
Haskell for Grownups

Bill Harrison

May 14, 2024

Bill Harrison Haskell for Grownups May 14, 2024 1 / 55

Introduction

Table of Contents

Introduction
Resources for Haskell

Attack of the Memes

What Do You Mean “Takes Types Seriously”?
Haskell vs. C
Types + Functions = Programs

How to Write a Haskell Program

Monads

Case Studies

Bill Harrison Haskell for Grownups May 14, 2024 2 / 55

Introduction

Haskell Basics

▶ Modern (pure) lazy functional language

▶ “Pure” means “takes types really seriously”

▶ Statically typed, supports type inference
▶ Compilers and interpreters:

▶ http://www.haskell.org/implementations.html
▶ GHC Compiler
▶ GHCi interpreter

▶ A peculiar language feature: indentation & capitalization matter

Bill Harrison Haskell for Grownups May 14, 2024 3 / 55

Introduction Resources for Haskell

Some Reference Texts

▶ Programming in Haskell by Graham Hutton.
This is an excellent, step-by-step introduction to Haskell. Graham also has a lot of online
resources (slides, videos, etc.) to go along with the book.

▶ A Gentle Introduction to Haskell by Hudak, Peterson, and Fasal.
Available at http://www.haskell.org/tutorial/.

▶ Learn You a Haskell for Good by Miran Lipovaca.
Highly amusing and informative; available online.

▶ Real World Haskell by Bryan O’Sullivan.
Also available online (I believe). “Haskell for Working Programmers”.

▶ Google.

Bill Harrison Haskell for Grownups May 14, 2024 4 / 55

http://www.haskell.org/tutorial/

Attack of the Memes

Table of Contents

Introduction
Resources for Haskell

Attack of the Memes

What Do You Mean “Takes Types Seriously”?
Haskell vs. C
Types + Functions = Programs

How to Write a Haskell Program

Monads

Case Studies

Bill Harrison Haskell for Grownups May 14, 2024 5 / 55

Attack of the Memes

Bill Harrison Haskell for Grownups May 14, 2024 6 / 55

Attack of the Memes

Bill Harrison Haskell for Grownups May 14, 2024 7 / 55

Attack of the Memes

Bill Harrison Haskell for Grownups May 14, 2024 8 / 55

What Do You Mean “Takes Types Seriously”?

Table of Contents

Introduction
Resources for Haskell

Attack of the Memes

What Do You Mean “Takes Types Seriously”?
Haskell vs. C
Types + Functions = Programs

How to Write a Haskell Program

Monads

Case Studies

Bill Harrison Haskell for Grownups May 14, 2024 9 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Question: What does this program do?

n = i;
a = 1;
while (n > 0) {

a = a * n;
n = n - 1;

}

Bill Harrison Haskell for Grownups May 14, 2024 10 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Functions in Mathematics

n! =

{
1 if n = 0
n ∗ (n − 1)! if n > 0

What does this have to do with that?

n = i;
a = 1;
while (n > 0) {

a = a * n;
n = n - 1;

}

Bill Harrison Haskell for Grownups May 14, 2024 11 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Functions in Mathematics

n! =

{
1 if n = 0
n ∗ (n − 1)! if n > 0

What does this have to do with that?

n = i;
a = 1;
while (n > 0) {

a = a * n;
n = n - 1;

}

Bill Harrison Haskell for Grownups May 14, 2024 11 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

First Haskell Function

n! =

{
1 if n = 0
n ∗ (n − 1)! if n > 0

It’s relationship to this Haskell function is apparent:

fac :: Int -> Int
fac 0 = 1
fac n = n * fac (n-1)

Bill Harrison Haskell for Grownups May 14, 2024 12 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

First Haskell Function

n! =

{
1 if n = 0
n ∗ (n − 1)! if n > 0

It’s relationship to this Haskell function is apparent:

fac :: Int -> Int
fac 0 = 1
fac n = n * fac (n-1)

Bill Harrison Haskell for Grownups May 14, 2024 12 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Bill Harrison Haskell for Grownups May 14, 2024 13 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Bill Harrison Haskell for Grownups May 14, 2024 14 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Hello World in C

#include <stdio.h>
int main() {
printf("hello world\n");

}

Bill Harrison Haskell for Grownups May 14, 2024 15 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Hello World in Haskell

module HelloWorld where
helloworld :: IO ()
helloworld = print "Hello World"

Bill Harrison Haskell for Grownups May 14, 2024 16 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Bill Harrison Haskell for Grownups May 14, 2024 17 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Factorial Revisited

#include <stdio.h>
int fac(int n) {
if (n==0)
{ return 1; }

else
{ return (n * fac (n-1)); }

}

int main() {
printf("Factorial 5 = %d\n",fac(5));
return 0;

}

Bill Harrison Haskell for Grownups May 14, 2024 18 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Hello Factorial

#include <stdio.h>
int fac(int n) {
printf("hello world"); // new
if (n==0)
{ return 1; }

else
{ return (n * fac (n-1)); }

}
...

