Haskell for Grownups

Bill Harrison

May 14, 2024

Bill Harrison Haskell for Grownups May 14, 2024 1/55

Introduction

Table of Contents

Introduction
Resources for Haskell

Bill Harrison Haskell for Grownups May 14, 2024 2/55

Introduction

Haskell Basics

» Modern (pure) lazy functional language
> “Pure” means “takes types really seriously”

> Statically typed, supports type inference
» Compilers and interpreters:

> http://www.haskell.org/implementations.html
» GHC Compiler
» GHCi interpreter

» A peculiar language feature: indentation & capitalization matter

Bill Harrison Haskell for Grownups May 14, 2024

3/55

Introduction Resources for Haskell

Some Reference Texts

» Programming in Haskell by Graham Hutton.
This is an excellent, step-by-step introduction to Haskell. Graham also has a lot of online
resources (slides, videos, etc.) to go along with the book.

> A Gentle Introduction to Haskell by Hudak, Peterson, and Fasal.
Available at http://www.haskell.org/tutorial/.

» Learn You a Haskell for Good by Miran Lipovaca.
Highly amusing and informative; available online.

» Real World Haskell by Bryan O’Sullivan.
Also available online (I believe). “Haskell for Working Programmers”.

» Google.

Bill Harrison Haskell for Grownups May 14, 2024 4/55

http://www.haskell.org/tutorial/

Attack of the Memes

Table of Contents

Attack of the Memes

Bill Harrison Haskell for Grownups May 14, 2024 5/55

Attack of the Memes

o i rator.nzsi

Bill Harrison Haskell for Grownups May 14, 2024 6/55

Attack of the Memes

I‘IINI}TIIINAI

PnnannMMlNG PRelORECOM

memecrunchcom

Bill Harrison Haskell for Grownups May 14, 2024 7/55

Attack of the Memes

| LOVE FUNCTIONAL
PROGRANIMING

00 |

Bill Harrison Haskell for Grownups May 14, 2024 8/55

What Do You Mean “Takes Types Seriously” ?

Table of Contents

What Do You Mean “Takes Types Seriously”?
Haskell vs. C
Types + Functions = Programs

Bill Harrison Haskell for Grownups

May 14, 2024

9/55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Question: What does this program do?

n = 1;

a=1;

while (n > 0) {
a = a * n;
n=n-1;

}

Bill Harrison Haskell for Grownups May 14, 2024 10/55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Functions in Mathematics

L if n=0
L nx(n=1)! if n>0

Bill Harrison Haskell for Grownups May 14, 2024 11/55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Functions in Mathematics

L if n=0
L nx(n=1)! if n>0

What does this have to do with that?

n = 1ij;
a=1;
while (n > 0) {
a = a * n;
n=n-1;
}
Bill Harrison

Haskell for Grownups May 14, 2024

11/55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

First Haskell Function

! if n=0
L nx(n=1) if n>0

Bill Harrison Haskell for Grownups May 14, 2024 12 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

First Haskell Function

e if n=0
L nx(n=1)! if n>0

It's relationship to this Haskell function is apparent:

fac :: Int —-> Int

fac 0 =1
fac n = n fac (n-1)
Bill Harrison Haskell for Grownups May 14, 2024

12/55

Bill Harrison

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

DID SOMEONE SAY

=
IIASI(EI =

Haskell for Grownups

May 14, 2024

13/55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Your Main

language is

an 'actual’
Programming
Language

Your main
language
is Haskell

Bill Harrison Haskell for Grownups May 14, 2024 14 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Hello World in C

#include <stdio.h>
int main() {

printf ("hello,_world\n");

Bill Harrison Haskell for Grownups May 14, 2024 15 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Hello World in Haskell

module HelloWorld where
helloworld :: IO ()
helloworld = print "Hello World"

Bill Harrison Haskell for Grownups May 14, 2024 16 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

AND THIS IS HOW
WE WRITE HELLO WORLD

Bill Harrison Haskell for Grownups May 14, 2024 17 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Factorial Revisited

#include <stdio.h>
int fac(int n) {
if (n==0)
{ return 1; }
else
{ return (n » fac (n-1)); }

int main () {

printf ("Factorial 5 _=_%d\n", fac(5));
return 0;

Bill Harrison Haskell for Grownups May 14, 2024 18 /55

What Do You Mean “Takes Types Seriously” ?

