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Introduction

Haskell Basics

» Modern (pure) lazy functional language
> “Pure” means “takes types really seriously”

> Statically typed, supports type inference
» Compilers and interpreters:

> http://www.haskell.org/implementations.html
» GHC Compiler
» GHCi interpreter

» A peculiar language feature: indentation & capitalization matter
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Introduction Resources for Haskell

Some Reference Texts

» Programming in Haskell by Graham Hutton.
This is an excellent, step-by-step introduction to Haskell. Graham also has a lot of online
resources (slides, videos, etc.) to go along with the book.

> A Gentle Introduction to Haskell by Hudak, Peterson, and Fasal.
Available at http://www.haskell.org/tutorial/.

» Learn You a Haskell for Good by Miran Lipovaca.
Highly amusing and informative; available online.

» Real World Haskell by Bryan O’Sullivan.
Also available online (I believe). “Haskell for Working Programmers”.

» Google.
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Attack of the Memes
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Question: What does this program do?

n = 1;

a=1;

while (n > 0) {
a = a * n;
n=n-1;

}
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Functions in Mathematics

L if n=0
L nx(n=1)! if n>0
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Functions in Mathematics

L if n=0
L nx(n=1)! if n>0

What does this have to do with that?

n = 1ij;
a=1;
while (n > 0) {
a = a * n;
n=n-1;
}
Bill Harrison
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

First Haskell Function

! if n=0
L nx(n=1) if n>0

Bill Harrison Haskell for Grownups May 14, 2024 12 /55



What Do You Mean “Takes Types Seriously” ? Haskell vs. C

First Haskell Function

e if n=0
L nx(n=1)! if n>0

It's relationship to this Haskell function is apparent:

fac :: Int —-> Int

fac 0 =1
fac n = n  fac (n-1)
Bill Harrison Haskell for Grownups May 14, 2024
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Your Main

language is

an 'actual’
Programming
Language

Your main
language
is Haskell
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Hello World in C

#include <stdio.h>
int main() {

printf ("hello,_world\n");
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Hello World in Haskell

module HelloWorld where
helloworld :: IO ()
helloworld = print "Hello World"
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

AND THIS IS HOW
WE WRITE HELLO WORLD
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Factorial Revisited

#include <stdio.h>
int fac(int n) {
if (n==0)
{ return 1; }
else
{ return (n » fac (n-1)); }

int main () {

printf ("Factorial 5 _=_%d\n", fac(5));
return 0;
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What Do You Mean “Takes Types Seriously” ?

Haskell vs. C
Hello Factorial
#include <stdio.h>
int fac(int n) {
printf ("hello_world"); // new
if (n==0)
{ return 1; }
else

{ return (n * fac (n-1)); }
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What Do You Mean “Takes Types Seriously” ?

Haskell vs. C
Hello Factorial
#include <stdio.h>
int fac(int n) {
printf ("hello_world"); // new
if (n==0)
{ return 1; }
else

{ return (n * fac (n-1)); }

(N.b., the type is the same)

int fac(int n) {...}
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Hello Factorial in Haskell

fac :: Int —> IO Int —— the type changed
fac 0 = do print "hello_world"
return 1

fac n = do print "hello_world"
i <= fac (n-1)
return (n * 1)
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Hello Factorial in Haskell

fac :: Int -> IO Int - the type changed
fac 0 = do print "hello_world"
return 1

fac n = do print "hello_world"
i <= fac (n-1)
return (n * 1)

(Moral of the Story)

» Haskell types are a contract telling you a lot about what the program can and can't do

> C types are documentation basically
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Why Functional Languages?

Definition
length = [a] = Int
length[] =0

length (x:xs) =1+ lengthxs
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Why Functional Languages?

Definition
length = [a] = Int
length[] =0

length (x:xs) =1+ lengthxs

Theorem
length(xs + ys) = lengthxs + lengthys
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What Do You Mean “Takes Types Seriously” ?

Why Functional Languages?

Definition
length = [a] = Int
length[] =0

length (x:xs) =1+ lengthxs

Theorem

length(xs + ys) = lengthxs + lengthys

Proof

length((z : zs) Hys)
=length (z: (zs + ys))
=1+ length(zs + ys)

=1 + lengthzs + lengthys
=length(z:zs) + lengthys

Bill Harrison

++ defn.

length defn.
induction hyp.
length defn.
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What Do You Mean “Takes Types Seriously” ?

Haskell vs. C

Why Functional Languages?