(N.b., the type is the same)

int fac(int n) {...}

Bill Harrison Haskell for Grownups May 14, 2024 19 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Hello Factorial

#include <stdio.h>
int fac(int n) {
printf("hello world"); // new
if (n==0)
{ return 1; }

else
{ return (n * fac (n-1)); }

}
...

(N.b., the type is the same)

int fac(int n) {...}

Bill Harrison Haskell for Grownups May 14, 2024 19 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Hello Factorial in Haskell

fac :: Int -> IO Int -- the type changed
fac 0 = do print "hello world"

return 1
fac n = do print "hello world"

i <- fac (n-1)
return (n * i)

(Moral of the Story)

▶ Haskell types are a contract telling you a lot about what the program can and can’t do

▶ C types are documentation basically

Bill Harrison Haskell for Grownups May 14, 2024 20 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Hello Factorial in Haskell

fac :: Int -> IO Int -- the type changed
fac 0 = do print "hello world"

return 1
fac n = do print "hello world"

i <- fac (n-1)
return (n * i)

(Moral of the Story)

▶ Haskell types are a contract telling you a lot about what the program can and can’t do

▶ C types are documentation basically

Bill Harrison Haskell for Grownups May 14, 2024 20 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Bill Harrison Haskell for Grownups May 14, 2024 21 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Bill Harrison Haskell for Grownups May 14, 2024 22 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Bill Harrison Haskell for Grownups May 14, 2024 23 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Why Functional Languages?

Definition

Theorem

Proof

Mechanically-Checked Proof
length-++ : ∀ {A : Set} (xs ys : List A)
→ length (xs ++ ys) ≡ length xs + length ys

length-++ {A} [] ys = …
length-++ (x ∷ xs) ys = …

▶ Supports scalable formal methods across
the assurance spectrum
▶ automated test generation (quickcheck)
▶ security, safety, & privacy type systems
▶ formal verification (Lean, Coq,

Isabelle,. . .)

Bill Harrison Haskell for Grownups May 14, 2024 24 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Why Functional Languages?

Definition

Theorem

Proof

Mechanically-Checked Proof
length-++ : ∀ {A : Set} (xs ys : List A)
→ length (xs ++ ys) ≡ length xs + length ys

length-++ {A} [] ys = …
length-++ (x ∷ xs) ys = …

▶ Supports scalable formal methods across
the assurance spectrum
▶ automated test generation (quickcheck)
▶ security, safety, & privacy type systems
▶ formal verification (Lean, Coq,

Isabelle,. . .)

Bill Harrison Haskell for Grownups May 14, 2024 24 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Why Functional Languages?

Definition

Theorem

Proof

Mechanically-Checked Proof
length-++ : ∀ {A : Set} (xs ys : List A)
→ length (xs ++ ys) ≡ length xs + length ys

length-++ {A} [] ys = …
length-++ (x ∷ xs) ys = …

▶ Supports scalable formal methods across
the assurance spectrum
▶ automated test generation (quickcheck)
▶ security, safety, & privacy type systems
▶ formal verification (Lean, Coq,

Isabelle,. . .)

Bill Harrison Haskell for Grownups May 14, 2024 24 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Why Functional Languages?

Definition

Theorem

Proof

Mechanically-Checked Proof
length-++ : ∀ {A : Set} (xs ys : List A)
→ length (xs ++ ys) ≡ length xs + length ys

length-++ {A} [] ys = …
length-++ (x ∷ xs) ys = …

▶ Supports scalable formal methods across
the assurance spectrum
▶ automated test generation (quickcheck)
▶ security, safety, & privacy type systems
▶ formal verification (Lean, Coq,

Isabelle,. . .)

Bill Harrison Haskell for Grownups May 14, 2024 24 / 55

What Do You Mean “Takes Types Seriously”? Haskell vs. C

Why Functional Languages?

Definition

Theorem

Proof

Mechanically-Checked Proof
length-++ : ∀ {A : Set} (xs ys : List A)
→ length (xs ++ ys) ≡ length xs + length ys

length-++ {A} [] ys = …
length-++ (x ∷ xs) ys = …

▶ Supports scalable formal methods across
the assurance spectrum
▶ automated test generation (quickcheck)
▶ security, safety, & privacy type systems
▶ formal verification (Lean, Coq,

Isabelle,. . .)

Bill Harrison Haskell for Grownups May 14, 2024 24 / 55

What Do You Mean “Takes Types Seriously”? Types + Functions = Programs

Data Types + Functions = Haskell Programs
Haskell programming is both data type and functional programming!

