t : (U

r
→ S)p

Γ ⊢ case s t u : S (n+max(l+m,r+p)+2)
(Case)

The types for variables, abstractions and nil each have

0 as a decorator. Pairs inherit the sum of the decorators for

the types of their subterms, while each type for the projec-

tion constructors adds one to the decorator of their subterm

types. Sums possess the same decorators as the types of their

subterms. For the application rule, the natural number deco-

rating the arrow represents the time it takes to reduce a term

of type T to a term of type U . In addition to natural number

indices, function types also receive an outer decoration. This

represents the time for processing the function of that type.

In line with the other term constructors, the decorator for

the resulting term adds 1. The rule for case takes the max

value of the decorators adorning either branch of the evalu-

ation. Because this requires an additional term, it adds 2 to

the decorator for the type of the case expression.

The type system possesses a property common to many

simply-typed λ-calculi. This property is that every well-

typed term has a unique type, as stated in Theorem 2.7.

Theorem 2.7 (Type Uniqueness). If Γ ⊢ t : T n and Γ ⊢ t :
Um , then T = U .

In this typing system, with the addition of decorators, this

property was not guaranteed. Interestingly, the type system

also possesses similar property for decorators, as stated in

Theorem 2.8. This property enforces a uniformity of decora-

tor assignments, so to speak.

Theorem 2.8 (Decorator Uniqueness). If Γ ⊢ t : T n and
Γ ⊢ t : Um , then n =m.

Additionally, well-typed terms in the empty context are

well-typed in any context. Theorem 2.9 provides further as-

surance that the addition of decorators does not drastically al-

ter the traditional properties of the simply-typed λ-calculus’s
type system.

Theorem 2.9. If {} ⊢ t : T n , then Γ ⊢ t : T n .

Our type system and definition of values (from Defini-

tion 2.3) provide us with canonical forms—that is, a property
of closed, well-typed values. Many proofs of metatheoretic

properties tend to be organized around canonical forms. This

greatly reduces the cases one needs to consider. Canonical

forms are given by Lemmas 2.10-2.13 below.

Lemma 2.10. If {} ⊢ v : (T
n
→ U )m and v is a value, then

there exists x and u such that v = λ x T u.

Lemma 2.11. If {} ⊢ v : (T ×U )m andv is a value, then there
exists t and u such that v = pair t u.

Lemma 2.12. If {} ⊢ v : (T +U )m andv is a value, then there
existsw such that v = inlw U or v = inrw T .

Lemma 2.13. If {} ⊢ v : ()0, then v = nil.

Substitution (given in Definition 2.5 above) preserves typ-

ing judgments. This requires that if free variables occur in

well-typed terms, then there must be a typing assignment for

those variables relative to the context (Lemma 2.14 below).

Lemma 2.14. If x ∈ FV(t) and Γ ⊢ t :T n , then there exists a
U such that {x : U } ∈ Γ.

From this Corollary 2.15 follows—namely, that a term is

closed if it is well-typed in the empty context.

Corollary 2.15. If {} ⊢ t :T n , then t is closed.

Moreover, we have Lemma 2.16 as a consequence—that the

context of a typing judgment does not alter typing judgments,

so long as all each context maintains assignments of types

to any free variable.

Lemma 2.16. If Γ ⊢ t :T n and, if, for all x , x ∈ FV(t), Γ and
Γ′ assign the same type to x , then Γ′ ⊢ t :T n .

Finally, we have Theorem 2.17—that is, the substitution

operation preserves typing judgments when the term being

substituted is a value.

Theorem 2.17. If Γ, x :U ⊢ t :T n , value v , and {} ⊢ v :Um ,
then Γ ⊢ (t[x := v]) :T n .
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This is a more restricted version than what one typically

sees. In most simply-typed λ-calculi, no additional restriction
is placed on terms being substituted into expressions. Our

version adds the restriction that a value must be substituted.

In theory, all that one needs is to restrict the decorator of

the type for such terms as in Corollary 2.18.

Corollary 2.18. If Γ, x :U ⊢ t :T n and {} ⊢ v :U 0, then Γ ⊢

(t[x := v]) :T n .

In practice, no proof hinges on which version one picks and

the reason for this is simple. In BTC, all well-typed values

have 0 as their decorator (Theorem 2.19).

Theorem 2.19. If {} ⊢ t :T n and value v , then n = 0.