Definition
length = [a] = Int
length[] =0

length (x:xs) =1+ lengthxs

Theorem

Mechanically-Checked Proof
length-++ : V {A :
- length (xs ++ ys) =
length-++ {A} [] ys
length-++ (x @ xs)

ys

length(xs + ys) = lengthxs + lengthys

Proof

length((z : zs) Hys)
=length (z: (zs + ys))
=1+ length(zs + ys)

=1 + lengthzs + lengthys
=length(z:zs) + lengthys

Bill Harrison

+H- defn.
length defn
induction hyp.

length defn.
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What Do You Mean “Takes Types Seriously” ? Haskell vs. C

Why Functional Languages?

Definition Mechanically-Checked Proof
length = [a] — Int length-++ : V {A : Set} (xs ys : List A)
length H =0 - length (xs ++ ys) = length xs + length ys
length (x:xs)=1 + lengthxs length-++ {A} [ ys = ..

length-++ (x  xXs) ys = ..
Theorem
length (xs + ys) = lengthxs + lengthys P Supports scalable formal methods across

the assurance spectrum

Proof ) )
length((z : zs) 4 ys) > automated test generation (quickcheck)
=length(z: (zs 4 ys)) H defn. > security, safety, & privacy type systems
=1+ length(zs + ys) length defn. > f ifi . C
=1+ lengthzs + lengthys induction hyp. ormal veritication (Leanr oq,
=length(z:zs) + lengthys length defn. Isabelle,. . )
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What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Data Types + Functions = Haskell Programs

Haskell programming is both data type and functional programming!

» Arithmetic interpreter
> data type:
data Exp = Const Int | Neg Exp | Add Exp Exp

» function:
interp :: Exp —-> Int
interp (Const 1i) = 1
interp (Neg e) = - (interp e)
interp (Add el e2) = interp el + interp e2
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What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Data Types + Functions = Haskell Programs

Haskell programming is both data type and functional programming!

» Arithmetic interpreter
> data type:
data Exp = Const Int | Neg Exp | Add Exp Exp

» function:
interp :: Exp —-> Int
interp (Const 1i) = 1
interp (Neg e) = - (interp e)
interp (Add el e2) = interp el + interp e2

» How do Haskell programs use data?
» Patterns break data apart to access:
“interp (Neg e) =..."
» Functions recombine into new data:
“interp el 4+ interp e2"
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What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Data Declarations

A completely new type can be defined by specifying its values using a data declaration.

data Bool = False | True

Bill Harrison Haskell for Grownups May 14, 2024 26 /55



What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Data Declarations

A completely new type can be defined by specifying its values using a data declaration.

data Bool = False | True

> Bool is a new type.
» False and True are called constructors for Bool.
» Type and constructor names begin with upper-case letters.

> Data declarations are similar to context free grammars.
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What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Recursive Types

In Haskell, new types can be declared in terms of themselves. That is, types can be recursive.
data Nat = Zero | Succ Nat

Nat is a new type, with constructors

Zero :: Nat
Succ :: Nat —> Nat
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What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Note:

> A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is,
Nat contains the following infinite sequence of values:

Zero
Succ Zero
Succ (Succ Zero)

Bill Harrison Haskell for Grownups May 14, 2024 28 /55



What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Note:

> We can think of values of type Nat as natural numbers, where Zero represents 0, and

Succ represents the successor function 1+.
» For example, the value
Succ (Succ (Succ Zero))
represents the natural number
1+ (1 + (1 + 0))

Bill Harrison Haskell for Grownups
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What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Recursive Data beget Recursive Functions

Recursive functions convert between values of type Nat and Int:

nat2int :: Nat —> Int
nat2int Zero =0

nat2int (Succ n) = 1 + nat2int n
int2nat :: Int —-> Nat
int2nat 0 = Zero

int2nat n Succ (int2nat (n - 1))
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What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

Data Types, cont'd

data Maybe a

safediv
safediv _ O
safediv m n

safehead

safehead []
safehead xs

Bill Harrison

Nothing | Just a

Int -> Int -> Maybe Int
Nothing
Just (m ‘div' n)

[a] —> Maybe a

Nothing
Just (head xs)

Haskell for Grownups May 14, 2024
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What Do You Mean “Takes Types Seriously” ? Types + Functions = Programs

YOU SAY "PATTERN" AND NOBODY
PANICS

YOU SAY "MONAD" AND EVERYBODY IS
LOSING THEIR MIND

memegenerator.net
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How to Write a Haskell Program

Type-Driven Programming in Haskell

Types first, then programs

» Writing a function with type A — B, then you have a lot of information to use for
fleshing out the function.

> Why? Because the input type A — whatever it happens to be — has a particular form
that determines a large part of the function itself.