Haskell vs. C
Hello Factorial
#include <stdio.h>
int fac(int n) {
printf ("hello_world"); // new
if (n==0)
{ return 1; }
else

{ return (n * fac (n-1)); }

Bill Harrison Haskell for Grownups May 14, 2024 19 /55

What Do You Mean “Takes Types Seriously” ?

Haskell vs. C
Hello Factorial
#include <stdio.h>
int fac(int n) {
printf ("hello_world"); // new
if (n==0)
{ return 1; }
else

{ return (n * fac (n-1)); }

(N.b., the type is the same)

int fac(int n) {...}

Bill Harrison Haskell for Grownups May 14, 2024 19 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Hello Factorial in Haskell

fac :: Int —> IO Int —— the type changed
fac 0 = do print "hello_world"
return 1

fac n = do print "hello_world"
i <= fac (n-1)
return (n * 1)

Bill Harrison Haskell for Grownups May 14, 2024 20 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Hello Factorial in Haskell

fac :: Int -> IO Int - the type changed
fac 0 = do print "hello_world"
return 1

fac n = do print "hello_world"
i <= fac (n-1)
return (n * 1)

(Moral of the Story)

» Haskell types are a contract telling you a lot about what the program can and can't do

> C types are documentation basically

Bill Harrison Haskell for Grownups May 14, 2024 20 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Bill Harrison Haskell for Grownups May 14, 2024 21/55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Bill Harrison Haskell for Grownups May 14, 2024 22 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Bill Harrison Haskell for Grownups May 14, 2024 23 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Why Functional Languages?

Definition
length = [a] = Int
length[] =0

length (x:xs) =1+ lengthxs

Bill Harrison Haskell for Grownups May 14, 2024 24 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Why Functional Languages?

Definition
length = [a] = Int
length[] =0

length (x:xs) =1+ lengthxs

Theorem
length(xs + ys) = lengthxs + lengthys

Bill Harrison Haskell for Grownups May 14, 2024 24 /55

What Do You Mean “Takes Types Seriously” ?

Why Functional Languages?

Definition
length = [a] = Int
length[] =0

length (x:xs) =1+ lengthxs

Theorem

length(xs + ys) = lengthxs + lengthys

Proof

length((z : zs) Hys)
=length (z: (zs + ys))
=1+ length(zs + ys)

=1 + lengthzs + lengthys
=length(z:zs) + lengthys

Bill Harrison

++ defn.

length defn.
induction hyp.
length defn.

Haskell for Grownups

Haskell vs. C

May 14, 2024

24 /55

What Do You Mean “Takes Types Seriously” ?

Haskell vs. C

Why Functional Languages?

Definition
length = [a] = Int
length[] =0

length (x:xs) =1+ lengthxs

Theorem

Mechanically-Checked Proof
length-++ : V {A :
- length (xs ++ ys) =
length-++ {A} [] ys
length-++ (x @ xs)

ys

length(xs + ys) = lengthxs + lengthys

Proof

length((z : zs) Hys)
=length (z: (zs + ys))
=1+ length(zs + ys)

=1 + lengthzs + lengthys
=length(z:zs) + lengthys

Bill Harrison

+H- defn.
length defn
induction hyp.

length defn.

Haskell for Grownups May 14, 2024

Set} (xs ys : List A)
length xs + length ys

24 /55

What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Why Functional Languages?

Definition Mechanically-Checked Proof
length = [a] — Int length-++ : V {A : Set} (xs ys : List A)
length H =0 - length (xs ++ ys) = length xs + length ys
length (x:xs)=1 + lengthxs length-++ {A} [ys = ..

length-++ (x xXs) ys = ..
Theorem
length (xs + ys) = lengthxs + lengthys P Supports scalable formal methods across

the assurance spectrum

Proof))
length((z : zs) 4 ys) > automated test generation (quickcheck)
=length(z: (zs 4 ys)) H defn. > security, safety, & privacy type systems
=1+ length(zs + ys) length defn. > f ifi . C
=1+ lengthzs + lengthys induction hyp. ormal veritication (Leanr oq,
=length(z:zs) + lengthys length defn. Isabelle,. .)

Bill Harrison Haskell for Grownups May 14, 2024 24 /55

What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Data Types + Functions = Haskell Programs

Haskell programming is both data type and functional programming!