Small-Step Operational Semantics. In this section, we de-

scribe a small-step operational semantics for BTC mecha-

nized in Coq in the style of the popular Software Foundations

series. The single-step reduction relation (⇝) is given by the

rules in Definition 2.20 below.

Definition 2.20 (Step Relation).
value v

app (λ x T t) v ⇝ [x B v]t
(ST AppAbs)

t ⇝ t ′

app t u ⇝ app t ′ u
(ST App1)

value v u ⇝ u ′

app v u ⇝ app v u ′
(ST App2)

t ⇝ t ′

pair t u ⇝ pair t ′ u
(ST Pair1)

value v u ⇝ u ′

pair v u ⇝ pair v u ′
(ST Pair2)

value v value w
π1 (pair v w)⇝ v

(ST Pi1)

value v value w
π2 (pair v w)⇝ w

(ST Pi2)

t ⇝ t ′

π1 t ⇝ π1 t
′

(ST Pi1E)

t ⇝ t ′

π2 t ⇝ π2 t
′

(ST Pi2E)

t ⇝ t ′

inl t T ⇝ inl t ′ T
(ST Inl)

t ⇝ t ′

inr t T ⇝ inr t ′ T
(ST Inr)

s ⇝ s ′

case s t u ⇝ case s ′ t u
(ST Case)

value v
case (inl v T ) t u ⇝ app t v

(ST CaseL)

value v
case (inr v T ) t u ⇝ appu v

(ST CaseR)

The step relation has a useful property that is immediately

provable:

Theorem 2.21 (Deterministic Evaluation). If s ⇝ t and
s ⇝ u, then t = u.

As stated in Theorem 2.21, this property is that the BTC step

relation is deterministic. We discuss more properties of our

semantics in the next section.

3 Metatheory
In this section we discuss the metatheoretic properties of

BTC. In particular, type safety (Section 3.1) and strong normal-
ization (Section 3.2) are covered. In standard approaches to

proving metatheoretic properties of simply-typed λ-calculi,
it is common to define an additional step relation. This is

typically the reflexive-transitive closure of the single step

relation. Because the reflexive-transitive closure provides no

information on the number of steps taken, we do not take

this approach. Our interests demand something different. In

our setting, we use

n
⇝ to denote a natural number indexed

extension of our step relation, stated in Definition 3.1.

Definition 3.1 (Nat Indexed Step Relation).

t
0

⇝ t
(Refl)

s ⇝ t t
n
⇝ u

s
n+1
⇝ u

(Step)

This relation hasmany useful properties. Themost important

of which are stated in Lemma 3.2 and Theorem 3.3.

Lemma 3.2. For s, t,u and i, j , we have the following proper-
ties of the indexed step relation:

(Inclusion) If t ⇝ u, then t 1

⇝ u,

(Transitivity) If s i
⇝ t and t

j
⇝ u, then s

i+j
⇝ u .

The first property is an inclusion property—it tells us that

the indexed relation includes ⇝. The second property is

a transitivity property—it tells us that indexed relation is

transitive and that the indices are additive. Each of these

properties and Definition 3.1 is used to prove Theorem 3.3.

Theorem 3.3 (Congruence). For each rule stated in Defini-
tion 2.20, there exists a corresponding version with⇝ replaced
by n
⇝. For rules ST AppAbs, ST Pi1, ST Pi2, ST CaseL, and

ST CaseR,⇝ is replaced by 1

⇝.

3.1 Type Safety
In small-step operational semantics, type safety is the combi-

nation of two properties: progress and preservation. Tradition-
ally speaking, the former is the property that all well-typed

terms are either values or they step to some other term. In

our setting, we incorporate decorators into the mix. In the

case of progress (Theorem 3.4), decorators play no additional

role.

Theorem 3.4 (Progress). If {} ⊢ t :T n , then either t is a value
or there exists u such that t ⇝ u.

The same cannot be said of preservation (Theorem 3.5).

Theorem 3.5 (Preservation). If {} ⊢ t :T n and t ⇝ u, then
there existsm such thatm < n and {} ⊢ u :Tm .

When well-typed terms take a step, the decorator for the

type of the term stepped-to must be strictly smaller than

that of the decorator for the term stepped-from. That is,

preservation guarantees a reduction in decorators.

When we replace the ⇝ with its indexed counterpart,

we gain a variant of preservation (stated in Corollary 3.6)

that relates decorators to the natural number indexes for the

indexed step relation.