» This is, in fact, the way that you should develop Haskell programs.
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How to Write a Haskell Program

The edit-compile-test-until-done paradigm

I'm guessing that this is familar to you

When | was a student—the process of writing a C program tended to follow these steps:
1. Create/edit a version of the whole program using a text editor.

2. Compile. If there were compilation errors, develop a hypothesis about what the causes
were and start again at 1.

3. Run the program on some tests. Do | get what | expect? If so, then declare victory and
stop; otherwise, develop a hypothesis about what the causes were and start again at 1.
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How to Write a Haskell Program

An Exercise

» Write a function that

1. takes a list of items,
2. takes a function that returns either True or False on those items,
3. and returns a list of all the items on which the function is true.

» This is called filter, and it’s a built-in function in Haskell, but let me show you how I'd
write it from scratch.

» | call the function I'm writing “myfilter” to avoid the name clash with the built-in version.
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How to Write a Haskell Program

Step 1. Figure out the type of the thing you're writing

> Think about the type of filter and write it down as a type specification in a Haskell
module (called Sandbox throughout).

» With what I've said about filter, it takes a list of items—i.e., something of type [a].

> It also takes a function that takes an item—an a thing—and returns true or false—i.e., it
returns a Bool. So, this function will have type a — Bool.

» - the type should be:

myfilter :: [a] -> (a —> Bool) —> [a]
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How to Write a Haskell Program

Step 2: Fill in the type template & load the module.

P In this case, we have a function with two arguments. The second argument of type
a—>Bool does not have a matchable form like the first argument.

» This leaves us with:

myfilter :: [a] -> (a —-> Bool) —-> [a]
myfilter [] £ = undefined
myfilter (x:xs) f = undefined
Bill Harrison Haskell for Grownups May 14, 2024
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How to Write a Haskell Program

Step 2: Fill in the type template & load the module.

P In this case, we have a function with two arguments. The second argument of type

a—>Bool does not have a matchable form like the first argument.

» This leaves us with:

myfilter :: [a] -> (a —-> Bool) —-> [a]
myfilter [] £ = undefined
myfilter (x:xs) f = undefined

> A dumb mistake like:
myfilter :: [a] -> (a —-> Bool) —> [a]
myfilter [] £ = undefined
myfilter (x:xs) = undefined
would be caught automatically by the type-checker.
» |.e., Debugging via Type-checking!
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How to Write a Haskell Program

Step 3: Fill in the clauses one-by-one reloading as you go.

The [] case is obvious because there is nothing to filter out:

myfilter :: [a] —-> (a —> Bool) —> [a]
myfilter [] f = []
myfilter (x:xs) f = undefined

No problems with this last bit:

> ghci Sandbox.hs

[1 of 1] Compiling Sandbox
Ok, modules loaded: Sandbox.
*Sandbox>

Bill Harrison Haskell for Grownups May 14, 2024
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How to Write a Haskell Program

Step 3 (continued).

» The second clause should only include x if £ x is True; one way to write that is with an
if—then—else:

myfilter ::
myfilter [
myfilter (

[a] —> (a —> Bool) —> [a]

f =[]

xs) £ = 1f £ x
then x : myfilter f xs
else nmyfilter f xs

]
X

» Loading this into GHC reveals a problem:

> ghci Sandbox.hs
[1 of 1] Compiling Sandbox ( Sandbox.hs, interpreted
Sandbox.hs:8:46:
Couldn’t match expected type ‘[al]’ with actual type ‘a -> Bool’
In the first argument of ‘myfilter’, namely ‘f’
In the second argument of ‘(:)’, namely ‘myfilter f xs’
In the expression: x : myfilter f xs
Failed, modules loaded: none.
Prelude>
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How to Write a Haskell Program

Step 3 (continued).

» This error occurs on line 8 of the module, which is the line “then x : myfilter f xs".
GHCi is telling us that it expects that £ would have type [a] but that it can see that £
has type a — Bool. After a moment’s pause, we can see that the order of the
arguments is incorrect in both recursive calls. The corrected version works:
myfilter :: [a] -> (a -> Bool) -> [a]
myfilter [] f =[]
myfilter (x:xs) f if £ x

then x : myfilter xs f
else myfilter xs f
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Monads

[AMONAD]ISIUST{AMONOID/IN\THE!
CATEGORY or Ennnruucmns
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Monads
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Monads

Programming Languages are Monads
» Periodic Table of
Programming Languages

StateT BackT ResT
imperative backtrackin threads

= cut step pause

EnvT [ ErrorT | ContT |NondetT

binding i determ.
A @ v |raise/caten| callee | choose

IoT DebugT | ReactT

input/output | debugging | reactivity

printf | rollback [send,recv,

> Moggi 1989: Languages are “molecules”
composed of “elements” (aka, monad

transformers)