» Arithmetic interpreter
> data type:
data Exp = Const Int | Neg Exp | Add Exp Exp

» function:
interp :: Exp —-> Int
interp (Const 1i) = 1
interp (Neg e) = - (interp e)
interp (Add el e2) = interp el + interp e2

Bill Harrison Haskell for Grownups May 14, 2024

25 /55

What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Data Types + Functions = Haskell Programs

Haskell programming is both data type and functional programming!

» Arithmetic interpreter
> data type:
data Exp = Const Int | Neg Exp | Add Exp Exp

» function:
interp :: Exp —-> Int
interp (Const 1i) = 1
interp (Neg e) = - (interp e)
interp (Add el e2) = interp el + interp e2

» How do Haskell programs use data?
» Patterns break data apart to access:
“interp (Neg e) =..."
» Functions recombine into new data:
“interp el 4+ interp e2"

Bill Harrison Haskell for Grownups May 14, 2024

25 /55

What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Data Declarations

A completely new type can be defined by specifying its values using a data declaration.

data Bool = False | True

Bill Harrison Haskell for Grownups May 14, 2024 26 /55

What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Data Declarations

A completely new type can be defined by specifying its values using a data declaration.

data Bool = False | True

> Bool is a new type.
» False and True are called constructors for Bool.
» Type and constructor names begin with upper-case letters.

> Data declarations are similar to context free grammars.

Bill Harrison Haskell for Grownups May 14, 2024 26 /55

What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Recursive Types

In Haskell, new types can be declared in terms of themselves. That is, types can be recursive.
data Nat = Zero | Succ Nat

Nat is a new type, with constructors

Zero :: Nat
Succ :: Nat —> Nat

Bill Harrison Haskell for Grownups May 14, 2024 27 /55

What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Note:

> A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is,
Nat contains the following infinite sequence of values:

Zero
Succ Zero
Succ (Succ Zero)

Bill Harrison Haskell for Grownups May 14, 2024 28 /55

What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Note:

> We can think of values of type Nat as natural numbers, where Zero represents 0, and

Succ represents the successor function 1+.
» For example, the value
Succ (Succ (Succ Zero))
represents the natural number
1+ (1 + (1 + 0))

Bill Harrison Haskell for Grownups

May 14, 2024

29 /55

What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Recursive Data beget Recursive Functions

Recursive functions convert between values of type Nat and Int:

nat2int :: Nat —> Int
nat2int Zero =0

nat2int (Succ n) = 1 + nat2int n
int2nat :: Int —-> Nat
int2nat 0 = Zero

int2nat n Succ (int2nat (n - 1))

Bill Harrison Haskell for Grownups May 14, 2024 30/55

What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Data Types, cont'd

data Maybe a

safediv
safediv _ O
safediv m n

safehead

safehead []
safehead xs

Bill Harrison

Nothing | Just a

Int -> Int -> Maybe Int
Nothing
Just (m ‘div' n)

[a] —> Maybe a

Nothing
Just (head xs)

Haskell for Grownups May 14, 2024

31/55

What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

YOU SAY "PATTERN" AND NOBODY
PANICS

YOU SAY "MONAD" AND EVERYBODY IS
LOSING THEIR MIND

memegenerator.net

Bill Harrison Haskell for Grownups May 14, 2024 32/55

How to Write a Haskell Program

Table of Contents

How to Write a Haskell Program

Bill Harrison Haskell for Grownups May 14, 2024 33/55

How to Write a Haskell Program

Type-Driven Programming in Haskell

Types first, then programs

» Writing a function with type A — B, then you have a lot of information to use for
fleshing out the function.

> Why? Because the input type A — whatever it happens to be — has a particular form
that determines a large part of the function itself.

» This is, in fact, the way that you should develop Haskell programs.

Bill Harrison Haskell for Grownups May 14, 2024 34 /55

How to Write a Haskell Program

The edit-compile-test-until-done paradigm

I'm guessing that this is familar to you

When | was a student—the process of writing a C program tended to follow these steps:
1. Create/edit a version of the whole program using a text editor.

2. Compile. If there were compilation errors, develop a hypothesis about what the causes
were and start again at 1.

3. Run the program on some tests. Do | get what | expect? If so, then declare victory and
stop; otherwise, develop a hypothesis about what the causes were and start again at 1.