▶ Arithmetic interpreter
▶ data type:

data Exp = Const Int | Neg Exp | Add Exp Exp

▶ function:

interp :: Exp -> Int
interp (Const i) = i
interp (Neg e) = - (interp e)
interp (Add e1 e2) = interp e1 + interp e2

▶ How do Haskell programs use data?
▶ Patterns break data apart to access:

“interp (Neg e) =. . .”
▶ Functions recombine into new data:

“interp e1 + interp e2”

Bill Harrison Haskell for Grownups May 14, 2024 25 / 55

What Do You Mean “Takes Types Seriously”? Types + Functions = Programs

Data Types + Functions = Haskell Programs
Haskell programming is both data type and functional programming!

▶ Arithmetic interpreter
▶ data type:

data Exp = Const Int | Neg Exp | Add Exp Exp

▶ function:

interp :: Exp -> Int
interp (Const i) = i
interp (Neg e) = - (interp e)
interp (Add e1 e2) = interp e1 + interp e2

▶ How do Haskell programs use data?
▶ Patterns break data apart to access:

“interp (Neg e) =. . .”
▶ Functions recombine into new data:

“interp e1 + interp e2”

Bill Harrison Haskell for Grownups May 14, 2024 25 / 55

What Do You Mean “Takes Types Seriously”? Types + Functions = Programs

Data Declarations

A completely new type can be defined by specifying its values using a data declaration.

data Bool = False | True

▶ Bool is a new type.

▶ False and True are called constructors for Bool.

▶ Type and constructor names begin with upper-case letters.

▶ Data declarations are similar to context free grammars.

Bill Harrison Haskell for Grownups May 14, 2024 26 / 55

What Do You Mean “Takes Types Seriously”? Types + Functions = Programs

Data Declarations

A completely new type can be defined by specifying its values using a data declaration.

data Bool = False | True

▶ Bool is a new type.

▶ False and True are called constructors for Bool.

▶ Type and constructor names begin with upper-case letters.

▶ Data declarations are similar to context free grammars.

Bill Harrison Haskell for Grownups May 14, 2024 26 / 55

What Do You Mean “Takes Types Seriously”? Types + Functions = Programs

Recursive Types

In Haskell, new types can be declared in terms of themselves. That is, types can be recursive.

data Nat = Zero | Succ Nat

Nat is a new type, with constructors

Zero :: Nat
Succ :: Nat -> Nat

Bill Harrison Haskell for Grownups May 14, 2024 27 / 55

What Do You Mean “Takes Types Seriously”? Types + Functions = Programs

Note:

▶ A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is,
Nat contains the following infinite sequence of values:

Zero
Succ Zero
Succ (Succ Zero)

...

Bill Harrison Haskell for Grownups May 14, 2024 28 / 55

What Do You Mean “Takes Types Seriously”? Types + Functions = Programs

Note:

▶ We can think of values of type Nat as natural numbers, where Zero represents 0, and
Succ represents the successor function 1+.

▶ For example, the value

Succ (Succ (Succ Zero))

represents the natural number

1 + (1 + (1 + 0))

Bill Harrison Haskell for Grownups May 14, 2024 29 / 55

What Do You Mean “Takes Types Seriously”? Types + Functions = Programs

Recursive Data beget Recursive Functions

Recursive functions convert between values of type Nat and Int:

nat2int :: Nat -> Int
nat2int Zero = 0
nat2int (Succ n) = 1 + nat2int n

int2nat :: Int -> Nat
int2nat 0 = Zero
int2nat n = Succ (int2nat (n - 1))

Bill Harrison Haskell for Grownups May 14, 2024 30 / 55

What Do You Mean “Takes Types Seriously”? Types + Functions = Programs

Data Types, cont’d

data Maybe a = Nothing | Just a

safediv :: Int -> Int -> Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m ‘div‘ n)

safehead :: [a] -> Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)

Bill Harrison Haskell for Grownups May 14, 2024 31 / 55

What Do You Mean “Takes Types Seriously”? Types + Functions = Programs

Bill Harrison Haskell for Grownups May 14, 2024 32 / 55

How to Write a Haskell Program

Table of Contents

Introduction
Resources for Haskell

Attack of the Memes

What Do You Mean “Takes Types Seriously”?
Haskell vs. C
Types + Functions = Programs

How to Write a Haskell Program

Monads

Case Studies

Bill Harrison Haskell for Grownups May 14, 2024 33 / 55

How to Write a Haskell Program

Type-Driven Programming in Haskell
Types first, then programs

▶ Writing a function with type A → B, then you have a lot of information to use for
fleshing out the function.

▶ Why? Because the input type A — whatever it happens to be — has a particular form
that determines a large part of the function itself.

▶ This is, in fact, the way that you should develop Haskell programs.

Bill Harrison Haskell for Grownups May 14, 2024 34 / 55

How to Write a Haskell Program

The edit-compile-test-until-done paradigm
I’m guessing that this is familar to you

When I was a student—the process of writing a C program tended to follow these steps:

1. Create/edit a version of the whole program using a text editor.

2. Compile. If there were compilation errors, develop a hypothesis about what the causes
were and start again at 1.

3. Run the program on some tests. Do I get what I expect? If so, then declare victory and
stop; otherwise, develop a hypothesis about what the causes were and start again at 1.