Corollary 3.6. If {} ⊢ t :T n and t m
⇝ u, then there exists l

such that l +m ≤ n and {} ⊢ u :T l .

https://softwarefoundations.cis.upenn.edu/
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This tells us that as a term reduces, the resulting decorator

for its type has an upper bound determined by its initial

decorator minus the number of steps taken.

Progress and preservation guarantee that well-typed terms

never “get stuck,” so to speak. That is to say, for any term

t , if t cannot step (by some application of rules from Defi-

nition 2.20), and t is not a value, then something has gone

wrong in the process of computing t . Theorems 3.4 and 3.5

guarantee that this situation will not arise with well-typed

terms.

Corollary 3.7 (Soundness). If {} ⊢ t :T n and t ⇝ u, then u
is either a value or there exists v such that u ⇝ v .

3.2 Strong Normalization
Normalization is a property of the step relation—often stated

in terms of possible sequences of steps in the reduction of

terms. A step (or reduction) relation is weakly normalizing if
there exists a finite sequence steps ending in a normal-form—

an irreducible term. If every such sequence ends in a normal-

form, we say that the step relation is strongly normalizing. In
BTC, all values are normal-forms, so we use “value” in place

of “normal-form” without any issues. Because evaluation

in BTC is deterministic, proving strong normalization is

equivalent to proving that BTC is terminating.

Though not every λ-calculus is strongly normalizing, BTC

is and we show this by establishing, using methods discov-

ered independently by Tait [38] and Girard [19], that all

well-typed BTC terms terminate (in the sense stated in Defi-

nition 3.8).

Definition 3.8 (Termination). For any term t , t terminates
iff there exists v,n such that t

n
⇝ v and v is a value.

Our step and indexed step relations preserve termination

(as stated in Lemma 3.9).

Lemma 3.9. For all terms t,u,

1. If t ⇝ u, then t terminates iff u terminates.
2. If t

n
⇝ u, then t terminates iff u terminates.

Definition 3.10 defines our notion of reducibility sets. The

final clause for unit types is included only for completeness.

Because only nil has unit as its type, and nil is a value, nil

terminates since we have nil
0

⇝ nil.

Definition 3.10 (Reducibility Sets). For any term t , such
that {} ⊢ t :T n

and t terminates, t ∈ RT is determined by T :

(T isU
m
→ V ) t ∈ R

(U
m
→V )

∀w, ifw ∈ RU , then (app t w) ∈ RV

(T isU ×V ) t ∈ R(U×V )

∃mw, value w, t m
⇝ w, π1(w) ∈ RU & π2(w) ∈ RV

(T is ()) t ∈ R()

∃mw, value w & t
m
⇝ w

(T isU +V ) t ∈ R(U+V )

∃mw, value w, (t
m
⇝ inl w U &w ∈ RV )

∨ (t
m
⇝ inr w V &w ∈ RU )

For BTC if we had base, or atomic types, we would add

the following clause to Definition 3.10; this clause for atomic

types and the clause for unit types are equivalent:T is atomic
means t ∈ RT iff t terminates. Lemma 3.11 collects some

facts about reducibility sets—R sets for short—that follow

from Definition 3.10. Girard [19] refers to the properties enu-

merated in Lemma 3.11 instead as conditions on reducibility

sets—named ‘CR’ properties. Ours differ slightly, but remain

close in spirit.

Lemma 3.11. For all terms t,u arbitrary n,m, and T ,

1. If t ∈ RT , then t terminates,
2. If t ∈ RT , then there exists l such that {} ⊢ t :T l ,
3. If t ⇝ u and t ∈ RT , then u ∈ RT ,
4. If t

n
⇝ u and t ∈ RT , then u ∈ RT ,

5. If {} ⊢ t :Tm , t ⇝ u and u ∈ RT , then t ∈ RT ,
6. If {} ⊢ t :Tm , t n

⇝ u and u ∈ RT , then t ∈ RT .

From Lemma 3.12—the R-Substitution Lemma— it follows

that the BTC is strongly normalizing. This lemma is more

commonly referred to as the “Substitution Lemma.”

Lemma 3.12 (R-Substitution). Let v1, . . . ,vn be values such
that for each i = {1, . . . ,n},vi ∈ RVi . If {x1 :V1, . . . , xn :Vn} ⊢
t :T j , then (t[x1 := v1] . . . [xn := vn]) ∈ RT .