Bill Harrison Haskell for Grownups May 14, 2024 35/55

How to Write a Haskell Program

An Exercise

» Write a function that

1. takes a list of items,
2. takes a function that returns either True or False on those items,
3. and returns a list of all the items on which the function is true.

» This is called filter, and it’s a built-in function in Haskell, but let me show you how I'd
write it from scratch.

» | call the function I'm writing “myfilter” to avoid the name clash with the built-in version.

Bill Harrison Haskell for Grownups May 14, 2024 36 /55

How to Write a Haskell Program

Step 1. Figure out the type of the thing you're writing

> Think about the type of filter and write it down as a type specification in a Haskell
module (called Sandbox throughout).

» With what I've said about filter, it takes a list of items—i.e., something of type [a].

> It also takes a function that takes an item—an a thing—and returns true or false—i.e., it
returns a Bool. So, this function will have type a — Bool.

» - the type should be:

myfilter :: [a] -> (a —> Bool) —> [a]

Bill Harrison Haskell for Grownups May 14, 2024 37/55

How to Write a Haskell Program

Step 2: Fill in the type template & load the module.

P In this case, we have a function with two arguments. The second argument of type
a—>Bool does not have a matchable form like the first argument.

» This leaves us with:

myfilter :: [a] -> (a —-> Bool) —-> [a]
myfilter [] £ = undefined
myfilter (x:xs) f = undefined
Bill Harrison Haskell for Grownups May 14, 2024

38/55

How to Write a Haskell Program

Step 2: Fill in the type template & load the module.

P In this case, we have a function with two arguments. The second argument of type

a—>Bool does not have a matchable form like the first argument.

» This leaves us with:

myfilter :: [a] -> (a —-> Bool) —-> [a]
myfilter [] £ = undefined
myfilter (x:xs) f = undefined

> A dumb mistake like:
myfilter :: [a] -> (a —-> Bool) —> [a]
myfilter [] £ = undefined
myfilter (x:xs) = undefined
would be caught automatically by the type-checker.
» |.e., Debugging via Type-checking!

Bill Harrison Haskell for Grownups

38/55

How to Write a Haskell Program

Step 3: Fill in the clauses one-by-one reloading as you go.

The [] case is obvious because there is nothing to filter out:

myfilter :: [a] —-> (a —> Bool) —> [a]
myfilter [] f = []
myfilter (x:xs) f = undefined

No problems with this last bit:

> ghci Sandbox.hs

[1 of 1] Compiling Sandbox
Ok, modules loaded: Sandbox.
*Sandbox>

Bill Harrison Haskell for Grownups May 14, 2024

39/55

How to Write a Haskell Program

Step 3 (continued).

» The second clause should only include x if £ x is True; one way to write that is with an
if—then—else:

myfilter ::
myfilter [
myfilter (

[a] —> (a —> Bool) —> [a]

f =[]

xs) £ = 1f £ x
then x : myfilter f xs
else nmyfilter f xs

]
X

» Loading this into GHC reveals a problem:

> ghci Sandbox.hs
[1 of 1] Compiling Sandbox (Sandbox.hs, interpreted
Sandbox.hs:8:46:
Couldn’t match expected type ‘[al]’ with actual type ‘a -> Bool’
In the first argument of ‘myfilter’, namely ‘f’
In the second argument of ‘(:)’, namely ‘myfilter f xs’
In the expression: x : myfilter f xs
Failed, modules loaded: none.
Prelude>

Bill Harrison Haskell for Grownups May 14, 2024 40 /55

How to Write a Haskell Program

Step 3 (continued).

» This error occurs on line 8 of the module, which is the line “then x : myfilter f xs".
GHCi is telling us that it expects that £ would have type [a] but that it can see that £
has type a — Bool. After a moment’s pause, we can see that the order of the
arguments is incorrect in both recursive calls. The corrected version works:
myfilter :: [a] -> (a -> Bool) -> [a]
myfilter [] f =[]
myfilter (x:xs) f if £ x