Bill Harrison Haskell for Grownups May 14, 2024 35 / 55

How to Write a Haskell Program

An Exercise

▶ Write a function that

1. takes a list of items,
2. takes a function that returns either True or False on those items,
3. and returns a list of all the items on which the function is true.

▶ This is called filter , and it’s a built-in function in Haskell, but let me show you how I’d
write it from scratch.
▶ I call the function I’m writing “myfilter” to avoid the name clash with the built-in version.

Bill Harrison Haskell for Grownups May 14, 2024 36 / 55

How to Write a Haskell Program

Step 1. Figure out the type of the thing you’re writing

▶ Think about the type of filter and write it down as a type specification in a Haskell
module (called Sandbox throughout).

▶ With what I’ve said about filter, it takes a list of items—i.e., something of type [a].

▶ It also takes a function that takes an item—an a thing—and returns true or false—i.e., it
returns a Bool. So, this function will have type a → Bool.

▶ ∴ the type should be:

myfilter :: [a] -> (a -> Bool) -> [a]

Bill Harrison Haskell for Grownups May 14, 2024 37 / 55

How to Write a Haskell Program

Step 2: Fill in the type template & load the module.

▶ In this case, we have a function with two arguments. The second argument of type
a->Bool does not have a matchable form like the first argument.

▶ This leaves us with:

myfilter :: [a] -> (a -> Bool) -> [a]
myfilter [] f = undefined
myfilter (x:xs) f = undefined

▶ A dumb mistake like:

myfilter :: [a] -> (a -> Bool) -> [a]
myfilter [] f = undefined
myfilter (x:xs) = undefined

would be caught automatically by the type-checker.

▶ I.e., Debugging via Type-checking!

Bill Harrison Haskell for Grownups May 14, 2024 38 / 55

How to Write a Haskell Program

Step 2: Fill in the type template & load the module.

▶ In this case, we have a function with two arguments. The second argument of type
a->Bool does not have a matchable form like the first argument.

▶ This leaves us with:

myfilter :: [a] -> (a -> Bool) -> [a]
myfilter [] f = undefined
myfilter (x:xs) f = undefined

▶ A dumb mistake like:

myfilter :: [a] -> (a -> Bool) -> [a]
myfilter [] f = undefined
myfilter (x:xs) = undefined

would be caught automatically by the type-checker.

▶ I.e., Debugging via Type-checking!

Bill Harrison Haskell for Grownups May 14, 2024 38 / 55

How to Write a Haskell Program

Step 3: Fill in the clauses one-by-one reloading as you go.

The [] case is obvious because there is nothing to filter out:

myfilter :: [a] -> (a -> Bool) -> [a]
myfilter [] f = []
myfilter (x:xs) f = undefined

No problems with this last bit:

> ghci Sandbox.hs
[1 of 1] Compiling Sandbox
Ok, modules loaded: Sandbox.

*Sandbox>

Bill Harrison Haskell for Grownups May 14, 2024 39 / 55

How to Write a Haskell Program

Step 3 (continued).

▶ The second clause should only include x if f x is True; one way to write that is with an
if−then−else:

myfilter :: [a] -> (a -> Bool) -> [a]
myfilter [] f = []
myfilter (x:xs) f = if f x

then x : myfilter f xs
else myfilter f xs

▶ Loading this into GHC reveals a problem:
> ghci Sandbox.hs
[1 of 1] Compiling Sandbox (Sandbox.hs, interpreted)
Sandbox.hs:8:46:

Couldn’t match expected type ‘[a]’ with actual type ‘a -> Bool’
In the first argument of ‘myfilter’, namely ‘f’
In the second argument of ‘(:)’, namely ‘myfilter f xs’
In the expression: x : myfilter f xs

Failed, modules loaded: none.
Prelude>

Bill Harrison Haskell for Grownups May 14, 2024 40 / 55

How to Write a Haskell Program

Step 3 (continued).

▶ This error occurs on line 8 of the module, which is the line “then x : myfilter f xs”.
GHCi is telling us that it expects that f would have type [a] but that it can see that f
has type a → Bool. After a moment’s pause, we can see that the order of the
arguments is incorrect in both recursive calls. The corrected version works:

myfilter :: [a] -> (a -> Bool) -> [a]
myfilter [] f = []
myfilter (x:xs) f = if f x

then x : myfilter xs f
else myfilter xs f

Bill Harrison Haskell for Grownups May 14, 2024 41 / 55

Monads

Table of Contents

Introduction
Resources for Haskell

Attack of the Memes

What Do You Mean “Takes Types Seriously”?
Haskell vs. C
Types + Functions = Programs