By property 2 of Lemma 3.11, the assumption in

Lemma 3.12 entails that for each vi there exists an l such
that {} ⊢ vi :V

l
i , because for each vi , we have vi ∈ RVi (by

assumption). TheR-Substitution property (from Lemma 3.12)

entails the Strong Normalization Theorem (stated in Theo-

rem 3.13) by using the empty context for the typing judg-

ment.

Theorem 3.13 (Strong Normalization). If {} ⊢ t :T n , then t
terminates.
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4 Applications of Bounded Time
λ-Calculus

This section elaborates further on the application of the

BTC and SBT analysis to the motivating examples—timing

channel analysis and functional hardware description (resp.,

Sections 4.1 and 4.2)—introduced earlier in Section 1. The

presentation in this section is at a high-level and we leave

the full development of these case studies to future work.

However, sufficient detail is presented to illustrate the rele-

vance of SBT analysis and its formalization in the BTC type

system to these application domains.

4.1 Timing Channel Analysis
As mentioned in the Introduction, the execution time of a

program may leak confidential information about inputs if

the program takes different time to compute for different

inputs. If the timing behavior of a program leaks informa-

tion, then we say that the program has a timing channel.
To rule out timing leaks, we have to ensure that the execu-

tion time of a program is independent of confidential inputs.

In type-based approaches to timing channel analysis (see,

for example, [36, 37]), the typing discipline guarantees that

well-typed programs take the same amount of time to com-

pute regardless of inputs. We describe here how the BTC

framework can be used to achieve similar goals.

We consider the same BTC syntax (including Terms and

Values), types, and reduction relation⇝. We identify the set

of programs (with inputs) in BTC as a subset of the values:

Definition 4.1 (Values). The set proдram of BTC values is

given by the following:

v,w ∈ program ::= λ x T t

Intuitively the program λ x T t takes an input of the type

T and computes t . Observe that since we have product types,
programs with multiple inputs can also be modeled in the

same framework.

We assume that the time taken by a program f ≡ λ x T t
on an inputu of typeT is the number of steps that it takes for

app f u to evaluate to a value v . Observe that since the step
relation is deterministic (see Theorem 2.21) and terminating

(see Theorem 3.13), the time taken by f on u is well-defined.

However, the type system as given in Definition 2.6 does

not guarantee that the time take by f is independent of the

inputs.

Example 4.2. Let B ≡ () + (), false ≡ inr nil () and

true ≡ inl nil (). Given terms t1, t2, t3 let ite t1 t2 t3 ≡

case t1 λ z () t2 λ z () t3. Intuitively B models the type

Booleans, false and true model falsehood and truth re-

spectively, and ite t1 t2 t3 models the conditional expression.

Consider the program and1 defined as:

and1 ≡ λ x B×B (ite π1x (ite π2x true false) false).

The program and1 takes as input a pair of Boolean val-

ues and outputs the conjunction of the components of the

pair. It is easy to see that and1 has a timing channel as

(and1 (pair true true)) takes 7 evaluation steps to compute

to a value and (and1 (pair false true)) takes 4 steps.
On the other hand, consider the program and2 defined as:

and2 ≡ λ x B×B (ite π1x π2x π1x).

The program and2 also computes the conjunction of the

components of a pair of Boolean values. The program and2
takes the same time to compute for all possible pairs of

Boolean values.

Thus, for identifying BTC programs that do not leak tim-

ing information, we need to restrict the set of well-typed

terms. The reason for the possibility of timing channels is

the case expression which permits different timings for the

different alternatives of the case expression. Modifying the

typing rule for the case expression to further require the case

alternatives to have the same “execution time” ensures that

well-typed programs are free of timing channels. Let us con-

sider the typing system ⊢tc for BTC programs, whose typing

rules are the same as type inference system in Definition 2.6

with one exception. The typing rule Case of Definition 2.6 is

replaced by the typing rule:

Γ ⊢tc s : (T +U )n Γ ⊢tc t : (T
l
→ S)m

Γ ⊢tc t : (U
r
→ S)p l +m = r + p

Γ ⊢tc case s t u : S (n+l+m+2)
(Case)

Please see Fig. 1 for the formal definition of ⊢tc .
All theorems discussed in Section 2 and Section 3, stated

with the typing relation ⊢ replaced by ⊢tc, continue to hold.

In fact, we get a stronger version of type preservation:

Theorem 4.3 (Preservation for ⊢tc). If {} ⊢tc t :T n and t ⇝
u then n > 0 and {} ⊢tc u :T

n−1.