Bill Harrison

» Haskell has

>

built-in monad syntax

» formal semantics [JFPos APLASOS]

» Systems are molecules

>
|

Haskell for Grownups

Compilers [iccLos,MPcoo]
Interrupts/asynchronous exceptions
[MPCO8]

Systems Biology [Emsco3)
POSIX-like kernels

[AMASTO06,CheapThreads]
Separation kernels
[FCS03,CSF05,JCS09,ICFEM12]

Synchronous Hardware
[FPT13/15,ARC15,ReCoSoC16,
RSP16,TECS17, TECS19]

May 14, 2024
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Monads

Monads are Programming Language Constructors

> Language “Molecule”

ReacT

7/ N\

StateT StateT

P ...constructs a language:

=, mask, =, mask,
I, signal, ;
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Monads

Monads are Programming Language Constructors

> Language “Molecule”

ReacT

» With By-Construction Algebraic Properties

/ \ [APLAS06,JCS00]:

a=x;b=y=bi=y;a=x
a .= X ; mask = mask

StateT StateT b:= y ; mask = mask

> ... : “ "
constructs a language » Each “element” adds new commands to the

‘— mask. ‘—. mask language “molecule”
T y T )

I, signal, ;
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Case Studies

Achieving information flow security through monadic control of effects o

“changes in high-level inputs only change high-level outputs”

“high-level operations must cancel”

x:=e, ; y;:=f ; %,:=€, ; maskHi

= x;:=e, ; y,:=£f ; maskHi

x,:=e, ; maskHi/ y,:=f,
= maskHi / y1:=f1

= y,;:=f, ; maskHi

Bill Harrison Haskell for Grownups May 14, 2024
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Case Studies

ReWire Language & Toolchain

ReWire
compiler

Synthesizable

HDL

P Inherits Haskell's good qualities
» Pure functions, strong types, monads, equational reasoning, etc.
» Denotational semantics [Hkos, Har05, HSHO2]

» Types & Operators for HW abstractions jrrc* 1]

» ReWire Compiler (rwc) produces Verilog, VHDL, or FIRRTL

» Formalized Semantics in Coq [rriaio) and Isabelle/Coq/Agda e 23
» Embedding Tool translates ReWire into Isabelle

Bill Harrison Haskell for Grownups May 14, 2024
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Case Studies

Semantics-directed Architecture in ReWire [Fpr2013]

Xilinx PicoBlaze 8-bit Embedded Microcontroller

1Kx18.
Instruction
PROM

Program Counter
(PC)

64-Byte
Scratchpad RAM

Constants

instruction
Decoder

INTERRUPT

[E] Enabie

16 Byte-Wide Registers
[FsoT7si [7s2 s3]
[Tsa 75 [s6 o7 |

[[so [sA [sB ]
[sCTsb [sE | sF |

g

Flags
[Z] zer0
Cary

Bill Harrison

Haskell for Grownups

type
type
type
data

data

data

pico

Data Layout

RegFile = Table W4 W8
FlagFile = (Bit,Bit,Bit,Bit,Bit)
Mem = Table W6 W8
Stack = Stack { contents :: Table W5 W10,
pos i: WS }
Inputs Inputs { instruction_in :: W18,
in_port_in
interrupt_in
reset_in
Outputs Outputs { address_out
port_id_out
write_strobe_out
out_port_out
read_strobe_out
interrupt_ack_out :: Bit }
Fetch-Decode-Execute
Dev Inputs PicoState Outputs

pico = do s <- getPicoState

let i = inputs s
instr = instruction_in i
ie <- getFlagIE
if reset_in i ==
then reset_event
else if ie == 1 &&
interrupt_in i ==
then interrupt_event
else decode instr
pico

May 14, 2024
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Case Studies

RV32i in ReWire

Undergraduate Capstone at Univ. of Missouri (2019)

Fetch-Decode-Execute
rv32i :: Monad m =>
ReacT
(InSig w (Instr))
(OutSig W32 w e)
(StateT RegFile (StateT (InSig w (Instr),OutSig W32 w e) m))
()
rv32i = do
pc <+ 1lift $ getReg PC
iw <= async_fetch pc

exec iw
rv32i
exec :: Monad m => Instr — ReacT i o (StateT RegFile (StateT (i, o) m)) ()

exec ¢ = case c of

Add rd rsl rs2 — do
lift $ do
rsl < getReg rsl
rs2 <— getReg rs2
putReg rd (rsl + rs2)
tick
etc.

Bill Harrison Haskell for Grownups May 14, 2024
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Case Studies
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