How to Write a Haskell Program

Monads

Case Studies

Bill Harrison Haskell for Grownups May 14, 2024 42 / 55

Monads

Bill Harrison Haskell for Grownups May 14, 2024 43 / 55

Monads

Bill Harrison Haskell for Grownups May 14, 2024 44 / 55

Monads

Programming Languages are Monads

▶ Periodic Table of
Programming Languages

StateT
imperative

:=

EnvT
binding
λ @ v

ErrorT
exceptions
raise/catch

ContT
continuations
callcc

NondetT
non-determ.
choose

ResT
threads

 step pause

DebugT
debugging
rollback

BackT
backtracking

cut

IoT
input/output
printf

ReactT
reactivity

send,recv,…

▶ Moggi 1989: Languages are “molecules”
composed of “elements” (aka, monad
transformers)

▶ Haskell has
▶ built-in monad syntax
▶ formal semantics [JFP05,APLAS05]

▶ Systems are molecules
▶ Compilers [ICCL98,MPC00]

▶ Interrupts/asynchronous exceptions
[MPC08]

▶ Systems Biology [EMBC03]

▶ POSIX-like kernels
[AMAST06,CheapThreads]

▶ Separation kernels
[FCS03,CSF05,JCS09,ICFEM12]

▶ Synchronous Hardware
[FPT13/15,ARC15,ReCoSoC16,

RSP16,TECS17,TECS19]

Bill Harrison Haskell for Grownups May 14, 2024 45 / 55

Monads

Monads are Programming Language Constructors

▶ Language “Molecule”

:= :=

||
ReacT

StateT StateT

▶ ...constructs a language:

:=, mask, :=, mask,
||, signal, ;

▶ With By-Construction Algebraic Properties
[APLAS06,JCS09]:

a := x ; b := y = b := y ; a := x

a := x ; mask = mask

b := y ; mask = mask

▶ Each “element” adds new commands to the
language “molecule”

Bill Harrison Haskell for Grownups May 14, 2024 46 / 55

Monads

Monads are Programming Language Constructors

▶ Language “Molecule”

:= :=

||
ReacT

StateT StateT

▶ ...constructs a language:

:=, mask, :=, mask,
||, signal, ;

▶ With By-Construction Algebraic Properties
[APLAS06,JCS09]:

a := x ; b := y = b := y ; a := x

a := x ; mask = mask

b := y ; mask = mask

▶ Each “element” adds new commands to the
language “molecule”

Bill Harrison Haskell for Grownups May 14, 2024 46 / 55

Case Studies

Table of Contents

Introduction
Resources for Haskell

Attack of the Memes

What Do You Mean “Takes Types Seriously”?
Haskell vs. C
Types + Functions = Programs

How to Write a Haskell Program

Monads

Case Studies

Bill Harrison Haskell for Grownups May 14, 2024 47 / 55

Case Studies

Achieving information flow security through monadic control of effects [HH09]

Classic Goguen-Meseguer Noninterference:

“changes in high-level inputs only change high-level outputs”

Monadic language approach [HH05, HH09, WHA12, PHG+15, PHG+17]:

“high-level operations must cancel”

“Bird-Wadler”’ Equational Reasoning

x1:=e1 x2:=e2 y1:=f1 maskHi ; ; ;

y1:=f1 maskHi ; = x1:=e1 ;

y1:=f1 maskHi ; = x1:=e1 ;

y1:=f1 maskHi = ;

y1:=f1 maskHi = ;

Interaction rules come for free “by construction”

	hi ; maskHi = maskHi
	maskHi ; lo = lo; maskHi

 lo ; hi = hi ; lo

“clobber”

“atomic non-interference”

Bill Harrison Haskell for Grownups May 14, 2024 48 / 55

Case Studies

ReWire Language & Toolchain

Haskell ReWire HDLSynthesizable
HDL

ReWire
compiler

▶ Inherits Haskell’s good qualities
▶ Pure functions, strong types, monads, equational reasoning, etc.
▶ Denotational semantics [HK05, Har05, HSH02]

▶ Types & Operators for HW abstractions [HPG+16]

▶ ReWire Compiler (rwc) produces Verilog, VHDL, or FIRRTL
▶ Formalized Semantics in Coq [RPHA19] and Isabelle/Coq/Agda [HBB+23]

▶ Embedding Tool translates ReWire into Isabelle

Bill Harrison Haskell for Grownups May 14, 2024 49 / 55

Case Studies

Semantics-directed Architecture in ReWire [FPT2013]

Xilinx PicoBlaze 8-bit Embedded Microcontroller

Data Layout

8 www.xilinx.com PicoBlaze 8-bit Embedded Microcontroller
UG129 (v2.0) June 22, 2011

Chapter 1: Introduction

PicoBlaze Microcontroller Features
As shown in the block diagram in Figure 1-1, the PicoBlaze microcontroller supports the
following features:

• 16 byte-wide general-purpose data registers

• 1K instructions of programmable on-chip program store, automatically loaded during
FPGA configuration