The variant of preservation stated in Corollary 3.6 takes

the form:

Corollary 4.4. If {} ⊢tc t :T
n and t m

⇝ u, thenm ≤ n and
{} ⊢tc u :T

n−m .

Well-typed programs (with respect to ⊢tc) are free of tim-

ing channels:

Theorem 4.5 (Timing Channel Freedom). Let f be a pro-
gram and u1,u2 be ground terms such that {} ⊢tc f : (T

n
→

U )0, {} ⊢tc u1 : T
m, {} ⊢tc u2 : T

m . Then for values v1, v2
and natural numbers r1, r2 such that app f u1

r1⇝ v1 and
app f u2

r2⇝ v2, it must be the case that r1 = r2 = n +m + 1.

Proof. By definition of ⊢tc, we have that {} ⊢tc
app f u1 : U

n+m+1
and {} ⊢tc app f u2 : U

n+m+1. Thanks
to Corollary 4.4, we have that r1, r2 ≤ n + m + 1,

{} ⊢tc v1 : U
n+m+1−r1

and {} ⊢tc v2 : U
n+m+1−r2 . Since v1,v2

are values, the variant of Theorem 2.19, for ⊢tc implies that

n +m + 1 − r1 = n +m + 1 − r2 = 0 as desired. □
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Γ,x :T ⊢tcx :T 0

(Var)

Γ,x :T ⊢tc t :U
n

Γ ⊢tc λ x T t : (T
n
→ U )0

(Abs)

Γ ⊢tc f : (T
n
→ U )m Γ ⊢tc t :T

p

Γ ⊢tc app f t :U (n+m+p+1)
(App)

Γ ⊢tc nil : ()
0

(Nil)

Γ ⊢tc t :T
n

Γ ⊢tc inl t U : (T +U )n
(Inl)

Γ ⊢tc u :U
n

Γ ⊢tc inr u T : (T +U )n
(Inr)

Γ ⊢tc t :T
n Γ ⊢tc u :U

m

Γ ⊢tc pair t u : (T ×U )n+m
(Pair)

Γ ⊢tc t : (T ×U )n

Γ ⊢tc π1 t :T
(n+1)

(Pi1)

Γ ⊢tc t : (T ×U )n

Γ ⊢tc π2 t :U
(n+1)

(Pi2)

Γ ⊢tc s : (T +U )n Γ ⊢tc t : (T
l
→ S)m

Γ ⊢tc t : (U
r
→ S)p l +m = r + p

Γ ⊢tc case s t u : S (n+l+m+2)
(Case)

Figure 1. Type Inference System for Timing Channel Freedom

Example 4.6. Consider the program and1 from Example 4.2

again. We can easily show that there is no typeT and natural

number n such that {} ⊢tc and1 : T n . Essentially, this holds
because the alternatives in the outermost case expression of

and1 take different times to compute. On the other hand, we

can show that {} ⊢tc and2 : (B × B
4

→ B)0 establishing that
and2 is free of timing channels.

4.2 Functional Hardware Description Languages
Functional languages have long been viewed as an appro-

priate organizing principle for hardware description [35].

One motivation for pursuing a functional language ap-

proach to hardware is to transfer the strengths of functional

programming—i.e., its abstractions with their attendant soft-

ware engineering and verification support—to hardware con-

struction. Another motivation is that there is an intuitive

correspondence between hardware circuitry and functional

programs; e.g., a combinational circuit seems essentially func-

tional because its outputs depend only on its inputs. But

this correspondence, while useful, only goes so far, because

the models of computation underlying functional languages

and hardware contain some fundamental mismatches. The

BTC type system provides a means for statically detecting

one of these mismatches—specifically the failure of strongly-

bounded termination—as we explain below for both combi-

national and sequential circuit designs.

A functional hardware description language is a domain-

specific language for designing and implementing hardware

circuits (Fig. 2, left) that is defined in terms of an expressive

Host language (e.g., Haskell [4, 13, 17, 29] or Scala [5]). Its
programs are then compiled (semi-)automatically into a Tar-
get hardware description language (e.g., VHDL or Verilog).

What are the limits on the expressiveness of the embedded

DSL in Fig. 2 (left)? That is, precisely which Host programs

can be compiled faithfully to synthesizable Target designs?
The question is non-trivial because hardware’s finite storage

capacity cannot accommodate unbounded data and control

necessary to compile arbitrary Host programs. This is one of

the aforementioned mismatches that could be detected by an

adaptation of a BTC-like system to the Host’s type system.