then x : myfilter xs f
else myfilter xs f

Bill Harrison Haskell for Grownups May 14, 2024 41/55

Monads

Table of Contents

Monads

Bill Harrison Haskell for Grownups May 14, 2024 42 /55

Monads

[AMONAD]ISIUST{AMONOID/IN\THE!
CATEGORY or Ennnruucmns

Bill Harrison Haskell for Grownups May 14, 2024 43 /55

Monads

Neveraskfaliunctionaliprogrammer
whataimonaiis

Bill Harrison Haskell for Grownups May 14, 2024 44 /55

Monads

Programming Languages are Monads
» Periodic Table of
Programming Languages

StateT BackT ResT
imperative backtrackin threads

= cut step pause

EnvT [ErrorT | ContT |NondetT

binding i determ.
A @ v |raise/caten| callee | choose

IoT DebugT | ReactT

input/output | debugging | reactivity

printf | rollback [send,recv,

> Moggi 1989: Languages are “molecules”
composed of “elements” (aka, monad

transformers)

Bill Harrison

» Haskell has

>

built-in monad syntax

» formal semantics [JFPos APLASOS]

» Systems are molecules

>
|

Haskell for Grownups

Compilers [iccLos,MPcoo]
Interrupts/asynchronous exceptions
[MPCO8]

Systems Biology [Emsco3)
POSIX-like kernels

[AMASTO06,CheapThreads]
Separation kernels
[FCS03,CSF05,JCS09,ICFEM12]

Synchronous Hardware
[FPT13/15,ARC15,ReCoSoC16,
RSP16,TECS17, TECS19]

May 14, 2024

45 /55

Monads

Monads are Programming Language Constructors

> Language “Molecule”

ReacT

7/ N\

StateT StateT

P ...constructs a language:

=, mask, =, mask,
I, signal, ;

Bill Harrison Haskell for Grownups May 14, 2024 46 /55

Monads

Monads are Programming Language Constructors

> Language “Molecule”

ReacT

» With By-Construction Algebraic Properties

/ \ [APLAS06,JCS00]:

a=x;b=y=bi=y;a=x
a .= X ; mask = mask

StateT StateT b:= y ; mask = mask

> ... : “ "
constructs a language » Each “element” adds new commands to the

‘— mask. ‘—. mask language “molecule”
T y T)

I, signal, ;

Bill Harrison Haskell for Grownups May 14, 2024 46 /55

Case Studies

Table of Contents

Case Studies

Bill Harrison Haskell for Grownups May 14, 2024 47 /55

Case Studies

Achieving information flow security through monadic control of effects o

“changes in high-level inputs only change high-level outputs”

“high-level operations must cancel”

x:=e, ; y;:=f ; %,:=€, ; maskHi

= x;:=e, ; y,:=£f ; maskHi

x,:=e, ; maskHi/ y,:=f,
= maskHi / y1:=f1

= y,;:=f, ; maskHi

Bill Harrison Haskell for Grownups May 14, 2024

48 /55

Case Studies

ReWire Language & Toolchain

ReWire
compiler

Synthesizable

HDL

P Inherits Haskell's good qualities
» Pure functions, strong types, monads, equational reasoning, etc.
» Denotational semantics [Hkos, Har05, HSHO2]

» Types & Operators for HW abstractions jrrc* 1]

» ReWire Compiler (rwc) produces Verilog, VHDL, or FIRRTL

» Formalized Semantics in Coq [rriaio) and Isabelle/Coq/Agda e 23
» Embedding Tool translates ReWire into Isabelle

Bill Harrison Haskell for Grownups May 14, 2024

49/55

Case Studies

Semantics-directed Architecture in ReWire [Fpr2013]

Xilinx PicoBlaze 8-bit Embedded Microcontroller

1Kx18.
Instruction
PROM

Program Counter
(PC)

64-Byte
Scratchpad RAM

Constants

instruction
Decoder

INTERRUPT

[E] Enabie

16 Byte-Wide Registers
[FsoT7si [7s2 s3]
[Tsa 75 [s6 o7 |

[[so [sA [sB]
[sCTsb [sE | sF |

g

Flags
[Z] zer0
Cary

Bill Harrison

Haskell for Grownups

type
type
type
data

data

data

pico

Data Layout

RegFile = Table W4 W8
FlagFile = (Bit,Bit,Bit,Bit,Bit)
Mem = Table W6 W8
Stack = Stack { contents :: Table W5 W10,
pos i: WS }
Inputs Inputs { instruction_in :: W18,
in_port_in
interrupt_in
reset_in
Outputs Outputs { address_out
port_id_out
write_strobe_out
out_port_out
read_strobe_out
interrupt_ack_out :: Bit }
Fetch-Decode-Execute
Dev Inputs PicoState Outputs

pico = do s <- getPicoState

let i = inputs s
instr = instruction_in i
ie <- getFlagIE
if reset_in i ==
then reset_event
else if ie == 1 &&
interrupt_in i ==
then interrupt_event
else decode instr
pico