• Byte-wide Arithmetic Logic Unit (ALU) with CARRY and ZERO indicator flags

• 64-byte internal scratchpad RAM

• 256 input and 256 output ports for easy expansion and enhancement

• Automatic 31-location CALL/RETURN stack

• Predictable performance, always two clock cycles per instruction, up to 200 MHz or
100 MIPS in a Virtex-II Pro FPGA

• Fast interrupt response; worst-case 5 clock cycles

• Optimized for Xilinx Spartan-3 architecture—just 96 slices and 0.5 to 1 block RAM

• Support in Spartan-6, and Virtex-6 FPGA architectures

• Assembler, instruction-set simulator support

PicoBlaze Microcontroller Functional Blocks

General-Purpose Registers
The PicoBlaze microcontroller includes 16 byte-wide general-purpose registers,
designated as registers s0 through sF. For better program clarity, registers can be renamed
using an assembler directive. All register operations are completely interchangeable; no
registers are reserved for special tasks or have priority over any other register. There is no
dedicated accumulator; each result is computed in a specified register.

Figure 1-1: PicoBlaze Embedded Microcontroller Block Diagram

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 sA sB
sC sD sE sF

Z

C

Zero

Carry

OUT_PORT

PORT_ID

IN_PORT

64-Byte
Scratchpad RAM

Instruction
Decoder

1Kx18
Instruction

PROM

INTERRUPT
16 Byte-Wide Registers

ALUOperand 1

Operand 2

IE Enable

Flags
Constants

UG129_c1_01_051204

P
ro

gr
am

 C
ou

nt
er

(P
C

)

31
x1

0
C

A
LL

/R
E

T
U

R
N

S
ta

ck
(a) Block Diagram

type RegFile = Table W4 W8
type FlagFile = (Bit,Bit,Bit,Bit,Bit)
type Mem = Table W6 W8
data Stack = Stack { contents :: Table W5 W10,

pos :: W5 }
data Inputs = Inputs { instruction_in :: W18,

in_port_in :: W8,
interrupt_in :: Bit,
reset_in :: Bit }

data Outputs = Outputs { address_out :: W10,
port_id_out :: W8,
write_strobe_out :: Bit,
out_port_out :: W8,
read_strobe_out :: Bit,
interrupt_ack_out :: Bit }

(b) Corresponding ReWire Types

Fig. 1: Xilinx PicoBlaze Microcontroller ([2], page 8) Readily Represented in ReWire.

zero-save (Zsave), carry-save (Csave), and interrupt enable (IE)
flags. The type declaration for the flag registers is FlagFile in
Fig. 1b. The scratchpad RAM is represented as a table, Table
W6 W8.

In ReWire (as in Haskell [4]), a type synonym is a new
name for an existing type. Each of the aforementioned types
is declared as a type synonym—i.e., with the type form. The
right-hand sides of the aforementioned declarations involve
only built-in types (i.e., word, tuple and table types) and so
they are declared with type. As in Haskell, to introduce new
data types, ReWire has data declarations. The stack, input and
output types are defined with data declarations using record
syntax. Record types have the form, {x1 :: t1, · · · ,xn :: tn},
where each xi is a field name of type ti. Records are more
convenient than tuple types when there are a large number of
fields. The PicoState type, declared below, encapsulates all
components of the current state of the processor:

data PicoState
= PicoState { reg_file :: RegFile, flags :: FlagFile,

memory :: Mem, stack :: Stack,
outputs :: Outputs, inputs :: Inputs }

We can now define the PicoBlaze monad. The best way to
understand what this means is to see how it is used (we will
have more to say about it in subsequent sections).

type PicoBlaze = ReT Outputs Inputs (StT PicoState I)

The PicoBlaze monad defines a new domain-specific lan-
guage that allows us to write the program describing the
PicoBlaze processor. Rather than delving into the details of
monads, it is simpler to understand how a familiar idea is
represented with it. Below, the fetch-decode-execute loop for
PicoBlaze (called “fde”) is written in ReWire:

fde :: PicoBlaze ()
fde = do s <- getPicoState

let i = inputs s
instr = instruction_in i

ie <- getFlagIE
if reset_in i == 1

then reset_event
else if ie == 1 && interrupt_in i == 1

then interrupt_event
else decode instr

fde

The fde computation first gets the current state of the processor
with getPicoState and assigns it to s. The inputs on the input
ports are bound to i and instr is bound to the instruction
word. The current value of the interrupt enable flag is read and
assigned to ie. If the reset signal has been set (i.e., reset_in
i == 1), then the processor transitions to the reset_event

state (not shown). Otherwise, if the interrupt flag is set and an
interrupt has occurred, then the processor makes the transition
to the interrupt_event (not shown). Otherwise, the processor
decodes and executes the instruction. Finally, fde starts its loop
again.

Fig. 2 shows the ReWire code corresponding to the Pi-
coBlaze add immediate instruction. The definition of addImm

ends with two calls to tick. The tick operation delimits single
cycles. Each PicoBlaze instruction takes two cycles. In addImm,
the first cycle (i.e., the operations up to the first tick) contains
all of the instruction’s action, while the second cycle—the
second tick—does nothing but wait for a single cycle [2].