One would like to have a precise answer to this hardware-

synthesizability question; e.g., which Haskell programs can

be represented faithfully as synthesizable VHDL/Verilog de-

signs? Or, to put it another way, which Haskell programs

may be considered as embedded FHDL programs and which

ones cannot?

For combinational circuitry, a pure function (e.g., a Haskell

function f :: i → o), does not necessarily correspond to a

combinational circuit because unboundedness either in data

(e.g., the sizes of i and o) or in control (e.g., non-termination of

f ) cannot be accommodated within hardware’s fixed storage

capacity. Termination on all inputs is clearly a necessary

condition for f ’s correspondence to a combinational circuit,

but termination is, as we explain below, not sufficient. The

sufficient condition is that f terminate on all inputs within

n steps, for some fixed n ∈ N, specified as f :: i
n
→ o in a

BTC-like extension to Haskell’s type system.

It is common practice [22] to portray sequential hard-

ware designs as Mealy machines (Fig. 2, right) and the Mealy

machine was originally conceived as a model of hardware

synthesizability [24]. This sequential device takes two in-

puts on each clock cycle, external inputs i and internal state

feedback from storage s. Based on these inputs, combina-

tional logic—marked “output and next state logic” in Fig. 2

(right)—computes the external output, o, and the next state

to be stored in storage. That the storage bank is connected

to a clock is denoted in the diagram by a triangle (e.g., the

“◁”).

The compilation of function f to sequential hardware

must, one way or another, extract a time slice function (call

it slice(f ) :: (i, s) → (o, s) in Haskell notation) to match the

output and next-state logic of a Mealy machine. Extracting

time slices may be due to explicit time partitioning by the

programmer (e.g., with staging annotations [23] or resump-

tion monads [29]) or be fully automated [13]. Either way,

slice(f ) must exhibit strongly bounded termination because

determining the clock speed of the Mealy machine depends

on it.
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embedded 
DSL 

Host Target HDL 

synthesizable 
compiler 

output & 
next state logic 

storage s 

outputs o inputs i 

state feedback 

Figure 2. Functional hardware description languages are DSLs embedded in a functional Host language (left). Hardware designs
are traditionally portrayed as Mealy machines (right).

5 Future Work and Conclusions
This work presented the bounded-time λ-calculus, BTC, and
its formalization in Coq. The BTC type system enforces

strongly-bounded termination—i.e., termination which is

bounded in the number of computational steps. While the

heart of this paper is the explication of the mechanized se-

mantics and metatheory of BTC, we have also indicated

the examples from security and hardware synthesis that in-

spired its development. Furthermore, how BTC applies to

these areas was explained (albeit at a very high level). One

natural next step for this research explores type inference

and extensions to expressiveness (e.g., sub-typing). BTC was

developed as an experimental offshoot of the formal semantic

specification of the ReWire functional hardware description

language [32] and it provides a formal basis for exploring

the easing of recursion restrictions in ReWire. The authors

expect to integrate a form of BTC (extended with suitable

limited forms of recursion) with the aforementioned ReWire

semantics. There is a theoretical question that motivated this

work that we have alluded to in the previous section: what

constitutes a hardware synthesizable functional program,

and can the class of hardware-representable functions be

identified (or, at least, well-approximated) by a suitable type

system?While we do not pretend to have the answer to these

questions, we suspect that BTC indicates a key component

to any such answer (if, indeed, such an answer exists).

One reason to pursue a pure functional approach to syn-

thesis [4, 13, 17, 29] is because pure functional languages

lend themselves to formal verification and therein lies one

important path forward for this work. If one wishes to verify

the correctness of an HLS tool (i.e., compiler from Fig. 2, left),

one must first have a precise definition of the embedded DSL,

but this precision is missing in many of the aforementioned

works. A type system that excludes non-synthesizable pro-

grams is, therefore, a necessary step to such a formal verifica-

tion. We do not give a full account of synthesizability in this

work, but rather describe the most surprising (although not

in retrospect) part of this answer, having to do with strongly

bounded termination behavior. There are other concerns

that would of necessity be addressed in a synthesizability

type system. For example, the possibility of representing

data types as bit patterns (e.g., Diatchki et al [12] describe

such an system as an extension of the Haskell type system).
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