May 14, 2024

50 /55

Case Studies

RV32i in ReWire

Undergraduate Capstone at Univ. of Missouri (2019)

Fetch-Decode-Execute
rv32i :: Monad m =>
ReacT
(InSig w (Instr))
(OutSig W32 w e)
(StateT RegFile (StateT (InSig w (Instr),OutSig W32 w e) m))
()
rv32i = do
pc <+ 1lift $ getReg PC
iw <= async_fetch pc

exec iw
rv32i
exec :: Monad m => Instr — ReacT i o (StateT RegFile (StateT (i, o) m)) ()

exec ¢ = case c of

Add rd rsl rs2 — do
lift $ do
rsl < getReg rsl
rs2 <— getReg rs2
putReg rd (rsl + rs2)
tick
etc.

Bill Harrison Haskell for Grownups May 14, 2024

51/55

Case Studies

References |

[William Harrison.
A simple semantics for polymorphic recursion.

In Proceedings of the 3rd Asian Symposium on Programming Languages and Systems
(APLAS05), pages 37-51, Tsukuba, Japan, November 2005.

@ William L. Harrison, lan Blumenfeld, Eric Bond, Chris Hathhorn, Paul Li, May Torrence,
and Jared Ziegler.
Formalized high level synthesis with applications to cryptographic hardware.
In NASA Formal Methods Symposium (NFMZ23), 2023.

[William Harrison and James Hook.
Achieving information flow security through precise control of effects.
In 18th IEEE Computer Security Foundations Workshop (CSFW05), pages 16-30,
Aix-en-Provence, France, June 2005.

Bill Harrison Haskell for Grownups May 14, 2024 52 /55

Case Studies

References |l

[@ W. Harrison and J. Hook.
Achieving information flow security through monadic control of effects.
JCS, 17:599-653, Oct 20009.

[3 William L. Harrison and Richard B. Kieburtz.
The logic of demand in Haskell.
Journal of Functional Programming, 15(6):837-891, 2005.

ﬁ W. Harrison, A. Procter, |. Graves, M. Becchi, and G. Allwein.
A programming model for reconfigurable computing based in functional concurrency.
In 11th Inter. Symp. on Reconfigurable Communication-centric Systems-on-Chip, 2016.

Bill Harrison Haskell for Grownups May 14, 2024 53 /55

Case Studies

References 1l

@ William Harrison, Timothy Sheard, and James Hook.
Fine control of demand in Haskell.
In 6th International Conference on the Mathematics of Program Construction (MPCO02),
Dagstuhl, Germany, volume 2386 of Lecture Notes in Computer Science, pages 68—93.
Springer-Verlag, 2002.

@ Adam Procter, William L. Harrison, lan Graves, Michela Becchi, and Gerard Allwein.
Semantics driven hardware design, implementation, and verification with ReWire.
In ACM SIGPLAN/SIGBED Conf. on Languages, Compilers, Tools and Theory for
Embedded Systems (LCTES), 2015.

@ A. Procter, W. Harrison, |. Graves, M. Becchi, and G. Allwein.
A principled approach to secure multi-core processor design with ReWire.
ACM TECS, 16(2):33:1-33:25, February 2017.

Bill Harrison Haskell for Grownups May 14, 2024 54 /55

Case Studies

References IV

@ Thomas N. Reynolds, Adam Procter, William L. Harrison, and Gerard Allwein.

The mechanized marriage of effects and monads with applications to high-assurance
hardware.

ACM Transactions on Embedded Computing Systems, 18(1):6:1-6:26, January 20109.

[A. Procter W. Harrison and G. Allwein.
The confinement problem in the presence of faults.
In ICFEM, pages 182-197, 2012.

Bill Harrison Haskell for Grownups May 14, 2024 55 /55

	Introduction
	Resources for Haskell

	Attack of the Memes
	What Do You Mean ``Takes Types Seriously''?
	Haskell vs. C
	Types + Functions = Programs

	How to Write a Haskell Program
	Monads
	Case Studies