II. REWIRE CORE

Our prototype compiler is structured around a core lan-
guage, which is a subset of Haskell, called ReWire Core.
Fig. 3 illustrates the structure of a ReWire Core program
via an example near and dear to functional programmers’
hearts: the Fibonacci sequence F = (0, 1, 1, 2, 3, 5, . . .), where
Fn = Fn�1 + Fn�2 for all n > 1. The construction of this
simple example illustrates how a mathematical structure from
concurrency theory called a reactive resumption, combined
with some standard functional programming techniques, forms
the basis of sequential circuit specifications in ReWire. Later,
in Section III, we will use the same example to demonstrate
how ReWire produces efficient implementations of reactive
resumption-based specifications as hardware state machines.

As a subset of Haskell, ReWire Core places two primary
restrictions on the form of programs. First, every program
must be defined in terms of a set of equations, which may be
mutually recursive, producing a reactive resumption. Second,
the form of recursion and the use of higher-order constructs
(functions operating on functions, or functions operating on
resumptions) is restricted. In Section IV, we demonstrate
how a source-to-source program transformation called partial
evaluation [5] can be used to enhance the expressiveness

Fetch-Decode-Execute

Formalized High Level Synthesis with Applications
to Cryptographic Hardware

Abstract—Implementing an algorithm in hardware presents a
challenge for formal methods due to the considerable conceptual
divide between the way algorithms are typically described (e.g.,
as imperative pseudocode) and the commodity HDLs in which
they are ultimately codified. That neither the pseudocode de-
scription nor commodity hardware definition languages (HDL)
are formalized further impedes formal methods in such scenarios.
Bridging—or, at least, shrinking—this conceptual gap will lower
the cost of hardware formal methods while supporting higher
levels of assurance for the hardware artifact produced in such
scenarios and, to this end, we introduce a formalized high-
level synthesis (FHLS) language as a bridge between algorithm
design and implementation. This paper describes a denotational
semantics for the ReWire functional high-level synthesis language
and presents its mechanization with automated proof assistants.
We have formally verified several hardware-based cryptographic
accelerators for fully homomorphic encryption using this ReWire
semantics as a foundation. We summarize at a high level one such
verification for a suite of pipelined Barrett multipliers.

Index Terms—Programming languages and models; Verifying
cryptographic systems; Architecture and high-level hardware
description languages.

I. INTRODUCTION

pico :: Dev Inputs PicoState Outputs
pico = do s <- getPicoState

let i = inputs s
instr = instruction_in i

ie <- getFlagIE
if reset_in i == 1

then reset_event
else if ie == 1 &&

interrupt_in i == 1
then interrupt_event
else decode instr

pico

Suppose a team of engineers develops a hardware design
in a commodity HDL intended to implement a particular
cryptographic algorithm that is, in turn, specified with informal
pseudocode. The correctness of this design—i.e., its confor-
mance to the algorithm—is critical, and a formal methods team
is engaged to verify it. Formal verification must establish a
precise connection between the algorithm and the design, but,
unfortunately, formulating such a relationship is complicated
by the lack of formal specifications for both the design and al-
gorithm and, more fundamentally, by the disparity between the
computational models underlying the HDL and pseudocode
(i.e., synchronous parallelism vs. imperative loop code).

This paper introduces a hardware verification process, model
validation, that confronts just this kind of scenario. Model
validation uses a formalized high-level synthesis language to
bridge the conceptual gulf between hardware designs in a

commodity hardware definition language (HDL) and the logic
of a theorem prover. Model validation interposes a formalized
high-level synthesis language (FHLS), namely the ReWire
functional hardware description language [?], [?]. ReWire is
a domain-specific language (DSL) embedded in Haskell for
expressing, implementing, and verifying hardware designs.

Fig. 1 illustrates the model validation process for verifying
that a circuit design (e.g., one in Verilog) produces the same
results as a high-level algorithm (assumed to be specified in
Prover). The first path of this process is represented by the
composition of arrows (model; embed; verify) in Fig. 1. Given
a Verilog circuit design, a ReWire model is formulated that
closely follows or “mimics” the structure of that design. This
model is then embedded in the logic of a theorem prover via
a formalized semantics for ReWire and its functional correct-
ness (according to the high-level algorithm) is mechanically
verified.

The second path of the model validation process speaks to
the fidelity of the ReWire model to the input circuit design
and is represented by the composite arrow (model ; validate)
in Fig. 1. In this phase, both the input circuit design and its
ReWire model are synthesized (the model being first compiled
to Verilog with the ReWire compiler) and the functional equiv-
alence demonstrated with a model checker (here, Yosys [?]).
The ReWire model was formulated to mimic the structure
of the circuit design in order to support this semi-automatic
verification. Demonstrating the fidelity of the ReWire model
to the input circuit design assures that the properties being
verified in the first phase obtain for the circuit design itself.

This paper focuses mainly on the embed arrow in Fig. 1 and
we leave a broader discussion of model validation and its uses
to follow-on publications. The technical contributions of this
paper are as follows. (1) We present a formalization of the HLS
language ReWire as an effect-type calculus in which the effect
labels delineate the termination and productivity behavior of
program fragments. (2) The ReWire language is a subset of
Haskell and is organized around reactive resumption monads
over state [?]; we present a mechanized denotational model
of these monads and formally verify its monadic properties.
(3) This model is the foundation for a denotational semantics
of ReWire that we have formalized in the Isabelle, Coq, and
Agda theorem proving systems. (4) We illustrate the utility of
the semantics with a substantial verification case study of a
pipelined Barrett multiplier circuit design.

The structure of this paper loosely corresponds to the
diagram in Fig. 1, although the primary technical focus is
on the embed arrow. Section II first introduces background

Bill Harrison Haskell for Grownups May 14, 2024 50 / 55

Case Studies

RV32i in ReWire
Undergraduate Capstone at Univ. of Missouri (2019)

Fetch-Decode-Execute
rv32i :: Monad m =>

ReacT
(InSig w (Instr))
(OutSig W32 w e)
(StateT RegFile (StateT (InSig w (Instr),OutSig W32 w e) m))
()

rv32i = do
pc ← lift $ getReg PC
iw ← async_fetch pc
exec iw
rv32i

exec :: Monad m => Instr → ReacT i o (StateT RegFile (StateT (i, o) m)) ()
exec c = case c of

Add rd rs1 rs2 → do
lift $ do

rs1 ← getReg rs1
rs2 ← getReg rs2
putReg rd (rs1 + rs2)

tick
etc.

Bill Harrison Haskell for Grownups May 14, 2024 51 / 55

Case Studies

References I

William Harrison.
A simple semantics for polymorphic recursion.
In Proceedings of the 3rd Asian Symposium on Programming Languages and Systems
(APLAS05), pages 37–51, Tsukuba, Japan, November 2005.

William L. Harrison, Ian Blumenfeld, Eric Bond, Chris Hathhorn, Paul Li, May Torrence,
and Jared Ziegler.
Formalized high level synthesis with applications to cryptographic hardware.
In NASA Formal Methods Symposium (NFM23), 2023.

William Harrison and James Hook.
Achieving information flow security through precise control of effects.
In 18th IEEE Computer Security Foundations Workshop (CSFW05), pages 16–30,
Aix-en-Provence, France, June 2005.

Bill Harrison Haskell for Grownups May 14, 2024 52 / 55

Case Studies

References II

W. Harrison and J. Hook.
Achieving information flow security through monadic control of effects.
JCS, 17:599–653, Oct 2009.

William L. Harrison and Richard B. Kieburtz.
The logic of demand in Haskell.
Journal of Functional Programming, 15(6):837–891, 2005.

W. Harrison, A. Procter, I. Graves, M. Becchi, and G. Allwein.
A programming model for reconfigurable computing based in functional concurrency.
In 11th Inter. Symp. on Reconfigurable Communication-centric Systems-on-Chip, 2016.

Bill Harrison Haskell for Grownups May 14, 2024 53 / 55

Case Studies

References III

William Harrison, Timothy Sheard, and James Hook.
Fine control of demand in Haskell.
In 6th International Conference on the Mathematics of Program Construction (MPC02),
Dagstuhl, Germany, volume 2386 of Lecture Notes in Computer Science, pages 68–93.
Springer-Verlag, 2002.

Adam Procter, William L. Harrison, Ian Graves, Michela Becchi, and Gerard Allwein.
Semantics driven hardware design, implementation, and verification with ReWire.
In ACM SIGPLAN/SIGBED Conf. on Languages, Compilers, Tools and Theory for
Embedded Systems (LCTES), 2015.

A. Procter, W. Harrison, I. Graves, M. Becchi, and G. Allwein.
A principled approach to secure multi-core processor design with ReWire.
ACM TECS, 16(2):33:1–33:25, February 2017.

Bill Harrison Haskell for Grownups May 14, 2024 54 / 55

Case Studies

References IV

Thomas N. Reynolds, Adam Procter, William L. Harrison, and Gerard Allwein.
The mechanized marriage of effects and monads with applications to high-assurance
hardware.
ACM Transactions on Embedded Computing Systems, 18(1):6:1–6:26, January 2019.

A. Procter W. Harrison and G. Allwein.
The confinement problem in the presence of faults.
In ICFEM, pages 182–197, 2012.

Bill Harrison Haskell for Grownups May 14, 2024 55 / 55

	Introduction
	Resources for Haskell

	Attack of the Memes
	What Do You Mean ``Takes Types Seriously''?
	Haskell vs. C
	Types + Functions = Programs

	How to Write a Haskell Program
	Monads
	Case Studies

